
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Máster en Ingeniería Industrial

Blockchain and IoT for Secure and Automated Smart
Irrigation Systems

Author

Jaime Huarte Rubio

Directed by

Jafar Saniee

Mikhail Gromov

Madrid

August 2025

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Blockchain and IoT for Secure and Automated Smart Irrigation Systems

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2024-25 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Jaime Huarte Rubio Fecha: 25/08/2025

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Jafar Saniee Fecha: 25/08/2025

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Máster en Ingeniería Industrial

Blockchain and IoT for Secure and Automated Smart
Irrigation Systems

Author
Jaime Huarte Rubio

Directed by
Jafar Saniee

Mikhail Gromov

Madrid
August 2025

BLOCKCHAIN AND IOT FOR SECURE AND AUTOMATED SMART
IRRIGATION SYSTEMS

Autor: Jaime Huarte Rubio
Supervisores: Jafar Saniee & Mikhail Gromov
Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN
Este proyecto explora la integración de dispositivos IoT, tecnología blockchain y Smart
Contracts para crear un sistema de riego agrícola seguro, transparente y automatizado.
Los nodos estan basados en sensonser con microcontroladores ESP32 que transmiten datos
ambientales a un hub Raspberry Pi 4 mediante comunicación LoRa. La pasarela actúa
como un oracle, validando la integridad de los paquetes (CRC-32) y registrando actual-
izaciones en la blockchain con librerías Web3. Los Smart Contracts desplegados en la red
Polygon PoS (testnet Amoy) implementan la lógica de riego, aplican umbrales predefinidos
y proporcionan un registro de eventos, decisiones y estados del sistema que son verificables.

El prototipo adopta una arquitectura híbrida edge–blockchain en la que la pasarela
Raspberry Pi funciona tanto como procesador local como oracle. Aunque el uso de re-
des de oráculos descentralizadas como Provable o Chainlink sigue siendo una dirección
prometedora para el futuro, el enfoque implementado ofrece un concepto práctico y re-
producible.

El sistema demuestra cómo la automatización basada en blockchain puede mejorar
la trazabilidad y la reproducibilidad en la gestión del agua agrícola. Asimismo, muestra
que, cuando las interacciones son poco frecuentes y de tipo orientado a eventos, los costos
operativos pueden mantenerse en niveles bajos en comparación con las plataformas IoT de
servicios en la nube. Este proyecto sienta las bases para futuras evaluaciones de latencia,
eficiencia energética y despliegue a gran escala en entornos agrícolas reales.

Palabras clave: Riego inteligente, Internet de las Cosas (IoT), Blockchain, Smart
Contracts, Arquitectura híbrida, Tecnología agrícola, Comunicación LoRa, Raspberry Pi,
ESP32, Diseño de oráculos, Automatización descentralizada, Blockchain Polygon, Gestión
sostenible del agua, Agricultura de precisión, Edge Computing, Integridad de datos, Toma
de decisiones transparente.

1. Introducción
La escasez de agua y la seguridad alimentaria se encuentran entre los desafíos globales más
urgentes del siglo XXI. La agricultura, al ser el mayor consumidor de agua dulce, requiere
con urgencia innovaciones tecnológicas para optimizar el uso de los recursos. Este proyecto
responde a esa necesidad mediante la propuesta de un sistema de riego inteligente que
integra sensores IoT y Smart Contracts en blockchain. El objetivo es lograr una solución
segura, automatizada y escalable para el control del riego basada en datos ambientales en
tiempo real.

2. Definición del Proyecto
El sistema está diseñado para monitorizar la humedad del suelo, la temperatura y la

1

humedad ambiental mediante nodos ESP32 distribuidos que utilizan comunicación LoRa.
Una Raspberry Pi funciona como pasarela para preprocesar localmente los datos antes de
transmitirlos a la blockchain. La blockchain, específicamente la testnet de Polygon, aloja
los contratos inteligentes que ejecutan las órdenes de riego en función de las lecturas de
los sensores. El sistema sigue una arquitectura híbrida edge–blockchain: mientras que las
decisiones y registros son inmutables en la cadena, la Raspberry Pi actúa como oráculo
que conecta la sensorización fuera de la cadena con la lógica en cadena. La motivación
radica en crear un marco de automatización de riego auditable, con mínima confianza y
bajo consumo energético.

3. Descripción del Modelo/Sistema/Herramienta
La arquitectura se divide en tres capas principales: sensorización física, procesamiento y
toma de decisiones. Los datos ambientales son captados mediante sensores y enviados por
LoRa a la Raspberry Pi, que filtra el ruido e identifica patrones relevantes. Los contratos
inteligentes escritos en Solidity procesan esta información para decidir los eventos de riego.
En este prototipo, la propia pasarela actúa como oráculo que reenvía actualizaciones fir-
madas de los sensores a la blockchain. La integración de oráculos descentralizados como
Provable o Chainlink se plantea como una extensión natural para trabajos futuros. Los
componentes fueron probados en un entorno simulado para poder validar la funcionalidad
del sistema, su rendimiento y sus costes.

4. Resultados
El sistema se comprobó en un escenario agrícola simulado. Las funcionalidades del sis-
tema se validaron mediante registros, inspección de los eventos de la blockchain y las
respuestas de actuadores simulados. El prototipo demostró que el diseño híbrido reduce
interacciones innecesarias con la blockchain gracias al filtrado local de datos, y que la
lógica del contrato aplica de manera fiable los umbrales de riego. Aunque métricas cuan-
titativas como latencia, consumo energético y coste de transacción deberán medirse en
pruebas físicas, la simulación confirmó la viabilidad y rentabilidad del enfoque, con costes
de interacción en blockchain prácticamente insignificantes en la escala analizada.

5. Conclusion
El sistema propuesto demuestra la viabilidad de combinar tecnologías blockchain e IoT
para la automatización agrícola segura. El prototipo ofrece una alternativa transparente
y escalable a los sistemas de riego tradicionales, particularmente adecuada para entornos
agrícolas descentralizados o cooperativos. Aunque la versión actual se basa en pruebas
simuladas, el diseño está técnicamente preparado para su despliegue físico con mínimas
adaptaciones. El proyecto contribuye a los Objetivos de Desarrollo Sostenible relacionados
con la gestión del agua, la innovación y el uso responsable de los recursos.

2

BLOCKCHAIN AND IOT FOR SECURE AND AUTOMATED SMART
IRRIGATION SYSTEMS

Author: Jaime Huarte Rubio
Supervisors: Jafar Saniee & Mikhail Gromov
Collaborating Entity: ICAI – Universidad Pontificia Comillas

ABSTRACT
This project explores the integration of IoT devices, blockchain technology and smart
contracts to create a secure, transparent and automated irrigation system for agriculture.
Sensor nodes based on ESP32 microcontrollers transmit environmental data to a Rasp-
berry Pi 4 gateway via LoRa. The gateway acts as a trusted oracle, validating packet
integrity (CRC-32) and committing updates to the blockchain using Web3 libraries. Smart
contracts deployed on the Polygon PoS (Amoy testnet) implement irrigation logic, enforce
predefined thresholds and provide a verifiable event log of decisions and system states.

The prototype adopts a hybrid edge–blockchain architecture in which the Raspberry
Pi gateway serves as both local processor and oracle. While the use of decentralized oracle
networks such as Provable or Chainlink remains a promising direction for future devel-
opment, the implemented approach provides a practical and reproducible proof of concept.

The system demonstrates how blockchain-based automation can enhance account-
ability and reproducibility in agricultural water management. It also shows that, when
interactions are sparse and event-driven, operational costs can remain negligible com-
pared to conventional cloud IoT platforms. This work lays the foundation for subsequent
evaluations of latency, energy efficiency and large-scale deployment in real agricultural
environments.

Key words: Smart irrigation, Internet of Things (IoT), Blockchain, Smart con-
tracts, Hybrid architecture, Agricultural technology, LoRa communication, Raspberry
Pi, ESP32, Oracle design, Decentralized automation, Polygon blockchain, Sustainable
water management, Precision agriculture, Edge computing, Data integrity, Transparent
decision-making.

1. Introduction
Water scarcity and food security are among the most pressing global challenges of the
21st century. Agriculture, being the largest consumer of freshwater, urgently requires
technological innovation to optimize resource use. This project addresses that need by
proposing a smart irrigation system that integrates Internet of Things (IoT) sensors and
blockchain smart contracts. The aim is to achieve a secure, automated and scalable solu-
tion for irrigation control based on real-time environmental data.

2. Project Definition
The system is designed to monitor soil moisture, temperature and humidity via distributed
ESP32 nodes using LoRa communication. A Raspberry Pi functions as a gateway to lo-
cally pre-process data before transmitting it to the blockchain. The blockchain, specifically

3

the Polygon testnet, hosts smart contracts that execute irrigation commands based on
sensor readings. The system follows a hybrid edge–blockchain architecture: while deci-
sions and logs are immutable on-chain, the Raspberry Pi acts as a trusted oracle bridging
off-chain sensing with on-chain logic. The motivation lies in creating a trust-minimized,
auditable and energy-aware irrigation automation framework.

3. Description of the Model/System/Tool
The architecture is divided into three main layers: sensing, processing and decision-
making. Environmental data is captured through calibrated sensors and sent via LoRa to
the Raspberry Pi, which filters noise and identifies actionable patterns. Smart contracts
written in Solidity process this input to decide irrigation events. In this prototype, the
gateway itself serves as the oracle that forwards signed sensor updates to the blockchain.
Integration of decentralized oracles such as Provable or Chainlink is identified as a natu-
ral extension for future work. All components were tested in a simulated environment to
validate system functionality, performance and cost considerations.

4. Results
The system was successfully deployed in a simulated agricultural scenario. Functionality
was validated through log traces, on-chain event inspection and simulated actuator re-
sponses. The prototype showed that the hybrid design reduces unnecessary blockchain
interactions by filtering data locally and that the contract logic reliably enforces irrigation
thresholds. Although quantitative metrics such as latency, power consumption and trans-
action cost remain to be measured under physical testing, the simulation confirmed the
feasibility and cost-effectiveness of the approach, with blockchain interactions incurring
only negligible costs at the tested scale.

5. Conclusions
The proposed system demonstrates the viability of combining blockchain and IoT tech-
nologies for secure agricultural automation. It offers a transparent and scalable alterna-
tive to traditional irrigation systems, particularly suitable for decentralized or cooperative
farming environments. While the current version relies on simulated testing, the design
is technically ready for physical deployment with minimal adjustments. The project con-
tributes to Sustainable Development Goals related to water management, innovation and
responsible resource use.

4

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Context and relevance . 10
1.3 Social, economic and technological importance 11
1.4 Problem statement . 11
1.5 Scope and Objectives . 12
1.6 Project Methodology . 12
1.7 Alignment with Sustainable Development Goals (SDGs) 13

2 Technology Overview 14
2.1 Internet of Things (IoT) . 14
2.2 LoRa and LoRaWAN Communication Protocol 15
2.3 Raspberry Pi as Local Gateway . 16
2.4 Smart Contracts and the Polygon Blockchain 17
2.5 Oracles and Off-Chain Data Ingestion . 19
2.6 Security and Fault Tolerance Mechanisms 19
2.7 System Modularity and Interoperability . 20

3 State of the Art 22
3.1 Existing Smart Irrigation Systems . 22

3.1.1 Example 1: SmartFarmNet Platform 23
3.1.2 Example 2: IoT-Blockchain Integration Prototype by Xie et al. (2022) 24

3.2 Blockchain Applications in Agriculture . 24
3.3 Research Gaps and Challenges . 26

4 System Design and Implementation 29
4.1 System Architecture . 29

4.1.1 Layered Overview . 29
4.1.2 Communication Flow . 30
4.1.3 Design Rationale . 30

4.2 Sensor and Hardware Configuration . 31
4.2.1 ESP32 Sensor Nodes . 31
4.2.2 Sensors Used (Soil, Environmental, Light) 32
4.2.3 Actuators and Relays . 33
4.2.4 LoRa Communication Modules . 33
4.2.5 Gateway: Raspberry Pi 4 . 34

5

4.2.6 Hardware Integration and Power Considerations 35
4.3 Data Preprocessing and Local Logic . 36

4.3.1 Frame Parsing, Validation and State Assembly 36
4.3.2 Noise Filtering and Data Validation 36
4.3.3 Event-Driven Data Transmission 37
4.3.4 Integration with Blockchain as Oracle 37
4.3.5 Design Rationale . 37

4.4 Blockchain Integration and Smart Contracts 38
4.4.1 Smart Contract Design and Logic 39
4.4.2 Security and Robustness Considerations 41
4.4.3 Deployment with Remix IDE and MetaMask 41
4.4.4 Operational Workflow and Event Semantics 42
4.4.5 Reproducibility and Verification . 42

4.5 Oracle Configuration . 43
4.5.1 Role of the Raspberry Pi as Oracle Gateway 43
4.5.2 Transaction Flow . 44
4.5.3 Implementation Considerations . 44
4.5.4 Security and Trust . 44

5 Results and Validation 45
5.1 Testing Strategy and Scenarios . 45

5.1.1 Scenario design . 45
5.1.2 Sensor values simulation . 45
5.1.3 Blockchain interaction and logs . 46

5.2 Performance Metrics (Latency, Energy, Costs) 46
5.2.1 Gas usage and transaction cost from simulator logs 46
5.2.2 Daily transaction volume and daily cost 47
5.2.3 Cloud IoT reference costs . 48
5.2.4 Latency and energy . 48

5.3 Discussion . 49

6 Conclusions and Future Work 50

Appendix 52

A Source Code 52
A.1 ESP32 Firmware . 52
A.2 Raspberry Pi Oracle Gateway . 57
A.3 Smart Contract - Solidity . 66

B Build, ABI, and Scenario Artifacts 70
B.1 SmartIrrigationV2_metadata.json (Compiler settings and source integrity) 70
B.2 ABI slice (selected functions) from

SmartIrrigationV2_metadata.json . 70
B.3 Minimal ABI for gateway binding

(from SmartIrrigationV2.json) . 71

6

B.4 scenario.json (account and constructor transactions) 72

C Simulation 74
C.1 RPi4 Blockchain Simulator . 74
C.2 Simulation Logs . 77

Bibliography 79

7

List of Figures

2.1 Layered architecture of the IoT system with communication and decision
components. 15

2.2 Data flow from IoT sensors to smart contract-based irrigation decision-
making. 19

3.1 Comparison of traditional cloud-based and blockchain-based smart irriga-
tion system architectures. 23

3.2 Overview of blockchain applications across agricultural domains 26
3.3 Overlap graph of blockchain, open protocols and low-power IoT solutions

in smart agriculture . 28

4.1 System architecture. 30
4.2 Hardware components integrated in the IoT sensor nodes. 34
4.3 Gateway and communication hardware used in the irrigation system. The

Raspberry Pi 4 (a) acts as the processing and blockchain interface, while
the LoRa module (b) receives the communication from the node’s module. 35

4.4 Data preprocessing, validation and event-driven oracle workflow at the
Raspberry Pi gateway. 38

4.5 Interaction cycle between the gateway, the smart contract on Polygon
Amoy and the actuator demo interface. 40

8

List of Tables

2.1 Comparison of wireless communication protocols for agricultural IoT de-
ployments. 16

2.2 Comparison of smart contract platforms relevant to agricultural IoT appli-
cations . 18

2.3 Overview of fault tolerance features. 20

4.1 LoRa binary frame format emitted by ESP32 nodes (27 bytes total). 32
4.2 Summary of sensors integrated into the IoT nodes 33
4.3 Main functions and events of the implemented contract, with roles and

access control. 40
4.4 Encoding of activation/deactivation reasons in the IrrigationStatusChanged

event. 42

5.1 Scripted inputs used in the RPi4 simulator for each scenario. 46

9

1 Introduction

1.1 Motivation

It is estimated that by 2050, the world population will exceed 9.7 billion people, which
will require an increase in food production of between 50% and 70% [1]. This challenge
must be addressed in a context of growing constraints, marked by climate change, fresh-
water scarcity and soil degradation. In many areas, agriculture already competes with
the urban and industrial sectors for access to water. According to the FAO, this sector
currently accounts for more than 70% of global freshwater withdrawals and a significant
portion of this resource is lost due to inefficiencies in irrigation systems [1].

