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A B S T R A C T

The integration of distributed generation into direct current power grids presents a critical challenge in modern
energy systems, as it directly impacts grid reliability, efficiency, and the successful transition to renewable
energy. This study addresses the problem of optimizing distributed generation placement and sizing in direct
current grids, a key issue for reducing power losses and improving energy distribution. To tackle this, a
modified and extended genetic algorithm was developed, capable of handling both continuous and discrete
variables simultaneously. The algorithm was tested on two standard direct current grid systems, a 21-bus
microgrid and a 69-bus network. The results demonstrated significant improvements over existing methods,
reducing power losses by 84.5% in the 21-bus microgrid and by 95% in the 69-bus direct current network, with
notably reduced computation times. These findings indicate that the proposed algorithm not only optimizes
distributed generation integration effectively but also offers superior performance compared to traditional
approaches, without the need for additional methods or software. The novelty of this work lies in its ability to
handle complex, nonlinear optimization problems within direct current grids using a single, efficient approach,
advancing beyond previous efforts by achieving better results with fewer computational resources.
1. Introduction

In the global context of an ongoing energy transition, where nations
are striving to reduce their reliance on traditional fossil fuels in favor
of cleaner and more sustainable energy sources. This energy transition
is critical for addressing environmental challenges, such as greenhouse
gas emissions and air pollution [1]. Wind, solar, geothermal, and
hydropower are essential to the energy transition, offering sustainable
energy solutions. [2].

One pivotal facet of this energy transition is the integration of
renewable energy sources as distributed generators (DGs) into existing
energy grids. Historically, energy production and distribution relied
heavily on large centralized power plants interconnected by extensive
power grids. However, the emergence of DGs presents an opportunity to
provide localized energy access and reduce dependence on centralized
sources. Integrating these generators into AC or DC microgrids requires
careful planning to ensure grid stability and reliability. DGs offer mul-
tiple advantages, including enhanced energy security, reduced losses,
and improved reliability in energy generation and grid operation [3].

An effective strategy for integrating DGs into the energy grid in-
volves the deployment of microgrids, which are small-scale networks
that encompass power generation, energy storage, and diverse loads.
Microgrids can operate independently or in conjunction with the main
grid. Notably, DC power grids have gained prominence due to their
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streamlined planning and operational efficiency [4]. Unlike AC grids,
DC grids eliminate the need to manage reactive power, ensuring more
efficient integration of renewable energy sources [5]. Many renewables,
such as solar and wind, inherently generate DC power, further facilitat-
ing seamless integration [6]. Additionally, DC networks exhibit greater
resilience against issues like voltage drops and frequency oscillations,
which can impact AC grids adversely. Furthermore, DC grids offer
enhanced flexibility for load management and DG utilization.

Optimal DG Grid-Integration Models are mathematical tools em-
ployed to optimize the incorporation of renewable energy sources into
existing electrical grids [3]. These models aim to minimize electricity
generation costs or power losses while maximizing renewable energy
utilization, while considering constraints like network capacity, energy
demand, and grid stability [7]. Typically, these models are formulated
as Mixed Integer Nonlinear Programming (MINLP) problems, as they in-
volve both continuous and integer variables and nonlinear relationships
among system components [3]. In terms of thermal processes, inte-
grating DGs through the optimization algorithm reduces power losses,
which directly impacts the heat generated in electrical components.
Power loss in grid systems, especially resistive losses in conductors and
conversion inefficiencies, typically manifests as heat. By minimizing
these losses, the optimization algorithm contributes to lowering ther-
mal stress on cables and power converters. Solutions derived from these
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algorithms offer valuable insights for designing future energy systems
and informing energy transition policies.

Various approaches, including branch and bound [8], genetic algo-
rithms [9], particle swarm optimization (PSO) [10], tabu search [11],
population-based incremental learning (PPBIL) [7] and even machine
earning approaches [12], have been applied to solve these optimiza-

tion problems in AC power grids. However, the potential application of
these methods in DC networks remains largely unexplored, with limited
research focused on the optimal integration of DGs in DC grids [13].