Adding to these tensions is the increasing climate variability, which has disrupted
traditional agricultural cycles. Regions that previously had regular rainfall patterns now
suffer from droughts, while others face extreme and unpredictable weather events. These
circumstances require moving away from generic irrigation models based on fixed schedules
toward dynamic, data-dependent systems [2]. In this context, technological innovation is
no longer merely a competitive advantage but has become an indispensable requirement
for agricultural resilience.

1.2 Context and relevance

The so-called smart agriculture, based on the integration of sensors, data networks and
automation processes, is emerging as a key strategy for achieving more sustainable, ef-
ficient and flexible production. The Internet of Things (IoT) opens up the possibility
of collecting real-time information on soil moisture, temperature, solar radiation and en-
vironmental humidity conditions. These indicators allow decisions related to irrigation,
fertilization and crop management to be guided with unprecedented accuracy.

Despite its potential, many smart agriculture platforms, both commercial and research-
based, rely on centralized infrastructure and proprietary cloud services. This dependence
introduces significant limitations in terms of data privacy, interoperability and resilience
to failure and in many cases also entails high operating costs. In this scenario, blockchain
technology is emerging as a viable alternative by providing trust, decentralization and
automation.

A blockchain-based system allows irrigation rules to be transferred to smart contracts
that are executed without the need for centralized control, thus ensuring transparent,

10

secure and tamper-resistant processes. In combination with IoT, a paradigm shift is taking
place: moving from the mere collection of data for subsequent analysis to the autonomous
execution of actions based on real-time information, even on large and difficult to access
farms [3, 4].

1.3 Social, economic and technological importance

From a social perspective, water scarcity impacts not only agricultural productivity, but
also factors closely linked to the well-being of the population, such as food prices, rural
community incomes and public health. In this sense, an efficient irrigation system is a
key element in strengthening food security, particularly in regions where access to water
is uncertain or conditioned by political tensions.

Economically, the automation of irrigation processes reduces dependence on labor, op-
timizes water consumption and decreases losses from crop failures. These aspects translate
into greater profitability and sustainability for both small producers and large-scale farms.
In addition, the use of smart contracts helps reduce administrative costs, facilitating the
collective management of irrigation infrastructure or coordination in agricultural cooper-
atives.

In the technological domain, the project highlights the potential of combining open-
source microcontrollers (such as ESP32), edge computing (Raspberry Pi) and decentral-
ized infrastructures (blockchain and oracles). This integration allows for the configuration
of a modular, scalable and low-cost system with both practical and educational applica-
tions. The proposal also exemplifies the results of combining embedded systems, cyber-
security and distributed computing models, leading to new and better possibilities for
innovation in water resource management.

1.4 Problem statement

Despite the growing availability of sensors and automation platforms, most current so-
lutions for irrigation remain constrained. They are often expensive, rely heavily on cen-
tralized cloud architectures and lack transparency in their decision-making. In many
developing countries, manual irrigation is still predominant, partly due to limited trust
in automated systems, interoperability issues and the absence of verifiable records docu-
menting when, why and how water was applied.

This reveals a clear technological and adoption gap where there is a need for an ir-
rigation system that is affordable, transparent and decentralized, capable of integrating
wireless sensor networks with local computing to reduce costs, while relying on blockchain
to ensure trustworthy and tamper-resistant decision-making. Very few implementations to
date have combined low-power, long-range communication such as LoRa with blockchain-
based smart contracts to achieve such a system.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

11

The central research question guiding this thesis is therefore: Can blockchain-enabled
IoT architectures provide a cost-efficient, transparent and scalable alternative to conven-
tional cloud-based irrigation systems, while remaining suitable for real agricultural envi-
ronments?

1.5 Scope and Objectives

The scope of this project is to design, implement and evaluate a prototype of a blockchain-
enabled smart irrigation system that bridges low-power IoT sensing with decentralized
automation. The system brings together ESP32-based sensor nodes equipped with soil
moisture, temperature, humidity and light sensor. Also implement a LoRa-based net-
work for long-range and energy-efficient communication with a Raspberry Pi serving as
gateway for preprocessing data and connecting to the oracle. Smart contracts needs to
be deployed on the Polygon Amoy testnet and will be responsible for executing irrigation
logic, storing decisions and providing transparent records of operation.

The specific objectives include:

• Design a modular and scalable architecture that integrates IoT nodes with blockchain
smart contracts.

• Implement and test local pre-processing techniques that reduce redundant blockchain
interactions.

• Validate the end-to-end operation of the system through simulation, including cost
estimates and performance analysis.

• Evaluate the feasibility of using blockchain as a cost-effective alternative to conven-
tional cloud-based IoT platforms for irrigation control.

1.6 Project Methodology

The methodology adopted in this project follows a modular and iterative development
process, which includes:

1. System Design: Defining the system architecture, selecting hardware components
(sensors, microcontrollers) and setting communication protocols.

2. Prototype Development: Building and programming ESP32 nodes, configuring
LoRa communication and deploying smart contracts.

3. Simulation Testing: Running simulations with synthetic sensor data under con-
trolled conditions to replicate real-world variability.

4. Blockchain Integration: Using testnet environments and oracles to validate data
flow from sensor to smart contract.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

12

5. Evaluation: Measuring latency, scalability, energy usage and transaction cost to
assess system feasibility.

This methodology ensures a balance between academic rigor and practical implemen-
tation, enabling future upgrades or real-field deployment.

1.7 Alignment with Sustainable Development Goals (SDGs)

This project contributes directly to the following United Nations Sustainable Development
Goals:

• SDG 6 – Clean Water and Sanitation: The system optimizes water usage,
minimizing waste through precision irrigation and data-driven control.

• SDG 9 – Industry, Innovation and Infrastructure: By integrating emerging
technologies like blockchain and IoT, the project promotes innovation in agricultural
infrastructure.

• SDG 12 – Responsible Consumption and Production: The decentralized
and transparent nature of the system enhances traceability, reduces input waste
and supports efficient resource use.

These contributions underscore the system’s relevance not just as a technological pro-
totype, but as a meaningful step toward resilient and sustainable agricultural practices.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

13

2 Technology Overview

In this chapter, it is explained the core technologies and protocols that are used throughout
the development of the system. Each section clarifies the specific role of these components
and provides technical context for their selection and application in the project.

2.1 Internet of Things (IoT)

The Internet of Things (IoT) facilitates inter-connectivity between physical devices and
digital platforms using embedded sensors, microcontrollers and network interfaces. The
combination of these technologies enables real-time environmental data acquisition and
process automation, especially useful for achieving irrigation precision in agriculture. As
highlighted in Gubbi et al. [5], IoT structures are typically layered and composed of per-
ception, network and application layers. In this project, these elements are achieved by
using a set of ESP32-based nodes forming the network.

The ESP32 is a low-power system-on-chip (SoC) microcontroller with integrated Wi-Fi
and Bluetooth capabilities, although in this implementation it is used primarily for LoRa
communication due to energy efficiency and extended range. Each ESP32 module has a
capacitive soil moisture sensor and a DHT22 digital temperature and humidity sensors.
These environmental sensors represent the foundation of the perception layer, converting
physical conditions into digital signals. The capacitive sensor was selected over a resistive
sensors because of long-term reliability and corrosion resistance in agricultural deploy-
ments.

The data collected from the sensor nodes is transmitted wirelessly using LoRa (Long
Range). It is a modulation protocol discussed in Section 2.2, transmitting to a centralized
processing node. This communication model enables deployment over wide spatial range,
such as crop fields or vineyards, with minimal infrastructure. Sensor readings serve as
the input for the automation logic, forming the foundation for the the blockchain layer to
then operate.

The architecture of this layered IoT system includes sensor nodes, gateway and inte-
gration with blockchain logic, this is illustrated in Figure 2.1. This schematic clarifies how
each subsystem interacts within the overall automation framework, making the informa-
tion flow from the physical world to the on-chain decision-making explicit and traceable.

14

Figure 2.1: Layered architecture of the IoT system with communication and decision
components.

2.2 LoRa and LoRaWAN Communication Protocol

The LoRa technology is a physical layer protocol based on chirp spread spectrum mod-
ulation, which is a data encoding method where the signals are sent through frequency
gradually being increased or decreased over time. LoRa is known for its low-power op-
eration and long-range communication capabilities, as it often reaches from 2 to 15 km
in open environments. It is particularly suitable for non-time-critical applications such
as environmental monitoring, where data packets are small and periodic. Additionaly,
it provides a lot of benefits as he LoRa Alliance has standardized its use through the
LoRaWAN MAC-layer protocol, which supports secure addressing, adaptive data rates
and bidirectional communication [6].

In this project, LoRa modules (SX1276) are added to the ESP32 units, each trans-
mitting data to a LoRa receiver connected to the Raspberry Pi gateway. LoRaWAN
itself is not used directly; instead the communication was implemented with a simplified
point-to-gateway configuration. This is done to reduce overhead and system complexity,

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

15

as our type of message packets do not require. Communication is uni-directional, from
the sensor to the gateway and predefined intervals are implemented (every 5 minutes) to
transmit the values of temperature, humidity and soil moisture.

LoRa’s reliability in agricultural settings is beneficial by its resistance to interference
and its propagation characteristics in open fields. Moreover, its operation in the ISM
(Industrial, Scientific and Medical) band minimizes regulatory constraints across regions.
Comparing to other wireless protocols such as Wi-Fi, ZigBee and NB-IoT, LoRa achieves
gives a better balance of range, power efficiency and deployment cost. This makes it
particularly well-suited for smart irrigation systems. A comparative overview of these
protocols is provided in Table 2.1.

Protocol Range Power
Use

Data
Rate

Topology Cost Suitability

Wi-Fi 50–100 m High High Star Low–Med. Indoor/Short
Range

Bluetooth 10–30 m Low Medium Star Low Personal
Devices

ZigBee 10–100 m Low Medium Mesh Low Home/Industrial
LoRa 2–15 km Very Low Low Star Medium Agriculture,

Remote
NB-IoT 1–10 km Low Medium Star Med.–High Industrial

IoT

Table 2.1: Comparison of wireless communication protocols for agricultural IoT deploy-
ments.

2.3 Raspberry Pi as Local Gateway

The Raspberry Pi is the data aggregation and pre-processing hub. It is equipped with
a LoRa receiver (via SPI interface) and acts as the bridge between sensor data and the
blockchain layer. This hub has several functions, including:

• Collecting and parsing data packets that are transmitted via LoRa.

• Filtering and validating the incoming sensor readings, by also removing corrupted
packets or duplicates.

• Apply conditional logic to determine whether the current readings meet predeter-
mined thresholds that will then require to post to the smart contract evaluation.

• Signing and submitting transactions directly to the blockchain via Web3, allowing
to effectively behave as the oracle (for prototype porpuses).

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

16

The device also operates continuously and stores the sensor logs locally, which allows
for backup and troubleshooting. Time synchronization is achieved using NTP to ensure
timestamp accuracy, essential for logging events on the blockchain.

2.4 Smart Contracts and the Polygon Blockchain

Smart contracts is one of the key implementations in this project, as they represent an
innovative technology. They are self-executing code that are stored and run on blockchain
platforms.

A blockchain platform is a decentralized digital system that functions as a shared,
immutable ledger for recording and verifying transactions across a network of computers,
or nodes. This technology uses a distributed database structure, rather than a central
one, to store information in linked blocks. This architecture provides enhanced security,
transparency and efficiency by creating a tamper-proof record of transactions that every-
one on the network can see.

A blockchain platform is a decentralized digital system that functions as a shared,
immutable ledger for recording and verifying transactions across a network of comput-
ers (nodes). This technology does not rely on a centralized database, as it employs
a distributed data structure in which information is stored in cryptographically linked
blocks. This architecture enhances security, transparency and efficiency; as it creates a
tamper-proof record of all transactions (decisions) that all participants in the network
have accessed and done [7].

Once a smart contract is deployed in the blockchain network, their logic cannot be
modified, this ensures determinism and verifiability of operations. These contracts can
include several either business rules, sensor thresholds and automation policies in a de-
centralized and immutable form. In this project, smart contracts are used to evaluate
incoming environmental data and autonomously determine whether irrigation should be
triggered or not.

The contracts are written in Solidity, which is Ethereum’s domain-specific language
and they are deployed on the Polygon Amoy testnet. Polygon is a Layer-2 scaling solution
for Ethereum that offers fast block confirmation times and significantly lower transaction
fees, very beneficial for prototyping purposes. This still maintains full compatibility with
the Ethereum Virtual Machine (EVM), for large-scale deployment. This makes it ideal
for agricultural IoT applications that require frequent, lightweight interactions with the
blockchain [7, 8].

Table 2.2 compares Polygon to other prominent blockchain platforms that are com-
monly used for smart contracts. The selection of Polygon for this application was based on
key considerations for our application, these include transaction cost, speed, compatibility
with IoT constraints and developer ecosystem support.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

17

Platform Avg. TX Fee
(USD)

TX Time (s) EVM Com-
patible

IoT Suit-
ability

Ethereum Mainnet >1.00 ~15 Yes Low
Polygon (Amoy) <0.01 ~2 Yes High
Binance Smart Chain <0.10 ~5 Yes Medium
Solana <0.01 <1 No Medium
Algorand <0.01 <5 No Medium

Table 2.2: Comparison of smart contract platforms relevant to agricultural IoT applica-
tions [9].

Each smart contract in this system includes functions that receive data from the
gateway-oracle (the Raspberry Pi in this prototype) and compare it to predefined soil
moisture thresholds. Once the conditions are met for irrigation, the contract emits the
correspondent events. These events can later be used to activate solenoid valves via relay
switches or notify users through a mobile interface. Importantly, all decisions are recorded
immutably on-chain, providing historical system behavior data and preventing tampering
with the data and decision making itself.

A key advantage of using smart contracts in this context is the elimination of cen-
tralized intermediaries. Usually, traditional irrigation systems rely on remote servers or
human controllers, these can introduce latency, bias or single points of failure. In compar-
ison, the blockchain-based logic ensures that allowed users can verify the system behavior
in a transparent way. This is particularly beneficial in cooperatives or public-sector man-
aged farms where traceability and accountability are essential for their stakeholders [10].

The full interaction starts the workflow from sensing, to gateway pre-processing, to
blockchain logic, this is represented in the Figure 2.2. This visual helps clarify how smart
contracts are triggered based on the field data and how each system layer contributes to
the final goal of a decentralized irrigation automation system.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

18

Figure 2.2: Data flow from IoT sensors to smart contract-based irrigation decision-making.

2.5 Oracles and Off-Chain Data Ingestion

Blockchains are isolated from external data for security and consistency, which causes the
network to not be able to directly read from APIs, sensors, or web services. To resolve
this, oracles serve as trusted bridges between the on-chain and off-chain worlds. During
the design phase, oracle services such as Provable (formerly Oraclize) were considered,
as they provide cryptographic attestations that can be verified by smart contracts [11],
adding an extra security layer to the entire system and communication.

However, in the prototype implementation, the Raspberry Pi itself performs the oracle
function: as it collects the sensor data, signs it locally and submits the transactions di-
rectly to the Polygon Amoy testnet via Web3. This approach of using the gateway as the
oracle simplifies deployment and removes reliance on third-party services for now, though
it introduces a trust assumption in the gateway device security.

Future work should integrate decentralized oracle networks (e.g., Provable, Chain-
link) to improve robustness, redundancy and tamper-evidence. These services are key
to provide verifiable proofs of data authenticity, thus strengthening trust in agricultural
automation systems.

2.6 Security and Fault Tolerance Mechanisms

Reliability and resistance in the system is very important for both environmental dis-
turbances and cyber-threats, in order to assure a trusted smart agriculture deployment.
Some mechanisms can be incorporated into the system to obtain data integrity, tamper

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

19

resistance and be able to recover from communication failures.

The recording of irrigation decisions and sensor readings on-chain will allow the system
to benefit from the blockchain’s inherent immutability. All records are time-stamped and
cannot be retroactively altered, which ensures transparent auditing and accountability for
check ups in the future. This is would be relevant for cooperative and regulated farming
operations, as they all would have a transparent access to it.

Sensor readings are transmitted to the Raspberry Pi gateway, which acts as the or-
acle. The RPi cryptographically signs and forwards data directly to the smart contract
via Web3 library. In a future version, this role could be delegated to a third-party oracle
service, which would provide additional verification proofs.

All sensor data could be cached temporarily in the Raspberry Pi itself and backed
up periodically. In the event of connectivity loss with the blockchain or oracle service,
data would be queued and retransmitted back to the blockchain once connection is re-
stored. This local redundancy would ensure fault tolerance and minimizes the loss of data.

Each ESP32 node includes access control features at the firmware level to prevent
unauthorized configuration. Flash encryption and secure boot can be enabled, this would
ensure that the firmware has not been tampered with prior to operation.

The following table summarizes the fault tolerance mechanisms provided across system
components:

Component Fault Tolerance Mechanism

ESP32 Node Watchdog timer reset, access control, encrypted firmware
LoRa Transmission Periodic resend attempts, CRC error checking
Raspberry Pi Local data caching, NTP time sync, log archiving
Gateway-Oracle Retry logic, Web3 secure transmission
Smart Contract Immutable logging, replay protection

Table 2.3: Overview of fault tolerance features.

2.7 System Modularity and Interoperability

One of the principal strengths of the proposed architecture is the modularity and in-
teroperability it offers. As each part of the system has been designed separately: nodes,
communication interfaces, processing gateways and blockchain contracts. They have been
designed as independent modules with defined inputs and outputs, allowing a seamlessly
integration and a modular design that simplifies maintenance, testing and future scala-
bility.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

20

Hardware interoperability is done by integrating standard communication protocols
between the sensors and ESP32 boards, between nodes and gateway with the utilization
of LoRa. On the software side, data structures are defined in JSON format to ensure
compatibility between the Raspberry Pi and the potential external oracle services, plus
the smart contracts. This separation allows individual components to be replaced or up-
graded without the need of redoing the entire system.

To further enhance interoperability, open standards and libraries were used. Some
of them are the LoRa SX127x module, the Arduino IDE with PlatformIO and Python
scripts on the Raspberry Pi. These ensure that the system can be replicated across
different hardware platforms with minimal effort, as they are commonly known and well
documented in its use.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

21

3 State of the Art

This chapter reviews the existing literature and applications related to smart irrigation,
blockchain use in agriculture and the key challenges that this project aims to address. The
goal is to situate the proposed solution within the technological and academic landscape,
identifying both validated methodologies and unexplored opportunities.

3.1 Existing Smart Irrigation Systems

In the past decade, smart irrigation systems have evolved significantly as advancements
have been done in wireless sensor networks, embedded systems and remote communi-
cation technologies. Many commercial systems such mostly rely on centralized cloud
platforms to aggregate sensor data, process the weather forecasts and automate the ir-
rigation decisions, some known platforms are RainMachine, Rachio and Netro. These
systems typically use Wi-Fi or GSM-based modules and include mobile applications for
user interaction. Academic research prototypes have also explored similar functionalities
using microcontrollers such as Arduino, Raspberry Pi or ESP8266, along with GSM or
ZigBee modules for managing the remote communication [12, 13, 14].

These systems generally consist of three layers: the perception layer (including en-
vironmental sensors like soil moisture, temperature and humidity), the network layer
(responsible for the data transmission) and the application layer (in charge of the decision-
making and user interfacing). In many cases the application logic is in centralized cloud
platforms such as AWS IoT, Google Firebase or Microsoft Azure. While these solutions
offer scalability and ease of deployment, they come at the cost of dependency on internet
availability and one of the biggest concerns is the data ownership and long-term accessi-
bility.

Moreover, data security and privacy still are significant challenges. Most commercial
platforms do not offer end-to-end encryption and the sensor data is often processed in
a cloud infrastructures with limited transparency about data usage or storage policies.
Academic systems sometimes address this by proposing open-source implementations, but
these often lack the robustness and integration maturity found in their commercial coun-
terparts.

Irrigation control strategies that are employed by existing systems include threshold-
based triggering, fuzzy logic and machine learning models trained on historical weather
and soil data. While these algorithms can optimize water use and improve crop yield,

22

they are heavily reliant on high-quality and uninterrupted data streams, which may not
always feasible in rural deployments.

Edge computing is new technology that has gained traction in the field as a mitiga-
tion strategy to offload certain computation tasks from cloud servers to local devices. In
such architectures, gateways like Raspberry Pi perform local decision-making and only
push summarized data or alerts to the cloud. While this reduces latency and operational
cost, it does not fully resolve concerns related to centralized authority or verifiability of
decisions, that could be offered with the implementation of oracles.

A comparative illustration of traditional and the proposed architecture is shown in
Figure 3.1, highlighting differences in several categories like trust models, communication
flow and decision-making logic.

Figure 3.1: Comparison of traditional cloud-based and blockchain-based smart irrigation
system architectures.

The proposed system focuses primarily on decentralization and local autonomy, where
irrigation decisions are encoded into blockchain smart contracts. This removes the reliance
of traditional systems in centralized infrastructure and it also ensures that all decisions are
publicly auditable. Furthermore, LoRa communication and low-power microcontrollers
allow the architecture to be designed to function in resource-constrained environments
with minimal connectivity.

To better understand the current landscape, two notable systems are reviewed below.
These examples provide insights into two different architectures and design choices that
reflect various trade-offs in functionality, security and scalability.

3.1.1 Example 1: SmartFarmNet Platform

SmartFarmNet is an open-source platform developed for environmental monitoring and
smart agriculture, it integrates multiple sensors and cloud-based dashboards. For data

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

23

transmission it utilizes ESP8266-WiFi nodes and the MQTT protocol for data transmis-
sion, while decision logic is centralized and executed via a remote cloud service [15]. The
platform was designed to be modular and extensible too, allowing to configure parameters
for the sensor thresholds, data sampling intervals and alerts that are predefined by the
user. It has been tested in greenhouse and garden environments where network availabil-
ity and power are relatively stable.

One of the key advantages of SmartFarmNet is its user-friendly interface and dash-
board analytics, as it allows farmers to visualize sensor data trends in real time. However,
its dependence on continuous internet connectivity means it is less suitable for remote or
rural deployments where GSM or satellite links may be unreliable or expensive. Addition-
ally, the lack of embedded security mechanisms and decentralized decision-making logic
can expose the system to have the data tampered with or have service interruptions if the
central server fails. Although a promising step toward smarter agriculture, SmartFarmNet
represents a conventional IoT-cloud model without leveraging the blockchain technology
or edge computing.

3.1.2 Example 2: IoT-Blockchain Integration Prototype by Xie
et al. (2022)

In this paper, it is proposed a prototype that integrates IoT-based greenhouse sensors
with Ethereum smart contracts for automated environmental control [16]. The system
architecture consists of several sensor nodes that capture data on humidity, CO2 levels,
temperature and light. These nodes communicate with a central Raspberry Pi gateway
over Wi-Fi, the central unit formats the sensor readings and interacts with a smart con-
tract deployed on the Ethereum mainnet.

The smart contract handles rule-based automation, such as opening ventilation or
triggering irrigation based on specific thresholds. All actions are logged immutably on
the blockchain, offering a transparent and tamper-proof history of environmental control
decisions. The inclusion of oracles allows the Raspberry Pi to act as a trusted source for
off-chain data injected into on-chain logic.

This design demonstrates the feasibility of IoT–blockchain integration but presents
certain limitations for real-world deployment. It relays on Wi-Fi connectivity and the
Ethereum mainnet also introduces higher latency and transaction costs, these are usually
impractical for frequent sensor updates in agricultural contexts. Moreover, the gateway
still represents a single point of trust, meaning that decentralization is only partial. In
contrast, the present project adapts this concept by leveraging LoRa for long-range and
low-power communication and the Polygon (Amoy) for low-cost transactions.

3.2 Blockchain Applications in Agriculture

The application of blockchain technology in agriculture has gained considerable attention
due to its ability to enhance several factors like transparency, traceability and automation

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

24

in complex supply chains. Most of the early use cases are focused on post-harvest processes
such as logistics and certification, the recent advancements have expanded blockchain’s
role to include pre-harvest and field-level operations, with a particular focus in smart
farming and environmental monitoring.

A core advantage of blockchain in agriculture is its capacity to maintain immutable
and verifiable records of transactions and sensor data. This is particularly important for
addressing food safety concerns and ensuring provenance, it also helps organic or sustain-
able farming industry as it can verify its practices. For example, IBM Food Trust has
pioneered blockchain platforms implementation for supply chain traceability and AgUnity
has used it for small farmer inclusion [17, 18].

In smart agriculture, blockchain is increasingly being used with IoT sensors to auto-
mate the processes at the field-level, as irrigation can be triggered when soil moisture read-
ings fall below a specific threshold and the event is logged permanently on the blockchain.
Several projects have explored such applications. In the project from [19], a smart ir-
rigation prototype is used with Ethereum smart contracts in order to control watering
schedules based on sensor readings. The sensor nodes transmit data to a local controller
that acts as an oracle to interface with the blockchain. Similarly, the system described
in [20] combines Hyperledger Fabric with RFID-tagged livestock monitoring, this type of
application ensures traceable records of animal health, feeding and movement, allowing
a reliable historical record to look. These use cases demonstrate again the flexibility of
blockchain across both crop and livestock industries.

Nonetheless, the adoption of blockchain in agriculture still faces several challenges.
As energy consumption and transaction costs on public blockchains can still be high for
continuous IoT interaction. There are alternatives like Hyperledger or Corda, which are
private or permissioned blockchains that mitigate these issues but at the cost of reducing
the decentralization and openness of the system. Moreover, the integration of blockchain
with low-power IoT networks such as LoRaWAN remains underexplored, as most of the
existing and found implementations relay on Wi-Fi or GSM-based communications that
are unsuitable for large-scale or energy-efficient deployments.

Despite these barriers, blockchain still has to offer transformative potential in key
agricultural areas, these can include:

• Traceability and Certification: It ensures the integrity of the food origin, han-
dling and processing claims.

• Decentralized Automation: It enables autonomous farm operations like irriga-
tion, fertilization or pest control by using sensors to trigger smart contracts.

• Data Protection: Provides farmers to control over their data, which enables them
to selectively share or monetize their information.

In the Figure 3.2 it can be seen a detailed visual summary of how blockchain applica-
tions span across the entire agricultural chain. The figure illustrates a six-stage process

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

25

from the provider to the end consumer, highlighting the physical flow of goods. It also
shows the corresponding digital identifiers (barcodes, QR codes, smart certificates) and
the progressive accumulation of data blocks within the blockchain network. Showcasing
how each factor contributes with validated data to the decentralized ledger and under the
oversight of regulatory and certification authorities.

The diagram also emphasizes blockchain’s role not just as a storage mechanism, but as
a dynamic slid structure for real-time traceability, auditability and trust throughout the
food production and distribution cycle. As it combines physical identifiers with on-chain
verification, it is possible to reconstruct the full history of an agricultural product, from
the seed source and production conditions to the processing, distribution and eventually,
the retail and delivery. This can provide consumers and authorities with transparent and
verifiable information on the products.

Figure 3.2: Overview of blockchain applications across agricultural domains, from [18].

3.3 Research Gaps and Challenges

Despite the growing projects and experimental systems integrating IoT and blockchain in
agriculture, significant research gaps and implementation challenges remain unaddressed.

1. Decentralized Decision-Making Deficiency: As most of smart irrigation plat-
forms depend heavily on centralized cloud-based architectures. This can introduce
vulnerabilities like single points of failure and latency, particularly when deployed
in remote regions where internet connectivity is unreliable. Decentralized logic in
remote areas that use verifiable smart contracts is still rare and underdeveloped,
causing to not know the totality of this technology behavior in unknown areas.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

26

2. High Energy Consumption and Costs: Many blockchain frameworks, especially
those based on Proof-of-Work (PoW), cannot be used for agricultural applications
due to its high power demands and transaction fees. For example, Ethereum’s
mainnet often incurs extra costs for regular sensor data recording, causing the system
functionality to get expensive. Energy-efficient platforms like Polygon or Solana are
being explored recenlty in this context and still needs to see the full potential of
them.

3. Lack of Integration with Low-Power IoT Protocols: While LoRa and other
low-power wide-area networks (LPWANs) are optimal for rural agricultural scenar-
ios, they are rarely integrated with blockchain-based systems. This is because of
the protocol incompatibilities that come with it and the limited development frame-
works. Bridging this gap requires designing a lightweight connection between IoT
and blockchain with also secure protocols.

4. Fragmented Standards and Interoperability: Many existing solutions are de-
veloped in isolation and using proprietary hardware with closed communication
protocols. This causes the scaling and integration of the system difficult across
different farms or regions.

5. Lack of End-to-End Validation in Field Conditions: Several proposals are still
theoretical or only validated via simulation. There is a need for theoretical systems
to undergo real life testing with realistic scenarios and incorporating variable soil
types, changing weather conditions and intermittent connectivity.

To illustrate this fragmentation of the project topic, Figure 3.3 visualizes the intersec-
tion between blockchain, open protocols and low-power IoT in smart agriculture. Based
on a synthesis of over 25 academic papers and industry case studies noted in [20, 17, 16].
The data was obtained by categorizing published smart agriculture projects according to
whether they used public or private blockchain frameworks, if they relied on open-source
or standardized protocols (MQTT, CoAP) and if they implemented low-power wireless
communication.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

27

Figure 3.3: Overlap graph of blockchain, open protocols and low-power IoT solutions in
smart agriculture [20, 17, 16].

These numbers shows that the proposed system distinguishes itself by addressing all
three, contributing with an open and replicable model for future agricultural deployments.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

28

4 System Design and Implementation

4.1 System Architecture

The proposed system for the smart irrigation project combines Internet of Things (IoT)
devices with long-range communication and blockchain technology in order to provide
secure and automated water management. The architecture is structured into three in-
terconnected layers: the IoT sensor and actuator layer, the gateway and local processing
layer and the blockchain and smart contract layer. This layered but joined design al-
lows the system to be scalable, while trying to overcome the challenges from conventional
centralized control systems explained previously. These included single points of failure,
vulnerability to cyber-attacks and inefficiencies in resource allocation [21, 22, 23, 24, 25].

4.1.1 Layered Overview

• IoT Sensor and Actuator Layer: This layer is composed of identical ESP32
nodes that are equipped with environmental sensors (soil moisture, temperature,
humidity and light intensity). The nodes are in charge of collecting real-time data
and transmit it to the gateway through a LoRa module. Actuators (such as water
pumps and valves) would be connected to relay modules and controlled based on
smart contract decisions [21, 25].

• Gateway and Local Processing Layer: The Raspberry Pi 4 functions as the
central hub, it aggregates the sensor readings from multiple ESP32 nodes. Also,
it executes pre-processing algorithms to filter noise and detect significant changes
before sending the relevant data to the blockchain. This hybrid data-processing
model reduces unnecessary blockchain interactions, which will reduce the transaction
costs of the network and increase system responsiveness.

• Blockchain and Smart Contract Layer: This is the decision-making layer,
where the logic is implemented through smart contracts that are deployed on the
Polygon blockchain (Amoy testnet). These contracts evaluate incoming data against
predefined irrigation rules, ensuring tamper-proof and transparent automation. Blockchain
integration eliminates the need for centralized control and provides immutable logs
of all irrigation events [22, 23].

29

4.1.2 Communication Flow

The data flow in the system is illustrated in Figure 4.1. Environmental parameters are
continuously measured by ESP32 nodes and transmitted via LoRa to the Raspberry Pi
gateway. The Raspberry Pi performs local filtering and, when a significant change is
detected (soil moisture below threshold), it forwards the data directly to the blockchain,
acting itself as the oracle. The smart contract then evaluates the updated state against
predefined rules and triggers irrigation or deactivation events. These decisions are emitted
as on-chain events, which the Raspberry Pi listens to in order to control the ctuators.
This closed-loop system ensures both local efficiency and trustworthy, auditable decision-
making [24].

ESP32 Sensor Nodes
(Soil Moisture, Temperature, Humidity, Light)

Raspberry Pi 4 Gateway
(Pre-processing + Oracle)

Polygon Blockchain
Smart Contracts

Actuators
(Valves, Pumps)

LoRa

Data via Oracle

Control Commands

Figure 4.1: System architecture.

4.1.3 Design Rationale

The design choices for the system were done taking into accountthe following considera-
tions:

• Scalability: LoRa enables connectivity across large agricultural fields with low
power consumption, while making the system suitable for real-world deployment
[25].