In the case of DC networks, the optimal DG grid-integration models
have not been fully explored [13]. The few works that have been
proposed to solve the above problem can be classified into four main
groups: exact MINLP methods [3], approximation-based methods [14],
multi-objective approaches [15] and sequential methods [13,16]. In
the first group, the authors in [3] presented solutions based on ex-
ct MINLP methods for optimal integration of DGs in DC grids. In

addition, in [17] proposed a mixed-integer semidefinite programming
odel to tackle this problem, employing a branch and bound method

or the binary components and convex optimization techniques for
he nonlinear programming aspects. However, these methods include
omplex mathematical developments and must be used specialized

software to solve the problem. The second group includes methods
hat apply convex approximations of the exact MINLP problem with
he purpose of ensuring better quality solutions. However, they could

be time-consuming, depend on the size of the given problem and a
arallelization is extremely difficult. In the third group, approaches can

be found that address the integration of distributed energy resources
in DC networks by considering optimization problems with several
objective functions. For example, the authors in [15] introduced a

ulti-objective version of the PSO to address technical, economic and
nvironmental elements in the objective function. Finally, in the fourth
roup, different authors have proposed optimization methods based on
equential programming, which are seen as a variable-based decompo-
ition of the MINLP problem and are called as master–slave approaches,
hat is, the master step addresses the problem of the location of the

distributed resource, while the slave stage deals with their sizing of
DGs [13]. Despite having two stages for the solution of the MINLP
roblem, these methods have shown to be a promising alternative for

the analysis of the integration of DGs in power networks. All these
methodologies have yielded significant insights into optimizing the in-
egration of distributed generation in DC grids. However, exact MINLP
ethods, while guaranteeing optimal solutions, demand substantial

omputational resources. Conversely, multi-objective techniques can
valuate multiple criteria and produce a set of solutions (Pareto fron-
ier). Despite this advantage, they often encounter conflicts between
bjectives and require specialized expertise for both their application
nd the interpretation of the Pareto frontier. Sequential methodologies,
n the other hand, have emerged as dominant solutions due to their
omputational efficiency and flexibility.

Master–slave approaches can combine methods like genetic algo-
rithms and the black hole algorithm to address the sizing of DGs in DC
etworks. However, these approaches may not address the challenge
f determining the optimal location for these DGs [18]. On the other

hand, in [13], a thorough comparison of various techniques for solving
he optimal integration problem of DGs is presented. The authors
xplore several methods, including the genetic algorithm and vortex
earch algorithm, genetic algorithm and particle swarm optimization,
wo-phased genetic algorithm, population-based incremental learning
lgorithm, parallel Monte Carlo simulation, and others. In [16], the au-
hors used a master–slave approach to optimize the operation of energy
torage systems, employing the PSO algorithm in the master stage and
he power flow method based on successive approximations in the slave
tage. The objective function focused on reducing energy purchase
osts at the main node of the electrical network. To validate the
fficiency and robustness of their methodology, the authors compared

ts performance against three metaheuristic algorithms, also evaluating
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the solution’s repeatability and computation times. The authors in [19]
introduced a hybrid methodology combining the PPBIL algorithm and
PSO. Using a master–slave structure, the PPBIL master stage determines
he generator locations, while the PSO slave stage calculates their sizes,

focusing on minimizing power loss within the constraints of DC grids
in a distributed generation setting. Finally, Montano et al. in [20] pro-
posed to use the arithmetic optimization algorithm and PSO algorithm
to solve the optimal power flow problem in DC networks. This proposed
approach produced high-quality solutions with low standard deviation.
However, the overall computation time, particularly for large networks,
can be longer. This is especially noticeable in scenarios where the
search space becomes large due to higher DG penetration.

While previous studies have proposed various sequential methods
to address this challenge, they often require specialized software or
multi-step approaches, leading to longer computation times, increased
complexity and involve adjusting multiple parameters, which makes
it more challenging for non-experts to apply. Research on unified,
population-based algorithms that can efficiently solve this problem in
DC grids is still limited. Due to the foregoing, this paper proposes
the use of a single, population-based algorithm, specifically genetic
algorithms, underscores an innovative approach to optimizing DG in-
tegration, that is, it determines the most favorable locations and sizes
for DGs within the context of DC power grids. The novel optimization
technique using an extended genetic algorithm not only advances the
technical integration of distributed generation into DC grids but also
significantly addresses the associated thermal challenges. Genetic algo-
rithms possess the remarkable ability to explore solution spaces with a
degree of randomness while accommodating the complex interplay of
both nonlinear and integer constraints. This approach can be adjusted
and scaled to address problems for DC grids of different sizes and
complexities, making efficient use of available computational resources.
This unique methodology offers a promising solution to a complex and
pressing problem. Therefore, this paper proposes to use an extended
and improved version of the genetic algorithm presented in [21]. To
validate the efficacy of this novel approach, two DC test networks are
used: a 21-bus DC microgrid and a 69-bus DC network employed by [2].
The main contributions of this paper include the following:

• An optimal method for integrating distributed resources into DC
networks is discussed.