• Cost-Efficiency: The hybrid processing approach minimizes blockchain transac-
tions, thus reducing operational costs without the affecting the data integrity of the
transactions.

• Security and Transparency: By using blockchain’s immutability, the system can
prevent the tampering and it also ensures traceability of all irrigation decisions [22].

• Automation: Smart contracts enforce irrigation rules automatically, eliminating
the need for manual intervention and central oversight.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

30

4.2 Sensor and Hardware Configuration

Part of the effectiveness of the proposed irrigation system relies on the selection of hard-
ware components that will ensure all stated requirements: low power consumption, reliable
communication and accurate data collection. The architecture is designed with off-the-
shelf (OTS) devices devices in order to balance cost-efficiency and future scalability of
the system, plus having broader documentation on commonly used devices. This sec-
tion details the configuration of each hardware element, including sensor nodes, sensors,
actuators, communication modules and the gateway device.

4.2.1 ESP32 Sensor Nodes

For the IoT layer the ESP32-based microcontroller units (MCUs) were used. The ESP32
was selected for its combination of low power consumption, integrated Wi-Fi and Blue-
tooth capabilities and sufficient computational resources to handle sensor data acquisition
and preprocessing. The ESP32 board used in this project is shown in Figure 4.2a. It has
a dual-core processor that operates at up to 240 MHz, with 520 KB of SRAM, making
it capable of managing real-time sensor data streams while still maintaining low energy
requirements [21, 25].

Each ESP32 node acquires a soil moisture (capacitive sensor, analog), a temperature
and humidity (DHT22) and a light intensity (LDR, analog). The data is transmitted
using a compact LoRa frame from the node to the gateway at a fixed duty cycle. The
node firmware is written in C++ (Arduino core) and uses the native ESP32 ADC driver
(driver/adc.h) for stable analog sampling (12-bit, 11 dB attenuation) with median-of-N
aggregation to mitigate the noise in communication. For the DHT22 readings, retry logic
is introduce in order to reduce intermittent NaN reads. Also the Wi-Fi/BLE module
is disable to reduce power consumption and deep sleep cycles are added between data
messages. To avoid redundant uplinks, the node performs light event detection (∆soil
moisture ≥ 2 pp) and maintains a dry-streak counter which the gateway can aggregate
into consecutive dry days. Full firmware is provided in Appendix A.1 (Listing A.1).

Communication is from the LoRa moduel (SX1276/78) in a point-to-gateway topology
(no LoRaWAN MAC) to minimize stack overhead and power draw, this is something com-
mon and consistent with long-range agricultural deployments [25, 21]. Also the typical
radio settings were used: f = 868MHz (or 915MHz regionally), SF = 7, BW = 125 kHz,
CR = 4/5, PTX = +14dBm.

To obtain a simple and robust message on the Raspberry Pi, each uplink is a fixed-
size binary frame with an explicit header byte and CRC-32 (polynomial compatible with
ESP32 crc32_le). Table 4.1 details the layout of the frame sent. Also, if DHT gives
an error when reading then tempC and/or humPct are set to −1000.0 and they should be
ignored by the gateway, which will retain the last valid values. This type of binary frame
is similar to what is showcased in the project [21].

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

31

Field (order) Type / Size Meaning Notes

hdr (0) uint8 Frame header con-
stant

0xAA

node (1) uint8 Node identifier 1..255
seq (2–5) uint32_le Monotonic sequence Wraps on overflow
soilPct (6–9) float32_le Soil moisture (%) From calibrated ADC
tempC (10–13) float32_le Temperature (◦C) −1000 sentinel if invalid
humPct (14–17) float32_le Relative humidity

(%)
−1000 sentinel if invalid

lux (18–21) float32_le Light (normalized
lux)

For low/high light rules

dryStreak (22) uint8 Consecutive “dry”
cycles

Node-level hint

crc32 (23–26) uint32_le CRC-32 over bytes
0..22

ESP32 crc32_le

Table 4.1: LoRa binary frame format emitted by ESP32 nodes (27 bytes total).

The gateway unpacks this frame and validates the crc32 frame, then it applies local
filters and calibration, such as converting the raw moisture value into soil-relative percent-
ages (moisture mapping) and scaling the light sensor values to a consistent range (light
normalization). These calibrations can be adjusted per soil type or sensor model without
modifying the on-chain logic, so more flexibility is achieved in the system while keeping
the contract simple (Sections 4.3 and 4.4).

4.2.2 Sensors Used (Soil, Environmental, Light)

To monitor the environmental conditions for irrigation, three categories of sensors were
integrated:

• Soil Moisture Sensor: A capacitive soil moisture sensor (Figure 4.2c) was used
due to its durability and immunity to corrosion compared to resistive ones that
sometimes are presented in similar projects. It also provides an analog voltage
output proportional to soil volumetric water content.

• Environmental Sensor (DHT22): The DHT22 (AM2302) sensor (Figure 4.2b)
measures both temperature and relative humidity, it offers an accuracy of ±0.5◦C for
temperature and ±2% for humidity. These parameters will be essential to optimize
the irrigation in order to avoid excessive evaporation [22].

• Light Sensor (LDR): A light-dependent resistor (Figure 4.2d) was implemented
to approximate solar radiation levels. Light intensity affects irrigation scheduling
by avoiding watering during peak sunlight, which would otherwise lead to inefficient
evaporation losses [24].

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

32

A summary can be found in Table 4.2 with the main sensors and their specifications.

Sensor Measured Pa-
rameter

Accuracy Range

Capacitive Soil Moisture Soil volumetric
water content

±3% (typical) 0–100%

DHT22 (AM2302) Temperature ±0.5◦C -40–80◦C
Humidity ±2% 0–100% RH

Light-Dependent Resistor (LDR) Light intensity
(approx. lux)

– 0–50,000 lux

Table 4.2: Summary of sensors integrated into the IoT nodes [21, 22, 24, 25].

4.2.3 Actuators and Relays

To physically control the water delivery, the system would employ 5V relay modules
connected to the Raspberry Pi. These relays act as electronic switches, they could toggle
the operation of irrigation pumps and solenoid valves. This setup can enable automated
control of irrigation infrastructure in response to the triggers produced by the smart
contracts of the blockchain. Although, for the current prototype of the project the relays
were not added, but rather the output signal of the Rapsberry Pi GPIO will represent a
irrigation valve.

4.2.4 LoRa Communication Modules

Communication between the ESP32 sensor nodes and the Raspberry Pi gateway is achieved
using LoRa (Long Range) transceivers, specifically the HopeRF RFM95W (Figure 4.3b)operating
at 868/915 MHz ISM bands, as explained in 4.2.1. LoRa technology was selected for the
ability to transmit small data packets over long distances (up to several kilometers in
rural environments) with also very low energy consumption. This characteristic makes
it superior to Wi-Fi or ZigBee in large agricultural deployments where connectivity is
essential for wide areas [25].

The typical LoRa configurations is used in this system, this included a spreading factor
(SF) of 7–9, bandwidth of 125 kHz and transmit power of +14 dBm, which provides a
balance between range, power consumption and data reliability.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

33

(a) ESP32 microcontroller used as sensor
node.

(b) DHT22 (AM2302) temperature and hu-
midity sensor.

(c) Capacitive soil moisture sensor.
(d) LDR photosensitive sensor for light in-
tensity.

Figure 4.2: Hardware components integrated in the IoT sensor nodes.

4.2.5 Gateway: Raspberry Pi 4

The Raspberry Pi 4 Model B Figure 4.3a is the system gateway. Equipped with a quad-
core ARM CPU running at 1.5 GHz and up to 4 GB RAM, it will be responsible for
aggregating LoRa messages from multiple ESP32 nodes. It will execute local preprocessing
algorithms and interact with the blockchain via the web3. The device runs a lightweight
Linux distribution (Raspberry Pi OS), in which Python scripts were implemented for data
filtering, packet management and smart contract interfacing. It has higher computational
power compared to the ESP32 nodes, as it is in change of tasks with higher computing
power

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

34

(a) Raspberry Pi 4 used as gateway.
(b) LoRa Transceiver module used for
communciation.

Figure 4.3: Gateway and communication hardware used in the irrigation system. The
Raspberry Pi 4 (a) acts as the processing and blockchain interface, while the LoRa module
(b) receives the communication from the node’s module.

4.2.6 Hardware Integration and Power Considerations

The hardware components were integrated with a focus on low power consumption and
modularity. At the current stage of implementation, the system is powered primarily
through conventional sources:

• Sensor Nodes: ESP32 boards and the correspondent sensors are powered via USB
from the computer during the set up and testing phase. This configuration simplifies
debugging, programming and monitoring during simulations.

• Gateway: The Raspberry Pi 4 gateway operates from a stable 5V/3A power supply,
currently connected to a wall outlet. The RPi 4 powers the LoRa module itself.

While this is suitable for laboratory porpuses, the configuration is not practical for
remote agricultural deployments. For field applications, the system would need to be
adapted to renewable and autonomous power solutions:

• Battery Supply: Each ESP32 node could be powered by a 3.7V lithium-ion bat-
tery with capacity between 2,000–5,000 mAh. This would be sufficient to sustain
continuous operation for several days depending on sampling rate and transmission
frequency, further power efficient procedures would need to implemented in the code
too

• Solar Charging: Integration of a compact solar panel (5–6V, 1–2W) with a charge
controller would allow nodes to recharge during daylight hours. This could extend
the deployment for the lifetime of the hardware itself, plus reduces maintenance
requirements, aligning with the needs of agricultural environments [21, 26].

• Gateway Backup: The Raspberry Pi gateway, while typically powered from the
grid, can also be powered by a larger portable battery pack (20,000 mAh) that would
be connected to a solar panel too.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

35

This dual-powering strategy would flexibility to the system as the outlet-powered setup
supports development and testing, the solar-powered approach enables sustainable and
autonomous operation in real-world agricultural environments [27].

4.3 Data Preprocessing and Local Logic

The Raspberry Pi 4 gateway bridges the raw data generated by ESP32 sensor nodes and
the decision-making processes implemented on the blockchain. Instead of having it trans-
mitting every single reading to the blockchain, the gateway implements pre-processing
and filtering logic to improve efficiency. This hybrid design combines local computing and
decentralized network, aligning with the edge computing paradigm [25, 22].

4.3.1 Frame Parsing, Validation and State Assembly

LoRa packets are read from the attached SX1276/78 transceiver and decoded according
to the 27-byte frame structure defined in Table 4.1. Each frame begins with the header
byte 0xAA and pass a CRC-32 check over the payload; otherwise it is rejected. For ro-
bustness, fields that arrive with sentinel values (< −999 for tempC/humPct) are treated
as missing and imputed on the gateway using the last valid sample stored for that node.
The gateway maintains the state of each node with the last-seen timestamp, last valid
(post-filter) values per field, short sliding buffers for smoothing and the last values written
on-chain to avoid redundant transactions.

The dryStreak counter provided by the node (number of deep-sleep cycles under
dry conditions) is converted into consecutive dry days using the configured duty cycle
(SLEEP_SECONDS) and expected uplinks per day. When this value changes it is submitted
on-chain via setConsecutiveDryDays() and then evaluated by the smart contract logic.

4.3.2 Noise Filtering and Data Validation

The agricultural sensor readings can be affected by noise, environmental variability (soil
heterogeneity, wind) or hardware inaccuracies. To stabilise the inputs before sending
them to the smart contract, the gateway applies some off-chain pre-processing techniques.
These measures follow best practices in precision agriculture [24, 27], allowing to get stable
inputs to reduce the smart contract execution while keeping on-chain costs low.

• Smoothing: a short sliding window (default N=3), this uses a robust median filter
to the soil moisture, temperature, humidity and light values, in order to take out
high-frequency fluctuations.

• Threshold validation: physically implausible values can be discarded before
smoothing (humidity outside [0, 100]%, soil outside [0, 100]%, temperature out-
side a certain band or negative lux). When a reading is discarded or missing, the
gateway puts the last valid node value and if it does not exists yet, no update is
pushed on-chain for that field.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

36

• Change gating: after smoothing and validation, the gateway only submits values
whose rounded values is different from the last on-chain state for that node, then
avoiding redundant transactions.

4.3.3 Event-Driven Data Transmission

As said, the Raspberry Pi gateway uses an event-driven transmission policy, so on-chain
updates are only triggered when validated sensor values change meaningfully. This design,
already reflected in the change-gating logic described above, avoids redundant writes and
ensures that the blockchain state evolves only when the environment does. After applying
any necessary setters, the gateway calls triggerEvaluation() so that the smart contract
can enforce the prioritised irrigation rules (Section 4.4).

4.3.4 Integration with Blockchain as Oracle

Unlike conventional IoT–oracle integrations that rely on external services (Provable), the
Raspberry Pi directly assumes the oracle role in this project. The validated frames
are encoded using the Application Binary Interface (ABI) and submitted to the Poly-
gon Amoy test network using Web3 libraries. Transactions are signed locally with the
gateway account (using the private key stored in environment variables) and executed
towards the deployed smart contract. The gateway also subscribes to contract events
(EvaluationTriggered, IrrigationStatusChanged) to actuate respectively to the GPIO
output representing the irrigation relay. The complete Python implementation of this
workflow is provided in Appendix A.2 (Listing A.2).

4.3.5 Design Rationale

The use of local pre-processing and event-driven logic gives the system many advantages:

• Efficiency: redundant or unchanged sensor updates are avoided then reducing
blockchain load and lowering power consumption in sensor nodes.

• Robustness: integrity checks, smoothing and last valid values protect the contract
from noise and transient sensor failures.

• Cost-effectiveness: by transmitting only meaningful changes, transaction fees are
minimized without compromising transparency.

• Scalability: the gateway also maintains independent state for each node, this al-
lows multiple LoRa nodes to connect without overwhelming the blockchain with
unnecessary writes of each node.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

37

Raw Sensor Readings
(Soil, Temp, Humidity, Light)

Filtering, Validation & Imputation
(Smoothing, Plausibility Checks)

Change Gating
(Only Push if Values Differ)

Oracle Interface
(Web3 calls to Polygon Amoy)

Smart Contract
(SmartIrrigationV2)

Figure 4.4: Data preprocessing, validation and event-driven oracle workflow at the Rasp-
berry Pi gateway.

The Raspberry Pi 4 gateway (Listing A.2) completes the edge–to–chain loop: it ingests
the 27-byte LoRa frames defined in Table 4.1, then validates its integrity with CRC-32,
imputes missing fields from last valid values, aggregates the node-level dry streak into con-
secutive dry days and finally applies a minimal-write condition (only changed fields are
pushed) before calling triggerEvaluation() on SmartIrrigationV2 (Section 4.4). The
gateway also subscribes to IrrigationStatusChanged to listen to the irrigation events
and then the Raspberry Pi GPIO would be turned on or off accordingly, representing the
relay drive signal for later actuator integration.

To keep the gateway generic and reproducible, all parameters are provided through a
.env file (Listing A.3): RPC endpoint, contract and account addresses, private key (never
committed), serial port for the LoRa bridge, sleep interval for dry-day aggregation and the
optional GPIO pin for the demo actuation. This separation of configuration from source
code enables safe sharing of the Python script while preserving security of credentials.

4.4 Blockchain Integration and Smart Contracts

The irrigation rules are encoded through smart contracts, the system ensures that ev-
ery action for whether activation or deactivation of irrigation is executed transparently
and recorded on-chain through transactions submitted by the gateway. This is particu-
larly relevant in agriculture, where trust and reproducibility of records are essential for
sustainable management and accountability [22, 23, 27].

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

38

4.4.1 Smart Contract Design and Logic

The contract developed, named SmartIrrigationV2, encodes the irrigation decision rules.
It maintains a compact state representation of the environment and the irrigation system.
Specifically, it defines the following:

• State variables that store the most recent sensor readings: soilMoisture, temperature,
humidity, lightIntensity and consecutiveDryDays.

• Threshold parameters that are stored on-chain, they include temperature bounds,
soil moisture thresholds, humidity and light constraints and the dry-day counter
limit. These parameters define the decision where updates are evaluated.

• Irrigation status flag (irrigationStatus), representing whether irrigation is
currently ON or OFF.

• Access control is enforced through the onlyOwner modifier, which restricts sensor
updates to the authenticated gateway, preventing writes from untrusted users.

• Event interface functions are IrrigationStatusChanged, EvaluationTriggered
and the sensor-specific update events. These log the decisions and changes in the
system values on-chain, creating the trail of decisions..

The decision logic is organised into a hierarchy of prioritised conditions, designed to
prevent conflicts between triggers and in this way optimising water efficiency. The high-
est priority is deactivation when temperature exceeds 35 °C, since irrigation under such
conditions would lead to high evaporation losses and inefficient water use [28, 29]. Next,
it is the irrigation activation when soil moisture is below 30%, temperature is within
the optimal band of 20–28 °C and humidity remains below 60%, this represents the most
favourable condition for effective watering [30, 31].

Additional rules address stress conditions, like if soil moisture remains below 35% for
three consecutive days then irrigation is activated regardless of other factors to prevent
prolonged drought stress [32]. Similarly, if soil moisture is low and light intensity is be-
low a threshold (typically morning or evening), irrigation is allowed to maximise uptake
under low-evaporation conditions. Conversely, irrigation is always deactivated once soil
moisture exceeds 60%, ensuring that overwatering and root damage happens.

Earlier prototypes included a simpler soil-moisture–temperature rule, but this was
found to be redundant: the soil-moisture–temperature–humidity condition already cap-
tures optimal watering scenarios, while the other rules ensure coverage for exceptional
cases (dry spells and low-light periods). Removing the redundant trigger improved the
robustness and interpretability of the system.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

39

Raspberry Pi Gateway
submits sensor data and triggers evaluation

Smart Contract on Polygon (Amoy)
stores data, runs decision logic, emits events

Local Actuators
GPIO demo output (relay signal)

Transactions: setters + evaluation

Events: irrigation status change

Figure 4.5: Interaction cycle between the gateway, the smart contract on Polygon Amoy
and the actuator demo interface.

Function Purpose Access Con-
trol

Associated
Event

setSoilMoisture(uint) Update soil
moisture value

Owner only
(gateway)

SoilMoistureUpdated

setTemperature(uint) Update ambient
temperature

Owner only
(gateway)

TemperatureUpdated

setHumidity(uint) Update humid-
ity level

Owner only
(gateway)

HumidityUpdated

setLightIntensity(uint) Update light in-
tensity

Owner only
(gateway)

LightIntensityUpdated

setConsecutiveDryDays(uint) Record consecu-
tive dry days

Owner only
(gateway)

–

triggerEvaluation() Run priority-
based evaluation

Owner only
(gateway)

EvaluationTriggered,
IrrigationStatusChanged

getIrrigationStatus() Read irrigation
status

Public (any
user)

–

Table 4.3: Main functions and events of the implemented contract, with roles and access
control.

This design follows recommended patterns for gateway-oracle IoT systems, where the
authenticated Raspberry Pi gateway acts as the only writer to the blockchain, preventing
tampering with the sensor inputs [22, 23].

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

40

4.4.2 Security and Robustness Considerations

Beyond decision-making, the smart contract was designed with principles of security
and maintainability. The use of owner-gated setters (onlyOwner) prevents unautho-
rized updates of sensor values, while event-driven actuation (IrrigationStatusChanged,
EvaluationTriggered) creates an auditable trail for every irrigation decision made on-
chain [22]. By keeping thresholds within the contract, changes that want to be made
inside the smart contract conditions such as adjusting soil moisture limits or temperature
ranges, it becomes explicit and verifiable on the blockchain, this ensures transparency for
future stakeholders.

From a robustness perspective, several observations emerged during testing. First,
some setters (setTemperature, setHumidity) initially compared sensor values after re-
assignment, causing update flags never to trigger; this was corrected by checking before
assignment.

Second, the precondition in triggerEvaluation() required that at least one sensor
flag was updated, the error message suggested that all sensors were mandatory. This
was revised for consistency to avoid misleading runtime errors. Third, the contract has
compact "reason bits" for irrigation triggers, which provides a concise encoding of activa-
tion logic. Finally, while thresholds are currently defined as public constants, the design
allows extending configurability by introducing dedicated setter functions for calibration
at runtime, without redeploying the contract.

4.4.3 Deployment with Remix IDE and MetaMask

The contract is implemented and tested using the Remix IDE, this platform offers an easy
to use environment for Solidity development. The deployment process relied on Meta-
Mask as the transaction provider. MetaMask was configured with the Polygon Amoy
test network, using a test account funded with MATIC to pay for gas fees. To ensure
consistency with the system architecture, the private key of the Raspberry Pi oracle ac-
count was imported into MetaMask. This guarantees that the gateway’s wallet is set as
the contract owner, aligning the onlyOwner restrictions in the smart contract with the
trusted oracle role.

Deployment followed a standard procedure: compiling the contract, selecting SmartIrrigationV2
and then confirming the deployment transaction in MetaMask. Once the transaction was
validated, Remix displayed the contract address and generated interactive function panels
based on the ABI. These functions were then callable directly through the Remix inter-
face, while the same ABI and address could also be used by external scripts running on
the Raspberry Pi gateway. This workflow bridges the development environment with the
real blockchain, ensuring that irrigation logic is enforced securely and transparently in
accordance with the prototype’s design.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

41

4.4.4 Operational Workflow and Event Semantics

Once deployed, the smart contract was invoked directly by the gateway, which in this
prototype served as the oracle. The Raspberry Pi periodically updates soil moisture,
temperature, humidity and light readings, by calling the respective setter functions. Af-
ter updates, the gateway triggers the evaluation routine and the contract applied the
prioritisation logic described earlier. The result is communicated through events, which
the gateway listens to in order to activate or deactivate local pumps and valves.

The IrrigationStatusChanged event includes two boolean flags (bit1, bit0), which
serve as lightweight identifiers of the activation or deactivation reason (high temperature,
consecutive dry days or optimal soil moisture). This “reason encoding” ensures that post-
hoc analyses or audits can reconstruct the logic path without duplicating state variables
on-chain.

In the current prototype, the event IrrigationStatusChanged(status, bit1, bit0)
is mapped to a Raspberry Pi GPIO output in demo mode, GPIO HIGH → irrigation ON
and GPIO LOW → OFF, allowing end-to-end validation of the decision loop from oracle-
gateway to smart contract to actuator, without energizing field hardware (Appendix A.2).

In the Table 4.4 the details of the encoding of bit1 and bit0 flags are explained,
this encoding is done in the IrrigationStatusChanged event. Because of having the bit
pattern, it must be interpreted together with the status field, the same pair (0,0) can
represent different outcomes depending on whether irrigation was activated or deactivated.
This compact scheme reduces on-chain storage overhead but it requires off-chain logic to
be "decoded" for understanding causes.

Status (bit1, bit0) Reason

Deactivate (0,0) Temperature above 35 °C
Activate (0,0) Low soil moisture + optimal temp/humidity
Activate (0,1) Consecutive dry days threshold reached
Activate (1,0) Low soil moisture + low light intensity
Deactivate (0,1) Soil moisture above 60% (optimal)

Table 4.4: Encoding of activation/deactivation reasons in the IrrigationStatusChanged
event.

4.4.5 Reproducibility and Verification

To ensure reproducibility and independent verification every build and deployment step
produced machine artifacts, this are readable and can be used to reconstruct the contract,
verify its authenticity and redeploy it on other networks if needed.

First, the SmartIrrigationV2_metadata.json file, generated by the Solidity com-
piler, records essential build parameters: compiler version (0.8.28+commit.7893614a),

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

42

target contract (SmartIrrigationV2), EVM version (cancun), optimizer settings (dis-
abled, runs=200) and a Keccak-256 hash of the source file with IPFS/BZZ content-
addressed URLs. These entries guarantee that identical bytecode can be reproduced
from the published source. An snipet showing these settings and the associated ABI is
provided in Appendix B, Sections B.1 and B.2.

Next, the SmartIrrigationV2.json file contains the Application Binary Interface
(ABI), which defines the exact functions and events callable from off-chain clients, in-
cluding setSoilMoisture(), triggerEvaluation() and getIrrigationStatus(). This
ABI is the contract "surface" used by the Raspberry Pi gateway (acting as oracle) to sub-
mit sensor updates and trigger evaluations. A minimal ABI slice illustrating these key
functions is provided in Appendix B, Section B.3.

Finally, the scenario.json file documents the actual deployment activity during de-
velopment in Remix IDE. It includes the account address used for deployment and a
chronological record of constructor transactions with timestamps, bytecode hashes and
ABI references. This file serves as a deployment journal, linking the abstract contract
specification to a concrete on-chain instance. An excerpt illustrating the account binding
and constructor record is given in Appendix B, Section B.4.

Together, these artifacts (metadata, ABI and scenario log) form a complete repro-
ducibility trail. They allow third parties to verify the source and compilation settings,
interact with the contract using the published ABI and validate deployment provenance
against the documented account and transaction history.

4.5 Oracle Configuration

In agricultural IoT applications, most relevant information such as soil moisture, temper-
ature or light intensity is off-chain and must be injected into the blockchain through a
trusted interface.

The initial design of this project considered integrating a decentralized oracle ser-
vice such as Provable or Chainlink. However, due to the complexity of integration and
the limited timeframe of the prototype, this role is implemented directly by the Rasp-
berry Pi 4 gateway. Acting as a web3-enabled oracle, the gateway bridges sensor nodes
and blockchain execution while ensuring integrity and reproducibility of the transmitted
data [22, 23]. This approach reduces architectural complexity, while leaving decentralized
oracle networks as a natural extension for future work.

4.5.1 Role of the Raspberry Pi as Oracle Gateway

The Raspberry Pi acts as a trusted oracle by ingesting LoRa frames from ESP32 sensor
nodes, preprocessing and validating them (Section 4.3) and then serializing the verified
values into blockchain transactions. These are signed locally using the gateway’s pri-
vate key and submitted to the Polygon (Amoy test network), ensuring authenticity and

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

43

preventing unauthorized updates. In addition, the gateway listens to contract events to
maintain synchrony with on-chain logic (see Section 4.4).

4.5.2 Transaction Flow

The oracle workflow is structured as follows:

1. Data ingestion and validation: LoRa frames are decoded and verified using
CRC-32.

2. Filtering and event detection: Implausible values are discarded and dry streaks
are aggregated (Section 4.3).

3. On-chain update: Only changed values are submitted via contract setters, fol-
lowed by triggerEvaluation().

4. Event synchronisation: Contract decisions are given back to the gateway through
events.

5. Logging: Each transaction hash and receipt is logged locally for reproducibility
and traceability.

4.5.3 Implementation Considerations

The oracle is implemented in Python using Web3 libraries for Ethereum-compatible
chains. The gateway uses the contract ABI exported during compilation (Appendix B) to
encode function calls and deployment metadata (SmartIrrigationV2_metadata.json,
SmartIrrigationV2.json and scenario.json) to guarantee reproducibility. Runtime
configuration, including RPC endpoints and hardware interfaces, is externalized via the
.env file (Appendix A.3), taking out sensitive values from the source code.

4.5.4 Security and Trust

As the trusted oracle, the Raspberry Pi is responsible for maintaining integrity between
the physical environment and blockchain execution. This role is secured through:

• Access control: Only the gateway account can call setters, enforced by the onlyOwner
modifier.

• Immutable audit trail: All updates are logged on-chain through events, allowing
verification of irrigation decisions.

• Reproducibility: Compiler metadata, ABI and deployment logs (Appendix B)
allow independent verification that the deployed bytecode matches the published
source.

Future versions may delegate this oracle function to decentralized networks such as
Chainlink or Provable to reduce reliance on a single trusted gateway.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

44

5 Results and Validation

5.1 Testing Strategy and Scenarios

The evaluation of the proposed system was carried out in a simulated environment set
up manually, as the prototype has not yet been deployed under real agricultural field
conditions. As a preliminary step, the ESP32 sensor node was connected to the network
via WiFi, allowing direct inspection of sensor readings. This confirmed that the sensing
components (soil moisture, temperature, humidity, and light) were correctly wired and
provided valid measurements under normal operating conditions.

When attempting to transition from WiFi to LoRa for long-range communication,
difficulties were encountered in configuring the LoRa receiver on the Raspberry Pi (RPi4).
Despite correct wiring and module initialization, the gateway was unable to consistently
receive frames from the ESP32 node. As a result, validation of the end-to-end LoRa link
could not be completed within the available timeframe. To ensure functional evaluation
of the system logic, a direct simulation approach was implemented on the RPi4.

5.1.1 Scenario design

The testing reproduced representative situations the irrigation system could encounter.
Two main scenarios were defined:

1. Normal conditions: soil moisture decreases gradually over time while temperature
and humidity remain within optimal ranges. Once soil moisture drops below the 30%
threshold, the gateway submits an update to the smart contract, which activates
irrigation. Irrigation is deactivated once soil moisture rises above the 60% threshold.

2. Edge case (safety override): when temperature exceeds 35◦C, irrigation is forcibly
deactivated, even if soil moisture is below the activation threshold. This prevents
inefficient watering during periods of high evaporation risk and validates the priori-
tisation of safety constraints.

5.1.2 Sensor values simulation

Since LoRa reception could not be validated, a Python simulator was executed directly
on the RPi4 to inject sensor values into the blockchain interaction layer. This script can
be seen in the Appendix C.1, this bypasses the radio parsing stage and directly invoked the
contract functions (setSoilMoisture, setTemperature, setHumidity, setLightIntensity),

45

followed by triggerEvaluation().

This ensured that the gateway logic could still be tested end-to-end against the de-
ployed smart contract. The two scenarios defined above were reproduced by scripted
sequences of values, confirming both activation and deactivation rules.

Table 5.1 summarises the scripted values used to drive each scenario.

Table 5.1: Scripted inputs used in the RPi4 simulator for each scenario.

Scenario Soil (%) Temp (◦C) Hum (%) Light (lux)

Normal (decreasing) 45, 41, 37, 33, 29 25 50 12,000
Normal (post-irrigation) 52, 58, 61 25 50 12,000
Edge (safety override) 30 36, 37, 38 50 15,000

5.1.3 Blockchain interaction and logs

The RPi4 simulator successfully connected to the Polygon Amoy test network and ex-
ecuted the transactions. The printed logs closely followed the format of the original
gateway, confirming the chain of actions, the full logs can be seen in C.2. The logs show
the value reception, contract updates, evaluation trigger and event decoding.

The two scenarios are simulated successfully as it can be seen for the Normal scenario,
the soil moisture dropped below 30% and the contract activated irrigation:

INFO IrrigationStatusChanged -> active=True reason=1

Similarly, for the Edge scenario, when temperature rose above 35◦C, the safety override
was triggered, forcing irrigation off:

INFO IrrigationStatusChanged -> active=False reason=2

The complete console output, including transaction hashes, mined block numbers and
gas usage, is provided in Appendix C.2.

5.2 Performance Metrics (Latency, Energy, Costs)

5.2.1 Gas usage and transaction cost from simulator logs

Given the RPi4 gateway’s behaviour (local pre-processing and change detection), setters
are only sent when a value meaningfully changes (e.g., threshold crossing). After any
such setter, the gateway immediately calls triggerEvaluation() so that the contract
re-computes irrigation. This is exactly what the simulator executed.

From the simulator logs, the eight transactions and their gasUsed are:

• setSoilMoisture ×3: 46,241 gas each

• setTemperature ×1: 45,112 gas

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

46

• triggerEvaluation ×4: 48,712, 48,977, 48,980, 49,011 gas

Total gas:

Gastotal = 3 · 46,241 + 45,112 + (48,712 + 48,977 + 48,980 + 49,011) = 379,515 gas.

To convert gas to USD we use a representative Polygon gas price and an illustrative
MATIC/USD conversion (gas price references: [33, 34, 35]):

Cost [USD] = GasUsed × GasPrice[gwei] × 10−9 × MATIC_USD.

With GasPrice = 30 gwei and MATIC_USD = 0.75, the full validation run costs:

379,515× 30× 10−9 × 0.75 ≈ 0.0085 USD,

i.e. < 1 cent in total. For reference, a single setter+evaluation pair from the logs consumes
about

(46,241 + 48,950) ≈ 95,141 gas

≈ $0.00214 at the above prices. The setTemperature+evaluation pair in the Edge sce-
nario was (45,112 + 49,011) = 94,123 gas ≈ $0.00212.