• A novel optimization approach using genetic algorithms is intro-
duced.

• The proposed algorithm combines discrete and continuous vari-
ables seamlessly.

• Experiments on two test systems validate the approach, showing
improved resource integration.

The rest of this paper is organized as follows. Section 3 presents the
athematical modeling of the problem of optimal placement and sizing

of distributed resources in DC networks by means of a MINLP problem.
Then, in Section 4, the methodology based on genetic algorithms is
riefly explained to solve the problem described in Section 3. Section 5

presents a discussion of the results achieved by implementing the
method outlined above on various DC grids. Section 6 concludes with
a summary of findings and suggestions for future research.

2. DC grid model

As previously noted, a DC grid constitutes a network encompassing
renewable energy resources, energy storage systems, electric vehicles,
and controlled loads, as illustrated in Fig. 1. This network is versatile,
capable of operating in island mode or establishing connections with
the AC network via a bidirectional AC/DC converter. The appeal of DC
networks stems from the properties discussed earlier.

As highlighted by Garces in [4], these networks not only hold re-
search significance but also offer practical utility. For instance, in [22],
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Fig. 1. DC Grid Example.

the authors introduced a Low Voltage DC distribution system featur-
ing four-wire ground cables, developed in collaboration with Elenia
Oy and ABB Oy Drives. The NASA International Space Station itself
operates on two DC systems [23]. Furthermore, numerous data centers
worldwide have adopted DC distribution systems, including the Duke
Energy data center in Charlotte [24] and the University of California’s
Datacenter [25]. Given these real-world applications, it remains crucial
to delve deeper into the analysis of these emerging technologies within
power systems.

Let us consider a DC grid with master–slave operation, which can
be represented as follows [3],

𝐈 = 𝑉0𝐆0 +𝐆𝐕, (1)

where 𝐆0 ∈ R𝑛×1 and 𝐆 ∈ R𝑛×𝑛 are nodal admittance matrices1; 𝑉0 is
a known voltage at the Master Terminal; 𝐕 ∈ R𝑛×1 and 𝐈 ∈ R𝑛×1 are
the nodal voltages and currents, respectively. From the model shown
in Eq. (1), the power injected to the DC grid can be computed as the
product between the nodal voltages and currents, that is
𝐏 = 𝐟 (𝐕) = 𝑉0𝐆0 ⊙ 𝐕 +𝐆𝐕⊙ 𝐕, (2)

where 𝐏 ∈ R𝑛×1 includes all the injected active powers, and ⊙ is the
Hadamard product (i.e. the element-wise product of matrices).

3. Mathematical modeling

Optimizing the integration of distributed resources can be achieved
through a MINLP model, which is a mathematical optimization model
that minimizes a nonlinear objective function while considering linear
and nonlinear constraints. In this model, certain variables are restricted
to integer and continuous values that correspond to the location and
sizing of the resources, respectively [13]. Solving such problems is
challenging due to nonlinear objectives, constraints, and integer vari-
ables, which increase computational complexity and time [3]. Based
on the models proposed in the specialized literature, all agree that the
objective function of this model is the reduction of power losses [13].
On the other hand, it is possible to include as restrictions: the energy

1 For the DC grids analyzed here, it is considered that: the graph is
connected (𝐆 is not singular), and the system is represented in per-unit [26].
3 
balance in each system node, voltage profiles, thermal limits in the
conductors, limits of power injected in the distributed generators and
their locations. For this study, the model used by [13] will be closely
followed, i.e., the optimal model for integrating distributed generation
is given by,

min𝑃loss = min𝐕⊤𝐆𝐕, (3)
𝑠.𝑡,

𝑃𝑔𝑖 − 𝑃𝑑𝑖 =
∑

𝑗∈
𝐺𝑖𝑗𝑣𝑖𝑣𝑗 , (4)

𝑣min ≤ 𝑣𝑖 ≤ 𝑣max, (5)
|

|

|

𝐼𝑖𝑗
|

|

|

≤ 𝐼𝑖𝑗 ,max, (6)

𝑃𝐷 𝐺
min𝑖

𝑥𝐷 𝐺
𝑖 ≤ 𝑃𝐷 𝐺

𝑖 ≤ 𝑃𝐷 𝐺
max𝑖

𝑥𝐷 𝐺
𝑖 , (7)