5.2.2 Daily transaction volume and daily cost

Because the RPi4 sends setters only when values change and calls triggerEvaluation()
immediately after, the daily transaction count depends on how often thresholds are
crossed, not on the sampling period itself. We analyse three policies:

(A) Naïve periodic writes (upper bound, not our design). Every T = 5 minutes,
write all four fields and then evaluate (5 tx/cycle). With 288 cycles/day:

Ntx/day = 288× 5 = 1440 tx/day.

Per-cycle gas ≈ 4 · 46,241 + 48,950 = 233,864 gas; daily gas ≈ 67.37M. At 30 gwei,
MATIC=$0.75 this is ≈ $1.52/day.

(B) Event-driven (our actual behaviour). Only on meaningful change, send the
corresponding setter followed by triggerEvaluation. In a typical diurnal pattern:

• One daily baseline boot (set all four fields once, then evaluate): 4×46,241+48,950 =
233,864 gas ≈ $0.00526.

• Soil crosses activation and later recovery thresholds (two crossings): 2 × (46,241 +
48,950) = 190,282 gas ≈ $0.00428.

• Optional high-temperature override once (hot day): (45,112 + 49,011) = 94,123 gas
≈ $0.00212.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

47

Thus:

Cost/day ≈

{
$0.00526 + $0.00428 = $0.00954 (no temp override)

$0.00526 + $0.00428 + $0.00212 = $0.01166 (with one temp override)

and the corresponding transaction counts are

Ntx/day =

{
5 (boot) + 2 · 2 (soil pairs) = 9 tx/day,

5 (boot) + 2 · 2 (soil pairs) + 2 (temp pair) = 11 tx/day.

This reflects the RPi4’s pre-processing: no setters are sent if values are stable, so daily
costs are driven by threshold events, not by sampling rate.

(C) Hybrid: periodic evaluation only. Schedule triggerEvaluation every 30 min-
utes (48/day) as a watchdog, but still send setters only on changes. The 48 evaluations
alone cost 48 × 48,950 = 2,349,600 gas $0.0529/day. Adding two soil crossings and one
temperature override adds $0.00428 + $0.00212 ≈ $0.00640, totaling $0.0593/day. This
gives a predictable ceiling while keeping writes sparse.

In all cases, on-chain fees on Polygon remain low; operational policy should be tuned
with live gas data from [33, 34, 35].

5.2.3 Cloud IoT reference costs

Cloud IoT platforms usually charge by message volume and service tiers, but always on
a recurring subscription basis. As of 2025, AWS IoT Core lists a rate of $1.00 per mil-
lion messages (around 5KB increments) for the first billion messages [36, 37]. Microsoft
Azure IoT Hub publishes tiered quotas where the S1 tier ($25/month) includes 400,000
messages/day of up to 4KB each [38].

In our case, the event-driven gateway can produce ≈ 10-15 control events per day
(as in our simulations) would generate <500 messages/month. On cloud IoT pricing this
is effectively charged at the minimum tier, $25/month (Azure) or several dollars/month
(AWS). In contrast, our blockchain-enabled system on Polygon consumed only ≈ $0.01
per day, or ≈ $0.30 per month, at the assumed gas price. Even with the stablished
conservative watchdog policy (Policy C, ≈ $0.06/day), monthly cost remains below $2.
This is still an order of magnitude lower than cloud IoT subscription fees. This shows that
for sparse control actions, blockchain-on-chain costs are substantially cheaper than cloud
message-tier minimums. At larger scales, cloud platforms benefit from volume discounts,
but the cost advantage of event-driven blockchain interactions persists.

5.2.4 Latency and energy

Although it is not measured directly here, prior work on blockchain–IoT integration shows
that the typical Polygon network block times are 2-3 seconds [33], meaning our control
decisions propagate near-real time. Additionally, the energy costs are dominated by wire-
less transmission (LoRa), not by the cryptographic signing itself. Studies report that

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

48

event-driven models limit energy overhead to low levels compared to sensor operation and
wireless radio duty cycles [39, 40]. This aligns directly with our event-driven gateway
policy (B), where writes occur only on threshold events rather than continuously, thus
reducing both the energy and the transaction costs.

5.3 Discussion

The simulation that was done showed contract behaviour for both scenarios and also
produced on-chain events consistent with the rules implemented: low soil → irrigation
activated; high temperature → safety deactivation. As LoRa reception could not be com-
pleted within the timeframe, validation was done between the RPi4 and the blockchain,
ensuring that the smart contract logic executed as intended and that the emitted events
matched expected conditions.

From the economic point of view, the measured gas usage from the logs demonstrates
that a typical daily profile (baseline + threshold crossings) consumes fewer than a dozen
transactions, resulting in a cost under one cent per day. These values are orders of mag-
nitude cheaper than maintaining a conventional IoT cloud subscription, which requires
monthly minimums of $25 for Azure IoT Hub S1. At a scale, this difference is noted for
blockchain in a linearly way with events, while cloud subscriptions impose tier costs.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

49

6 Conclusions and Future Work

The development of this prototype has shown that it is technically feasible to combine
IoT sensor networks with blockchain technology to create a secure and automated irri-
gation system. The system demonstrates how irrigation decision can be automated by
integrating ESP32 nodes with LoRa communication, a Raspberry Pi gateway and smart
contracts deployed on the Polygon network. The gateway proved to be a key component,
since it filtered and pre-processed the data before submitting it on-chain, which reduced
redundant interactions and lowered costs. All decisions were recorded immutably, offering
a traceable and auditable record that could be especially useful in cooperative or regu-
lated agricultural environments. The economic analysis also underlined the viability of
this approach, as the operational cost of blockchain transactions was considerably lower
than that of conventional cloud-based IoT platforms. Overall, the project highlights that
blockchain-enabled IoT irrigation can be both efficient and sustainable, contributing to
better use of resources and aligning with global objectives for responsible water manage-
ment.

At the same time, the work has important limitations that must be acknowledged.
The validation was carried out in a simulated environment rather than in real agricul-
tural conditions. Although the logic of the system was successfully tested through direct
interaction with the blockchain, the LoRa communication link between sensor nodes and
the gateway could not be fully established within the timeframe of the project. The Rasp-
berry Pi, acting as a single oracle, also represented a point of centralization that does not
fully reflect the decentralized potential of blockchain. In addition, the physical actuation
of pumps or valves was not implemented and metrics such as latency, energy consumption
and system robustness in field conditions still need to be measured.

For these reasons, future work should focus on taking the prototype from simulation
to practical deployment. Field testing will make it possible to measure the behaviour of
the system in real conditions, accounting for variability in soil, climate and connectiv-
ity. The oracle component should evolve towards decentralized solutions such as Chain-
link or Provable, removing the dependency on a single gateway and increasing the trust
in the system. On the hardware side, the addition of solar-powered sensor nodes and
weatherproof enclosures would improve autonomy and resilience, while integrating actual
irrigation hardware would close the loop between decision and action. Beyond technical
improvements, the system could also be extended with predictive models that incorporate
weather forecasts or crop-specific requirements, offering more refined irrigation schedules.
Finally, exploring its use in cooperative farming contexts would provide valuable insight
into its socio-economic impact, particularly in terms of transparency, cost-sharing and

50

governance.

In conclusion, the project lays a solid foundation for a new approach to irrigation
automation, one that combines technological innovation with sustainability. While the
current version remains a prototype, the results confirm its potential and point clearly to-
wards the next steps required to transform it into a reliable, scalable and widely applicable
solution for precision agriculture.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

51

A Source Code

A.1 ESP32 Firmware

1 /* **
2 * Smart Irrigation ESP32 Sensor Node (LoRa)
3 * Board: ESP32
4 * Sensors: DHT22 (temp/hum), Capacitive Soil (ADC), LDR (ADC)
5 * Radio: SX1276 /78 (RFM95W) via Sandeep Mistry LoRa lib
6 * Analog reads use ESP32 ADC driver (driver/adc.h) on ADC1.
7 *** */
8

9 #include <Arduino.h>
10 #include <WiFi.h>
11 #include "esp_bt.h"
12 #include <SPI.h>
13 #include <LoRa.h>
14 #include "DHT.h"
15 #include "rom/crc.h"
16 #include "driver/adc.h"
17

18 #define NODE_ID 1
19 #define FW_VERSION_MAJOR 1
20 #define FW_VERSION_MINOR 1
21

22 /* ******** Pins & Sensors ******** */
23 #define PIN_DHT 4
24 #define DHT_TYPE DHT22
25

26 // ADC1 -only GPIOs: 32 39
27 #define GPIO_SOIL 34 // ADC1_CHANNEL_6
28 #define GPIO_LDR 35 // ADC1_CHANNEL_7
29

30 // ADC driver mapping
31 static const adc1_channel_t CH_SOIL = ADC1_CHANNEL_6; // GPIO34
32 static const adc1_channel_t CH_LDR = ADC1_CHANNEL_7; // GPIO35
33

34 /* ******** LoRa pins ******** */
35 #define LORA_SCK 5
36 #define LORA_MISO 19
37 #define LORA_MOSI 27
38 #define LORA_SS 18
39 #define LORA_RST 14
40 #define LORA_DIO0 26
41

52

42 /* ******** LoRa radio params ******** */
43 #define LORA_BAND 915E6 // set to 868E6 Europe
44 #define LORA_SF 7
45 #define LORA_BW 125E3
46 #define LORA_CR 5
47 #define LORA_TX_POWER_DBM 14
48

49 /* ******** Sampling ******** */
50 #define SAMPLE_RETRIES 5
51 #define SEND_ON_CHANGE_THRESH 2.0f // % soil moisture delta
52 #define PERIODIC_SEND_EVERY_N 12 // force send every N cycles
53 #define DRY_THRESHOLD_PERCENT 35.0f
54 #define SLEEP_SECONDS 300 // 5 minutes
55

56 /* ******** Moisture calibration (raw ->%) ******** */
57 #define SOIL_RAW_DRY 2800.0f
58 #define SOIL_RAW_WET 1300.0f
59

60 /* ******** LDR normalization ******** */
61 #define LDR_MIN_RAW 200.0f
62 #define LDR_MAX_RAW 3500.0f
63 #define LDR_MAX_LUX 50000.0f
64

65

66 /* ******** RTC for deep sleep ******** */
67 RTC_DATA_ATTR uint32_t rtc_boots = 0;
68 RTC_DATA_ATTR uint32_t rtc_seq = 0;
69 RTC_DATA_ATTR uint8_t rtc_dry_streak = 0;
70 RTC_DATA_ATTR float last_sent_moist = NAN;
71 RTC_DATA_ATTR float last_sent_temp = NAN;
72 RTC_DATA_ATTR float last_sent_hum = NAN;
73 RTC_DATA_ATTR float last_sent_lux = NAN;
74

75 DHT dht(PIN_DHT , DHT_TYPE);
76

77 /****** Helpers ******** */
78 static inline bool approxChanged(float a, float b, float eps) {
79 if (isnan(a) || isnan(b)) return true;
80 return fabsf(a - b) >= eps;
81 }
82

83 // Configure ADC1 width & attenuation
84 void adcInitChannel(adc1_channel_t ch) {
85 // 12-bit width
86 adc1_config_width(ADC_WIDTH_BIT_12);
87 // 11 dB attenuation ~ full -scale near 3.3V
88 adc1_config_channel_atten(ch, ADC_ATTEN_DB_11);
89 }
90

91 // Median of N raw samples from an ADC1 channel
92 int adcReadMedian(adc1_channel_t ch , uint8_t n = nine) {
93 if (n < 3) n = 3;
94 if (n > 25) n = 25;
95 int buf [25];
96 for (uint8_t i = 0; i < n; ++i) {
97 buf[i] = adc1_get_raw(ch);

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

53

98 delay (8);
99 }

100

101 // insertion sort
102 for (uint8_t i = 1; i < n; ++i) {
103 int k = buf[i], j = i - 1;
104 while (j >= 0 && buf[j] > k) {
105 buf[j+1] = buf[j]; j--;
106 }
107 buf[j+1] = k;
108 }
109 return buf[n/2];
110 }
111

112 // Map soil raw ADC -> percentage %
113 float mapSoilToPercent(int raw) {
114 float r = constrain ((float)raw , SOIL_RAW_WET , SOIL_RAW_DRY);
115 float pct = 100.0f * (SOIL_RAW_DRY - r) / (SOIL_RAW_DRY - SOIL_RAW_WET

);
116 return constrain(pct , 0.0f, 100.0f);
117 }
118

119 // Normalize LDR raw to a coarse lux - l i k e range
120 float mapLDRtoLux(int raw) {
121 float r = constrain ((float)raw , LDR_MIN_RAW , LDR_MAX_RAW);
122 float norm = (r - LDR_MIN_RAW) / (LDR_MAX_RAW - LDR_MIN_RAW); // 0..1
123 return norm * LDR_MAX_LUX;
124 }
125

126 /* ****** LoRa ******** */
127 bool loraInit () {
128 SPI.begin(LORA_SCK , LORA_MISO , LORA_MOSI , LORA_SS);
129 LoRa.setPins(LORA_SS , LORA_RST , LORA_DIO0);
130 if (!LoRa.begin(LORA_BAND)) return false;
131 LoRa.setSpreadingFactor(LORA_SF);
132 LoRa.setSignalBandwidth(LORA_BW);
133 LoRa.setCodingRate4(LORA_CR);
134 LoRa.setTxPower(LORA_TX_POWER_DBM);
135 LoRa.disableCrc (); // we pack our own CRC32
136 return true;
137 }
138

139 /* ****** Compact radio frame ******/
140 struct __attribute__ ((packed)) Frame {
141 uint8_t hdr; // u8=0xAA
142 uint8_t node; // u8
143 uint32_t seq; // u32
144 float soilPct; // f32
145 float tempC; // f32
146 float humPct; // f32
147 float lux; // f32
148 uint8_t dryStreak; // u8
149 uint32_t crc; // f32
150 };
151

152 uint32_t crc32_frame(const Frame &f) {

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

54

153 return crc32_le(0, (const uint8_t *)&f, sizeof(Frame) - sizeof(uint32_t
));

154 }
155

156 bool loraSendFrame(const Frame &f) {
157 LoRa.beginPacket ();
158 LoRa.write ((const uint8_t *)&f, sizeof(Frame));
159 int res = LoRa.endPacket(true); // async
160 return (res == 1);
161 }
162

163 /****** Sleep ******** */
164 void goToSleep () {
165 esp_sleep_enable_timer_wakeup ((uint64_t)SLEEP_SECONDS * 1000000 ULL);
166 esp_deep_sleep_start ();
167 }
168

169 /***** Setup ******* */
170 void setup() {
171 // Power hygiene
172 WiFi.mode(WIFI_OFF);
173 btStop ();
174

175 rtc_boots ++;
176

177

178 // Init sensors
179 dht.begin ();
180

181 // ADC channels
182 adcInitChannel(CH_SOIL);
183 adcInitChannel(CH_LDR);
184

185 // DHT with retry window
186 float tempC = NAN , hum = NAN;
187 for (int i = 0; i < SAMPLE_RETRIES; ++i) {
188 tempC = dht.readTemperature (); // Celsius
189 hum = dht.readHumidity ();
190 if (!isnan(tempC) && !isnan(hum)) break;
191 delay (400);
192 }
193 if (isnan(tempC)) tempC = -1000.0f; // sentinel
194 if (isnan(hum)) hum = -1000.0f;
195

196 // Analog (median samples)
197 int rawSoil = adcReadMedian(CH_SOIL , 9);
198 int rawLdr = adcReadMedian(CH_LDR , 9);
199

200 float soilPct = mapSoilToPercent(rawSoil);
201 float lux = mapLDRtoLux(rawLdr);
202

203 // Update dry streak (approximate at node level)
204 if (soilPct < DRY_THRESHOLD_PERCENT) {
205 if (rtc_dry_streak < 250) rtc_dry_streak ++;
206 } else {
207 rtc_dry_streak = 0;

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

55

208 }
209

210 // Change detection + periodic kick
211 bool significantChange = approxChanged(soilPct , last_sent_moist ,

SEND_ON_CHANGE_THRESH);
212 bool periodicKick = (rtc_seq % PERIODIC_SEND_EVERY_N) == 0;
213

214 if (significantChange || periodicKick) {
215 if (! loraInit ()) {
216 // radio failed; try again next cycle
217 goToSleep ();
218 return;
219 }
220

221 rtc_seq ++;
222

223 Frame f{};
224 f.hdr = 0xAA;
225 f.node = (uint8_t)NODE_ID;
226 f.seq = rtc_seq;
227 f.soilPct = soilPct;
228 f.tempC = tempC;
229 f.humPct = hum;
230 f.lux = lux;
231 f.dryStreak = rtc_dry_streak;
232 f.crc = 0;
233 f.crc = crc32_frame(f);
234

235 (void)loraSendFrame(f);
236

237 // update last -sent trackers
238 last_sent_moist = soilPct;
239 last_sent_temp = tempC;
240 last_sent_hum = hum;
241 last_sent_lux = lux;
242 }
243

244 goToSleep ();
245 }
246

247 void loop() { /* unused (deep sleep) */ }

Listing A.1: ESP32 sensor node firmware (LoRa) using ESP32 ADC driver and event-
driven transmission

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

56

A.2 Raspberry Pi Oracle Gateway

1 import os, time , struct , zlib , threading , logging , math
2 from dataclasses import dataclass , field
3 from typing import Optional , Dict
4 from collections import deque
5 from dotenv import load_dotenv
6 from web3 import Web3
7

8 # GPIO
9 try:

10 import RPi.GPIO as GPIO
11 GPIO.setmode(GPIO.BCM)
12 except Exception:
13 GPIO = None
14

15 # Serial import
16 try:
17 import serial # pyserial
18 except Exception:
19 serial = None
20

21 load_dotenv ()
22

23 # ---------- ENV CONFIG -------------------
24 RPC_URL = os.environ.get("RPC_URL", "https ://rpc -amoy.polygon.

technology")
25 CONTRACT_ADDR = os.environ.get("CONTRACT_ADDRESS", "0

x00")
26 ACCOUNT_ADDR = os.environ.get("ACCOUNT_ADDRESS", "0

x00")
27 PRIVATE_KEY = os.environ.get("PRIVATE_KEY") # DO NOT hardcode; use .

env
28

29 SERIAL_PORT = os.environ.get("SERIAL_PORT")
30 SERIAL_BAUD = int(os.environ.get("SERIAL_BAUD", "115200"))
31

32 RELAY_PIN_ENV = os.environ.get("RELAY_PIN")
33 RELAY_PIN = int(RELAY_PIN_ENV) if RELAY_PIN_ENV else None
34 ACTUATOR_DEMO = os.environ.get("ACTUATOR_DEMO", "1") == "1"
35

36 # Must match ESP32 firmware deep sleep to aggregate dry streak -> days
37 SLEEP_SECONDS = int(os.environ.get("SLEEP_SECONDS", "300"))
38

39 # --------- Smoothing & validation knobs ---------
40 SMOOTH_WINDOW = int(os.environ.get("SMOOTH_WINDOW", "3"))

sliding window size
41 SMOOTH_METHOD = os.environ.get("SMOOTH_METHOD", "median").lower()
42

43 MIN_SOIL_PCT = float(os.environ.get("MIN_SOIL_PCT", "0"))
44 MAX_SOIL_PCT = float(os.environ.get("MAX_SOIL_PCT", "100"))
45 MIN_HUM_PCT = float(os.environ.get("MIN_HUM_PCT", "0"))
46 MAX_HUM_PCT = float(os.environ.get("MAX_HUM_PCT", "100"))
47 MIN_TEMP_C = float(os.environ.get("MIN_TEMP_C", " -20"))
48 MAX_TEMP_C = float(os.environ.get("MAX_TEMP_C", "60"))

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

57

49 MIN_LUX = float(os.environ.get("MIN_LUX", "0"))
50 MAX_LUX = float(os.environ.get("MAX_LUX", "120000"))

bright sun ~100k lux
51

52 # ------------------- CONTRACT ABI (minimal surface) -------------------
53 ABI = [
54 {"name":"setSoilMoisture","inputs":[{"name":"_soilMoisture","type":"

uint256"}],"outputs":[],"stateMutability":"nonpayable","type":"
function"},

55 {"name":"setTemperature","inputs":[{"name":"_temperature","type":"
uint256"}],"outputs":[],"stateMutability":"nonpayable","type":"
function"},

56 {"name":"setHumidity","inputs":[{"name":"_humidity","type":"uint256"
}],"outputs":[],"stateMutability":"nonpayable","type":"function"},

57 {"name":"setLightIntensity","inputs":[{"name":"_lightIntensity","type"
:"uint256"}],"outputs":[],"stateMutability":"nonpayable","type":"
function"},

58 {"name":"setConsecutiveDryDays","inputs":[{"name":"_consecutiveDryDays
","type":"uint256"}],"outputs":[],"stateMutability":"nonpayable","
type":"function"},

59 {"name":"triggerEvaluation","inputs":[],"outputs":[],"stateMutability"
:"nonpayable","type":"function"},

60 {"name":"getIrrigationStatus","inputs":[],"outputs":[{"type":"bool"}],
"stateMutability":"view","type":"function"},

61 {"anonymous":False ,"inputs":[{"indexed":False ,"name":"status","type":"
bool"},

62 {"indexed":False ,"name":"bit1","type":"
bool"},

63 {"indexed":False ,"name":"bit0","type":"
bool"}],

64 "name":"IrrigationStatusChanged","type":"event"},
65 {"anonymous":False ,"inputs":[{"indexed":False ,"name":"irrigationStatus

","type":"bool"}],
66 "name":"EvaluationTriggered","type":"event"},
67]
68

69 REASON_MAP = {
70 (False , False , False): "DEACTIVATE: High temperature",
71 (True , False , False): "ACTIVATE: Low soil + optimal T/H",
72 (True , False , True): "ACTIVATE: Consecutive dry days",
73 (True , True , False): "ACTIVATE: Low soil + low light",
74 (False , False , True): "DEACTIVATE: Soil moisture optimal",
75 }
76

77 # ----------------- LOGGING -------------------
78 logging.basicConfig(level=logging.INFO , format="%(asctime)s %(levelname)

s %(message)s")
79

80 # ---------------- LORA FRAME -------------------
81 FRAME_LEN = 27 # bytes
82

83 @dataclass
84 class Reading:
85 node: int; seq: int
86 soilPct: float; tempC: float; humPct: float; lux: float
87 dryStreak: int; when: float

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

58

88

89 def decode_frame(buf: bytes) -> Optional[Reading]:
90 """ Decode 27-byte frame: 0xAA | node:u8 | seq:u32 | soil:f32 | temp:

f32 | hum:f32 | lux:f32 | dry:u8 | crc32:u32 (LE)"""
91 if len(buf) != FRAME_LEN or buf [0] != 0xAA:
92 return None
93 head = buf[:-4]
94 crc_rx = struct.unpack("<I", buf [-4:]) [0]
95 crc_calc = zlib.crc32(head) & 0xFFFFFFFF
96 if crc_rx != crc_calc:
97 logging.warning("CRC mismatch: rx=%08x calc =%08x", crc_rx ,

crc_calc); return None
98 node = buf[1]
99 seq = struct.unpack("<I", buf [2:6]) [0]

100 soil , tempC , hum , lux = struct.unpack("<ffff", buf [6:22])
101 dryStreak = buf [22]
102 # Sentinel handling (DHT/LDR failures , etc.)
103 if tempC < -999.0: tempC = float("nan")
104 if hum < -999.0: hum = float("nan")
105 # (Optionally add other sentinels here if your firmware uses them)
106 return Reading(node , seq , soil , tempC , hum , lux , dryStreak , time.

time())
107

108 # -------------- PER -NODE STATE -------------------
109 @dataclass
110 class NodeState:
111 last_valid: Dict[str , float] = field(default_factory=dict) #

last good (post -smoothing) numeric value per field
112 last_seen: float = 0.0
113 buffers: Dict[str , deque] = field(default_factory=lambda: {
114 "soilPct": deque(maxlen=SMOOTH_WINDOW),
115 "humPct": deque(maxlen=SMOOTH_WINDOW),
116 "tempC": deque(maxlen=SMOOTH_WINDOW),
117 "lux": deque(maxlen=SMOOTH_WINDOW),
118 })
119 last_onchain: Dict[str , Optional[int]] = field(default_factory=

lambda: {
120 "soilMoisture": None ,
121 "temperature": None ,
122 "humidity": None ,
123 "lightIntensity": None ,
124 "consecutiveDryDays": None ,
125 })
126

127 nodes: Dict[int , NodeState] = {}
128

129 def node_state(nid: int) -> NodeState:
130 st = nodes.get(nid)
131 if st is None:
132 st = NodeState ()
133 nodes[nid] = st
134 st.last_seen = time.time()
135 return st
136

137 # --------------- PACKET SOURCE -------------------
138 class SerialPacketSource:

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

59

139 def __init__(self , port: str , baud: int):
140 if serial is None:
141 raise RuntimeError("pyserial not installed; set up your LoRa

driver or install pyserial.")
142 self.ser = serial.Serial(port , baud , timeout =1)
143 def read(self) -> Optional[bytes]:
144 data = self.ser.read(FRAME_LEN)
145 return data if len(data) == FRAME_LEN else None
146

147 class DummyPacketSource:
148 def read(self) -> Optional[bytes]:
149 time.sleep (2.0)
150 return None
151

152 def pick_packet_source ():
153 if SERIAL_PORT:
154 logging.info("LoRa serial source: %s @ %d bps", SERIAL_PORT ,

SERIAL_BAUD)
155 return SerialPacketSource(SERIAL_PORT , SERIAL_BAUD)
156 logging.warning("No SERIAL_PORT provided; using Dummy source.")
157 return DummyPacketSource ()
158

159 # ------------------- WEB3 / CONTRACT -------------------
160 if not (RPC_URL and CONTRACT_ADDR and ACCOUNT_ADDR and PRIVATE_KEY):
161 logging.error("Missing RPC_URL / CONTRACT_ADDRESS / ACCOUNT_ADDRESS

/ PRIVATE_KEY in environment.")
162

163 w3 = Web3(Web3.HTTPProvider(RPC_URL))
164 if not w3.is_connected ():
165 logging.error("Cannot connect to RPC at %s", RPC_URL)
166

167 contract = w3.eth.contract(address=Web3.to_checksum_address(
CONTRACT_ADDR), abi=ABI)

168

169 def send_tx(fn, *args):
170 nonce = w3.eth.get_transaction_count(Web3.to_checksum_address(

ACCOUNT_ADDR))
171 tx = fn(*args).build_transaction ({
172 "from": Web3.to_checksum_address(ACCOUNT_ADDR),
173 "nonce": nonce ,
174 "chainId": w3.eth.chain_id ,
175 "maxFeePerGas": w3.eth.gas_price * 2,
176 "maxPriorityFeePerGas": w3.to_wei("2", "gwei"),
177 })
178 signed = w3.eth.account.sign_transaction(tx, private_key=PRIVATE_KEY

)
179 tx_hash = w3.eth.send_raw_transaction(signed.rawTransaction)
180 logging.info("tx sent: %s", tx_hash.hex())
181 rcpt = w3.eth.wait_for_transaction_receipt(tx_hash)
182 logging.info("tx mined: block =%s status =%s", rcpt.blockNumber , rcpt.

status)
183 return rcpt
184

185 # ----------------- GPIO ACTUATION -------------------
186 def setup_relay ():
187 if GPIO is None or RELAY_PIN is None:

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

60

188 logging.info("Actuator: GPIO disabled (missing RPi.GPIO or
RELAY_PIN).")

189 return
190 GPIO.setup(RELAY_PIN , GPIO.OUT , initial=GPIO.LOW)
191 logging.info("Actuator: demo output on BCM %d (LOW=OFF , HIGH=ON)",

RELAY_PIN)
192

193 def set_relay(on: bool):
194 if GPIO is not None and RELAY_PIN is not None:
195 GPIO.output(RELAY_PIN , GPIO.HIGH if on else GPIO.LOW)
196 state = "ON" if on else "OFF"
197 if ACTUATOR_DEMO:
198 logging.info("Actuator(DEMO): GPIO=%s (represents relay drive)",

state)
199 else:
200 logging.info("Actuator: GPIO=%s", state)
201

202 # ------------------- EVENT LISTENER -----------------
203 def start_event_listener(stop_evt: threading.Event):
204 try:
205 filt = contract.events.IrrigationStatusChanged.create_filter(

fromBlock="latest")
206 logging.info("Event listener started.")
207 while not stop_evt.is_set ():
208 for ev in filt.get_new_entries ():
209 status = ev["args"]["status"]; bit1 = ev["args"]["bit1"

]; bit0 = ev["args"]["bit0"]
210 reason = REASON_MAP.get((status , bit1 , bit0), f"status ={

status},bit1={bit1},bit0={bit0}")
211 logging.info("IrrigationStatusChanged -> %s", reason)
212 set_relay(bool(status))
213 time.sleep (2.0)
214 except Exception as e:
215 logging.exception("Event listener error: %s", e)
216

217 # ------------ VALIDATION / SMOOTHING HELPERS -------------------
218 def in_physical_range(field: str , v: float) -> bool:
219 if v != v: # NaN
220 return False
221 if field == "soilPct":
222 return MIN_SOIL_PCT <= v <= MAX_SOIL_PCT
223 if field == "humPct":
224 return MIN_HUM_PCT <= v <= MAX_HUM_PCT
225 if field == "tempC":
226 return MIN_TEMP_C <= v <= MAX_TEMP_C
227 if field == "lux":
228 return MIN_LUX <= v <= MAX_LUX
229 return True
230

231 def smooth_sequence(seq):
232 if not seq:
233 return None
234 if SMOOTH_METHOD == "mean":
235 return sum(seq) / len(seq)
236 # default robust median
237 s = sorted(seq)

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

61

238 n = len(s)
239 mid = n // 2
240 return (s[mid] if n % 2 == 1 else (s[mid - 1] + s[mid]) / 2.0)
241

242 def update_smooth_impute(st: NodeState , field: str , v: Optional[float])
-> Optional[float]:

243 """
244 If v is NaN/None or out -of -range then it tries to impute with

last_valid[field]
245 Else then add to buffer and return smoothed value
246 """
247 if v is None or (isinstance(v, float) and v != v) or not

in_physical_range(field , v):
248 if v is not None and not (isinstance(v, float) and v != v) and

not in_physical_range(field , v):
249 logging.warning("Discard out -of-range %s=%.3f (kept

last_valid if present)", field , v)
250 return st.last_valid.get(field)
251

252 # valid value -> update smoothing buffer
253 dq = st.buffers[field]
254 dq.append(float(v))
255 smoothed = smooth_sequence(list(dq))
256 if smoothed is not None:
257 st.last_valid[field] = smoothed
258 return smoothed
259

260 def round_u(v: Optional[float]) -> Optional[int]:
261 if v is None or (isinstance(v, float) and v != v):
262 return None
263 # clamp at 0 to avoid negative ints
264 return max(0, int(round(v)))
265

266 def cycles_to_days(cycles: int) -> int:
267 if SLEEP_SECONDS <= 0:
268 return 0
269 per_day = int ((24 * 3600) / SLEEP_SECONDS)
270 return cycles // max(1, per_day)
271

272 # ----------------- GATEWAY CORE -------------------
273 def push_updates_and_evaluate(node_id: int , soil: Optional[float], temp:

Optional[float],
274 hum: Optional[float], lux: Optional[float

], days: int):
275 st = node_state(node_id)
276

277 soil_u = round_u(soil)
278 temp_u = round_u(temp)
279 hum_u = round_u(hum)
280 lux_u = round_u(lux)
281

282 updates = []
283 if soil_u is not None and soil_u != st.last_onchain["soilMoisture"]:
284 updates.append (("setSoilMoisture", soil_u)); st.last_onchain["

soilMoisture"] = soil_u
285 if temp_u is not None and temp_u != st.last_onchain["temperature"]:

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

62

286 updates.append (("setTemperature", temp_u)); st.last_onchain["
temperature"] = temp_u