∑

𝑖∈
𝑃𝐷 𝐺
𝑖 𝑥𝐷 𝐺

𝑖 ≤ 𝑃𝐷 𝐺
max , (8)

𝑥𝐷 𝐺
𝑖 ∈ {0, 1} (9)

where 𝑃loss ∈ R+ is a real positive number that represents the active
power losses in the DC network, 𝐯 ∈ R𝑛 is a vector that includes
all the grid nodal voltage, 𝐆𝐿 ∈ R𝑛×𝑛 is the conductance matrix that
relates all the conductive effects of the line connections. 𝑃𝑔𝑖 and 𝑃𝑑𝑖 are
the generated and demanded power at node 𝑖, respectively. 𝐺𝑖𝑗 is the
element appearing in the 𝑖th row and 𝑗th column of 𝐆𝐿.  corresponds
to the set of nodes of the grid. 𝑣𝑖 and 𝑣𝑗 are the nodal voltages at buses
𝑖 and 𝑗, respectively. 𝐼𝑖𝑗 is the current between the nodes 𝑖 and 𝑗. 𝑃𝐷 𝐺

𝑖
is the generated power by a DG connected to node 𝑖. 𝑥𝐷 𝐺

𝑖 is a binary
variable that represents the location of the DGs at node 𝑖, that is, 𝑥𝐷 𝐺

𝑖
takes the value 1 if it is located at node 𝑖 and 0 otherwise.

The MINLP problem described in Eqs (3) to (9) can be interpreted
in the following manner: the objective of the model is to minimize
active power losses, as indicated in Eq. (3), while ensuring the energy
balance of the system, as specified in Eq. (4). This ensures that all
the active power generated is efficiently consumed. Additionally, the
voltage profile within DC networks must remain within predefined
minimum and maximum limits, as denoted in Eq. (5), in order to
address stability concerns within these networks [1]. Similarly, the
model enforces compliance with thermal limits in the system conduc-
tors, as outlined in Eq. (6). Finally, the problem also mandates that
distributed generation is dispatched only within permissible limits and
is situated at appropriate system nodes, in accordance with Eqs (7) to
(9). Based on the MINLP problem shown in Eqs (3) to (9), which has
a convex objective function, and nonlinear and non-convex constraints
associated with the energy balance, this paper uses a methodology that
supports this type of constraint together with binary variables.

4. Applied methodology

To solve the MINLP problem associated to the optimal location
and sizing of DGs in DC grids, this paper proposes to use a modified
and extended genetic algorithm (MEGA) presented by Deep et al.
in [27] to deal with integer restrictions or decision variables. The
crossover operator, called Laplace crossover, uses uniform and Laplace
distributions to generate new offsprings from two parents, while the
mutation operator applies a power distribution to create a mutated
solution within a parent’s vicinity, that is,
𝑦1𝑖 = 𝑧1𝑖 + 𝛽𝑖

|

|

|

𝑧1𝑖 − 𝑧2𝑖
|

|

|

, (10)

𝑦2𝑖 = 𝑧2𝑖 + 𝛽𝑖
|

|

|

𝑧1𝑖 − 𝑧2𝑖
|

|

|

, (11)

where 𝑦1𝑖 and 𝑦2𝑖 are two off-springs generated from two parents 𝑧1𝑖 and
𝑧2𝑖 . 𝛽𝑖 is a random variable that follows a Laplace distribution, which is
computed as,

𝛽𝑖 =

{

𝑎 − 𝑏 log
(

𝑢𝑖
)

, 𝑟𝑖 ≤ 1∕2,
( ) (12)
𝑎 + 𝑏 log 𝑢𝑖 , 𝑟𝑖 > 1∕2,
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Fig. 2. Flowchart of MEGA applied to solve the MINLP problem in Eqs. (3) to (9).

where, 𝑎 represents the location parameter and 𝑏 > 0 represents the
scaling parameter. 𝑢𝑖 and 𝑟𝑖 denote uniform random variables. In case
there is an integer decision variable, 𝑏 = 𝑏𝑖𝑛𝑡, otherwise 𝑏 = 𝑏𝑟𝑒𝑎𝑙.

For the mutation operator, MEGA uses a power distribution to create
a muted solution, that is,

𝑧 =

{

𝑧̄ − 𝑠
(

𝑧̄ − 𝑧𝑙
)

, 𝑡 < 𝑟,
𝑧̄ + 𝑠 (𝑧𝑢 − 𝑧̄) , 𝑡 ≥ 𝑟,

(13)

where, 𝑧 represents a solution within the vicinity of a parent solution
𝑧̄. The variable 𝑠 follows a power distribution with the form 𝑠 =
𝑠1
)𝑝, where 𝑠1 is a uniform random variable, and 𝑝 corresponds to

he mutation index. Finally, 𝑡 = 𝑧̄−𝑧𝑙
𝑧𝑢−𝑧̄ , 𝑧𝑙 and 𝑧𝑢 are the lower and

upper limits of the decision variable, this whole process is called power
mutation. In the case of the truncation operator, MEGA applies the
following rule: if 𝑧𝑖 is a integer then 𝑧̄𝑖 = 𝑥𝑖, otherwise, 𝑧̄𝑖 is equal either
[

𝑧𝑖
]

or
[

𝑧𝑖
]

+ 1 each with probability 0.5, where
[

𝑧𝑖
]

is the integer part of
𝑖. In MEGA, tournament selection operator is applied as reproduction

operator. The MEGA application can be summarized as shown in Fig. 2.

5. Results and discussion

In order to analyze the behavior of MEGA applied to the problem
of optimal DG location and sizing, two DC networks, which have been
widely used in the literature, were employed. Specifically, a 21-bus DC

icrogrid and a 69-bus DC grid were used as presented in [13]. The
21-bus DC microgrid includes 21 buses, 20 branches and a slack bus at
bus 1 as shown in Fig. 3. Base voltage and power are set to 1 kV and 100
kW, respectively. On the other hand, the 69-bus DC grid is composed
by 69 buses, 68 branches and a slack bus at bus 1 as shown in Fig. 4.
For this DC grid, a base voltage and a power are set to 12.66 kV and
00 kW, respectively. In the scenario of no inclusion of DGs, the active
ower losses are 27.6 kW and 153.84 kW for the microgrid and the
9-bus DC grid, respectively.

In order to assess the effectiveness of MEGA, its solution quality and
omputational time have been compared against various methodologies
roposed in [13] and [19] for the optimal placement and sizing of DGs

in DC networks. Grisales et al. in [13,19] employed different sequen-
tial programming approaches. For the location problem, they utilized
the genetic algorithm (GA), a population-based incremental learning
(PBIL) algorithm, and a parallel version of the Monte Carlo algorithm
(PMC). To address the sizing problem, they employed the particle

swarm optimization (PSO), black hole (BH) optimization algorithm,

4 
Fig. 3. 21-bus test DC microgrid.

a continuous version of the GA (CGA), and vortex search algorithm.
The top 7 methods, based on the lowest power losses, were compared,
i.e., from [13], GA∕VSA, PIBL∕PSO, PIBL∕GA, PIBL∕BH, PMC∕PSO,
GA∕PSO and GA∕GA have been used. With the goal of comparing
these methods, the operating conditions explained by [13] have been
implemented, that is, the maximum power assigned to the DGs are 150
W and 1200 kW in the 21-bus and 69-bus test systems, respectively.

In both test systems, the minimum power is set to 0 kW, while the
maximum allowable distributed power generation is capped at 40% of
the total power generated by the slack bus. Additionally, the voltage
limits for DC grid nodes range between 0.9 pu and 1.1 pu, and the
maximum branch current limits are 520 A and 335 A for the microgrid
and 69-bus DC grid, respectively. Finally, the number of DGs to 3 has
set, since the vast majority of solutions presented by [13] established
hree DG locations. All tests and simulations were conducted on an Intel

Core i7 PC with a 2.1 GHz processor.
Table 1 shows the results obtained for the optimal location and

sizing of DGs in the 21-bus DC microgrid and 69-bus DC grid. From
Table 1, the methodology used, the sizing (active power generation) of
the DG and in parentheses its optimal location are presented. Then, the
value of the active power losses and computation time are found. The
Table 1 also shows the value of the computation time after using each of
the solution approaches. All this for the DC microgrid. Then, in Table 2,
the previous results are presented but using the 69-bus DC network.
rom the Table 1, it can be seen that the MEGA achieved an optimal

placement of DGs similar to that of GA∕VSA and PIBL∕BH for the
21-bus DC microgrid. However, MEGA achieved an 84.5% reduction
in active power losses, outperforming the 78.5% reduction obtained
by GA∕VSA. Additionally, MEGA took 2.53 s to provide the optimal
solution to the problem posed in this study. MEGA achieved lower
omputation times than those reported in [13].

On the other hand, Table 2 shows the results of the optimal place-
ent and sizing of DGs using the 69-bus DC grid. Table 2 shows

hat MEGA managed to locate three DGs at nodes 18, 61 and 63
with 395.55 kW, 777.86 and 778.55 kW of active power generation,
respectively. With the above solution, MEGA took 7.84 s to obtain an
ctive power loss of 7.66 kW. That is, MEGA was able to obtain an

active power losses reduction of about 95%. Although the locations
of the DGs are different, MEGA obtained the best solution in terms of
active power loss and computation time.

Figs. 5 and 6 show the voltage profile for the two test systems
when DGs are not considered and when they are considered. The red
and blue lines correspond to the system voltage profile with∕without
considering, respectively. As shown in these figures, the voltage profile
improves with DG integration. In other words, the above notation high-
lights that the optimal integration of distributed resources supports the
secure operation of these DC networks. This confirms the viability of us-
ing a unified approach for both location and sizing in DG optimization,
a departure from the traditional multi-stage methodologies.

6. Conclusions

This paper proposed to use an extended and improved version of
the genetic algorithm in order to solve the mixed integer nonlinear
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Fig. 4. 69-bus test DC network.
Table 1
Optimal DG placement and sizing in the 21-bus DC microgrid, showing power generation and losses.
Method Power generation (kW) 𝑃loss (kW) CT (s)
No DGs – – – 27.60 –
MEGA 102.75(12) 104.13(16) 91.03(19) 𝟒.𝟐𝟕 𝟐.𝟓𝟑
GA/VSA [13] 72.46(12) 114.04(16) 46.13(19) 5.96 5.90
PPBIL/PSO [19] 73.79(12) 118.34(16) 40.50(20) 5.96 126.52
PIBL/GA [19] 81.14(12) 110.27(16) 40.46(21) 6.01 222.48
PIBL/BH [19] 86.84(12) 91.90(16) 50.46(19) 6.18 203.03
PMC/PSO [13] 32.38(8) 111.37(14) 88.88(17) 7.21 124.38
GA/PSO [19] 31.61(3) 55.46(8) 145.5(17) 8.68 238.74
GA/GA [19] 59.30(9) 134.55(11) 38.77(13) 11.1 535.23
Table 2
Optimal DG placement and sizing in the 69-bus DC grid, showing power generation and losses.
Method Power generation (kW) 𝑃loss (kW) CT (s)
No DGs – – – 153.84 –
MEGA 395.55(18) 777.86(61) 778.55(63) 𝟕.𝟔𝟔 𝟕.𝟖𝟒
GA/VSA [13] 177.56(22) 1054.56(61) 385.12(64) 13.79 29.69
PPBIL/PSO [19] 169.58(23) 1200(61) 247.65(67) 13.84 111.53
PBIL/GA [19] 148.99(27) 1167.96(62) 294.86(65) 14.86 220.82
PBIL/BH [19] 448.52(60) 395.63(62) 296.11(65) 36.11 197.063
PMC/PSO [13] 417.23(10) 1200(63) – 15.75 138.68
GA/PSO [19] 179.33(14) 237.90(58) 1200(62) 17.49 839.67
GA/GA [19] 446.07(59) 1170.76(63) – 19.02 1611.72
Fig. 5. Nodal Voltage profile of 21-bus DC microgrid with optimal integration of DGs. The red and blue lines correspond to the system voltage profile without considering and
considering DGs, respectively.
Fig. 6. Nodal Voltage profile of 69-bus DC grid with optimal integration of DGs. The red and blue lines correspond to the system voltage profile without considering and considering
DGs, respectively.
5 



C.D. Zuluaga-Ríos e-Prime - Advances in Electrical Engineering, Electronics and Energy 10 (2024) 100857 
programming problem associated with the optimal integration of dis-
tributed resources. Testing on two DC networks demonstrated that the
proposed method surpassed traditional multi-step approaches in terms
of both efficiency and computational time. Specifically, the proposed
methodology achieved a reduction in active power losses of 84.5%
and 95% for the 21-bus microgrid and 69-bus direct current grid,
respectively. Additionally, this study demonstrated that this extended
method is another alternative solution and does not require additional
techniques to solve the problem. As future work, it is necessary to use
systems of greater complexity, include the randomness of renewable
energy sources and even analyze the performance of the technique in
this type of problems applied to alternating current networks.
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