287 if hum_u is not None and hum_u != st.last_onchain["humidity"]:
288 updates.append (("setHumidity", hum_u)); st.last_onchain["

humidity"] = hum_u
289 if lux_u is not None and lux_u != st.last_onchain["lightIntensity"]:
290 updates.append (("setLightIntensity", lux_u)); st.last_onchain["

lightIntensity"] = lux_u
291 if days != st.last_onchain["consecutiveDryDays"]:
292 updates.append (("setConsecutiveDryDays", days)); st.last_onchain

["consecutiveDryDays"] = days
293

294 if not updates:
295 logging.info("No changes to push (node=%d)", node_id)
296 return
297

298 for fname , val in updates:
299 logging.info("Calling %s(%s) [node=%d]", fname , val , node_id)
300 fn = getattr(contract.functions , fname)
301 send_tx(fn, val)
302

303 logging.info("Calling triggerEvaluation () [node=%d]", node_id)
304 send_tx(contract.functions.triggerEvaluation)
305

306 def process_and_push(r: Reading):
307 st = node_state(r.node)
308

309 # --- Per -field smoothing + sentinel handling + threshold validation
+ imputation

310 soil_sm = update_smooth_impute(st, "soilPct", r.soilPct)
311 temp_sm = update_smooth_impute(st, "tempC", r.tempC)
312 hum_sm = update_smooth_impute(st , "humPct", r.humPct)
313 lux_sm = update_smooth_impute(st , "lux", r.lux)
314

315 days = cycles_to_days(r.dryStreak)
316

317 logging.info(
318 "Processed node=%d seq=%d soil =%.2f->%.2f temp =%.2f->%.2f hum

=%.2f->%.2f lux =%.0f->%.0f dry=%d->%d days",
319 r.node , r.seq ,
320 r.soilPct , (soil_sm if soil_sm is not None else float(’nan’)),
321 r.tempC , (temp_sm if temp_sm is not None else float(’nan’)),
322 r.humPct , (hum_sm if hum_sm is not None else float(’nan’)),
323 r.lux , (lux_sm if lux_sm is not None else float(’nan’)),
324 r.dryStreak , days
325)
326

327 # Push only what we have (None means: no update so keep last on -
chain)

328 push_updates_and_evaluate(r.node , soil_sm , temp_sm , hum_sm , lux_sm ,
days)

329

330 # ---------------- MAIN -------------------
331 def main():
332 logging.info("RPC=%s chainId =%s", RPC_URL , (w3.eth.chain_id if w3.

is_connected () else "n/a"))

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

63

333 logging.info("Smoothing: method =%s window =%d", SMOOTH_METHOD ,
SMOOTH_WINDOW)

334 logging.info("Physical ranges: soil =[%s,%s] hum=[%s,%s] temp =[%s,%s]
lux =[%s,%s]",

335 MIN_SOIL_PCT , MAX_SOIL_PCT , MIN_HUM_PCT , MAX_HUM_PCT ,
336 MIN_TEMP_C , MAX_TEMP_C , MIN_LUX , MAX_LUX)
337

338 setup_relay ()
339

340 stop_evt = threading.Event()
341 t = threading.Thread(target=start_event_listener , args=(stop_evt ,),

daemon=True)
342 t.start()
343

344 source = pick_packet_source ()
345 try:
346 while True:
347 buf = source.read()
348 if not buf:
349 continue
350 r = decode_frame(buf)
351 if r:
352 logging.info("RX node=%d seq=%d soil =%.1f temp =%.1f hum

=%.1f lux =%.0f dry=%d",
353 r.node , r.seq , r.soilPct , r.tempC , r.humPct

, r.lux , r.dryStreak)
354 process_and_push(r)
355 else:
356 logging.warning("Invalid frame received.")
357 except KeyboardInterrupt:
358 pass
359 finally:
360 stop_evt.set()
361 if GPIO:
362 try:
363 GPIO.cleanup ()
364 except Exception:
365 pass
366

367 if __name__ == "__main__":
368 main()

Listing A.2: RPi4 gateway that decodes LoRa frames and updates SmartIrrigationV2
on Polygon Amoy

1 RPC_URL=https ://rpc -amoy.polygon.technology
2 CONTRACT_ADDRESS =0 x6f0BaDb6BA1BE024D45f185cbc54f29b2C09b205
3 ACCOUNT_ADDRESS =0 x418F5F9398bB8ce39E01C51F3c74DE291384cA02
4 PRIVATE_KEY =0 x00000 # Not shared for security reasons
5

6 # LoRa serial bridge
7 SERIAL_PORT =/dev/ttyS0
8 SERIAL_BAUD =115200
9

10 # Actuator demo output (GPIO)
11 RELAY_PIN =17

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

64

12 ACTUATOR_DEMO =1
13

14 # ESP32 deep -sleep period dry -streak cycles -> days
15 SLEEP_SECONDS =300

Listing A.3: Environment configuration template for the RPi gateway

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

65

A.3 Smart Contract - Solidity

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.28;
3

4 contract SmartIrrigationV2 {
5 address public owner;
6

7 // Sensor variables
8 uint256 public soilMoisture; // percentage
9 uint256 public temperature; // Celsius

10 uint256 public humidity; // percentage
11 uint256 public lightIntensity; // lux
12 uint256 public consecutiveDryDays; // Count consecutive days soil

moisture below threshold
13

14 // Irrigation status
15 bool public irrigationStatus; // true - ON, false - OFF
16

17 // Thresholds
18 uint256 public tempThresholdHigh = 35;
19 uint256 public tempOptimalLow = 20;
20 uint256 public tempOptimalHigh = 28;
21 uint256 public soilMoistureLow = 30;
22 uint256 public soilMoistureOptimal = 60;
23 uint256 public lightIntensityLow = 300;
24 uint256 public humidityHigh = 60;
25 uint256 public dryDayThreshold = 3;
26

27 // Flags to track updated parameters
28 bool public isSoilMoistureUpdated;
29 bool public isTemperatureUpdated;
30 bool public isHumidityUpdated;
31 bool public isLightIntensityUpdated;
32

33 // Events
34 event IrrigationStatusChanged(bool status , bool bit1 , bool bit0);
35 event SoilMoistureUpdated(uint256 newValue);
36 event TemperatureUpdated(uint256 newValue);
37 event HumidityUpdated(uint256 newValue);
38 event LightIntensityUpdated(uint256 newValue);
39 event EvaluationTriggered(bool irrigationStatus);
40

41 // Modifier
42 modifier onlyOwner () {
43 require(msg.sender == owner , "Not authorized");
44 _;
45 }
46

47 constructor () {
48 owner = msg.sender;
49 irrigationStatus = false;
50 }
51

52 // --- Sensor update functions ---

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

66

53 function setSoilMoisture(uint256 _soilMoisture) public onlyOwner {
54 if (soilMoisture != _soilMoisture) {
55 soilMoisture = _soilMoisture;
56 isSoilMoistureUpdated = true;
57 emit SoilMoistureUpdated(_soilMoisture);
58 }
59 }
60

61 function setTemperature(uint256 _temperature) public onlyOwner {
62 if (temperature != _temperature) {
63 temperature = _temperature;
64 isTemperatureUpdated = true;
65 emit TemperatureUpdated(_temperature);
66 }
67 }
68

69 function setHumidity(uint256 _humidity) public onlyOwner {
70 if (humidity != _humidity) {
71 humidity = _humidity;
72 isHumidityUpdated = true;
73 emit HumidityUpdated(_humidity);
74 }
75 }
76

77 function setLightIntensity(uint256 _lightIntensity) public onlyOwner
{

78 if (lightIntensity != _lightIntensity) {
79 lightIntensity = _lightIntensity;
80 isLightIntensityUpdated = true;
81 emit LightIntensityUpdated(_lightIntensity);
82 }
83 }
84

85 function setConsecutiveDryDays(uint256 _consecutiveDryDays) public
onlyOwner {

86 if (consecutiveDryDays != _consecutiveDryDays) {
87 consecutiveDryDays = _consecutiveDryDays;
88 }
89 }
90

91 // --- Evaluation trigger ---
92 function triggerEvaluation () public onlyOwner {
93 require(
94 isSoilMoistureUpdated ||
95 isTemperatureUpdated ||
96 isHumidityUpdated ||
97 isLightIntensityUpdated ,
98 "At least one sensor must be updated first"
99);

100

101 // Reset flags and evaluate
102 isSoilMoistureUpdated = false;
103 isTemperatureUpdated = false;
104 isHumidityUpdated = false;
105 isLightIntensityUpdated = false;
106

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

67

107 evaluateIrrigation ();
108 emit EvaluationTriggered(irrigationStatus);
109 }
110

111 // --- Irrigation logic ---
112 function evaluateIrrigation () internal {
113 if (temperature > tempThresholdHigh) {
114 irrigationStatus = false;
115 deactivateIrrigation(false , false);
116 return;
117 }
118

119 if (
120 soilMoisture < soilMoistureLow &&
121 temperature >= tempOptimalLow &&
122 temperature <= tempOptimalHigh &&
123 humidity < humidityHigh
124) {
125 irrigationStatus = true;
126 activateIrrigation(false , false);
127 return;
128 }
129

130 if (consecutiveDryDays >= dryDayThreshold) {
131 irrigationStatus = true;
132 activateIrrigation(false , true);
133 return;
134 }
135

136 if (soilMoisture < soilMoistureLow && lightIntensity <
lightIntensityLow) {

137 irrigationStatus = true;
138 activateIrrigation(true , false);
139 return;
140 }
141

142 if (soilMoisture >= soilMoistureOptimal) {
143 irrigationStatus = false;
144 deactivateIrrigation(false , true);
145 return;
146 }
147 }
148

149 function activateIrrigation(bool bit1 , bool bit0) internal {
150 if (! irrigationStatus) {
151 irrigationStatus = true;
152 emit IrrigationStatusChanged(true , bit1 , bit0);
153 }
154 }
155

156 function deactivateIrrigation(bool bit1 , bool bit0) internal {
157 if (irrigationStatus) {
158 irrigationStatus = false;
159 emit IrrigationStatusChanged(false , bit1 , bit0);
160 }
161 }

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

68

162

163 function getIrrigationStatus () public view returns (bool) {
164 return irrigationStatus;
165 }
166 }

Listing A.4: Full Solidity implementation of SmartIrrigationV2

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

69

B Build, ABI, and Scenario Artifacts

B.1 SmartIrrigationV2_metadata.json (Compiler settings
and source integrity)

1 {
2 "settings": {
3 "compilationTarget": { "IrrigationSystemV2.sol": "

SmartIrrigationV2" },
4 "evmVersion": "cancun",
5 "optimizer": { "enabled": false , "runs": 200 },
6 "metadata": { "bytecodeHash": "ipfs" }
7 },
8 "sources": {
9 "IrrigationSystemV2.sol": {

10 "keccak256": "0x06dfccb0 ... beb8737",
11 "urls": [
12 "bzz -raw ://586 b41... f41c5d",
13 "dweb:/ipfs/QmXLz6JeH5J3pDFk ... kjHe"
14]
15 }
16 }
17 }

B.2 ABI slice (selected functions) from
SmartIrrigationV2_metadata.json

1 [
2 {
3 "name": "temperature",
4 "inputs": [],
5 "outputs": [{"type":"uint256"}],
6 "stateMutability":"view",
7 "type":"function"
8 },
9 {

10 "name": "tempOptimalLow",

70

11 "inputs": [],
12 "outputs": [{"type":"uint256"}],
13 "stateMutability":"view",
14 "type":"function"
15 },
16 {
17 "name": "tempOptimalHigh", "
18 inputs": [],
19 "outputs": [{"type":"uint256"}],
20 "stateMutability":"view",
21 "type":"function"
22 },
23 {
24 "name": "tempThresholdHigh",
25 "inputs": [],
26 "outputs": [{"type":"uint256"}],
27 "stateMutability":"view",
28 "type":"function"
29 },
30 {
31 "name": "triggerEvaluation",
32 "inputs": [],
33 "outputs": [],
34 "stateMutability":"nonpayable",
35 "type":"function"
36 }
37]

B.3 Minimal ABI for gateway binding
(from SmartIrrigationV2.json)

1 [
2 {
3 "name":"setSoilMoisture",
4 "inputs":[{
5 "name":"_soilMoisture",
6 "type":"uint256"
7 }],
8 "stateMutability":"nonpayable",
9 "type":"function"

10 },
11 {
12 "name":"setTemperature",
13 "inputs":[{
14 "name":"_temperature",
15 "type":"uint256"
16 }],

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

71

17 "stateMutability":"nonpayable",
18 "type":"function"
19 },
20 {
21 "name":"setHumidity",
22 "inputs":[{
23 "name":"_humidity",
24 "type":"uint256"
25 }],
26 "stateMutability":"nonpayable",
27 "type":"function"
28 },
29 {
30 "name":"setLightIntensity",
31 "inputs":[{
32 "name":"_lightIntensity",
33 "type":"uint256"
34 }],
35 "stateMutability":"nonpayable",
36 "type":"function"
37 },
38 {
39 "name":"triggerEvaluation",
40 "inputs":[],
41 "stateMutability":"nonpayable",
42 "type":"function"
43 },
44 {
45 "name":"getIrrigationStatus",
46 "inputs":[],
47 "outputs":[{"type":"bool"}],
48 "stateMutability":"view",
49 "type":"function"
50 }
51]

B.4 scenario.json (account and constructor transac-
tions)

1 {
2 "accounts": { "account {0}": "0

x418F5F9398bB8ce39E01C51F3c74DE291384cA02" },
3 "transactions": [{
4 "timestamp": 1732230259938 ,
5 "record": {
6 "type": "constructor",
7 "name": "",

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

72

8 "inputs": "()",
9 "contractName": "SmartIrrigationV2",

10 "bytecode": "60806040... < truncated >...300081 a0033"
11 }
12 }]
13 }

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

73

C Simulation

C.1 RPi4 Blockchain Simulator

1 import os, time , json
2 from dotenv import load_dotenv
3 from web3 import Web3
4

5 # ---------- Config & Setup ----------
6 load_dotenv () # expects RPC_URL , PRIVATE_KEY , CONTRACT_ADDRESS
7 RPC_URL = os.getenv("RPC_URL")
8 PRIVATE_KEY = os.getenv("PRIVATE_KEY")
9 CONTRACT_ADDRESS = os.getenv("CONTRACT_ADDRESS")

10

11 def INFO(msg: str): print(f"INFO {msg}")
12

13 w3 = Web3(Web3.HTTPProvider(RPC_URL))
14 if not w3.is_connected ():
15 raise RuntimeError("Web3 not connected. Check RPC_URL")
16

17 acct = w3.eth.account.from_key(PRIVATE_KEY)
18 ACCOUNT_ADDR = acct.address
19 CONTRACT = Web3.to_checksum_address(CONTRACT_ADDRESS)
20 CHAIN_ID = w3.eth.chain_id
21

22 # Minimal ABI for setters , evaluation and events (adapt names if
needed)

23 ABI = json.loads(r"""
24 [
25 {" inputs ":[{" internalType ":" uint8","name ":"v","type ":" uint8"}],
26 "name ":" setSoilMoisture ","outputs ":[]," stateMutability ":"

nonpayable ","type ":" function"},
27 {" inputs ":[{" internalType ":" int16","name ":"v","type ":" int16"}],
28 "name ":" setTemperature ","outputs ":[]," stateMutability ":"

nonpayable ","type ":" function"},
29 {" inputs ":[{" internalType ":" uint8","name ":"v","type ":" uint8"}],
30 "name ":" setHumidity ","outputs ":[]," stateMutability ":" nonpayable

","type ":" function"},
31 {" inputs ":[{" internalType ":" uint32","name ":"v","type ":" uint32 "}],

74

32 "name ":" setLightIntensity ","outputs ":[]," stateMutability ":"
nonpayable ","type ":" function"},

33 {" inputs ":[]," name ":" triggerEvaluation ","outputs ":[],"
stateMutability ":" nonpayable ","type ":" function"},

34 {" anonymous ":false ," inputs ":[{" indexed ":false ," internalType ":"
address","name ":"by","type ":" address "}],

35 "name ":" EvaluationTriggered ","type ":" event"},
36 {" anonymous ":false ," inputs ":[{" indexed ":false ," internalType ":"

bool","name ":" active","type ":" bool"},
37 {" indexed ":false ," internalType ":"

uint8","name ":" reason","type ":"
uint8"}],

38 "name ":" IrrigationStatusChanged ","type ":" event"}
39]
40 """)
41

42 contract = w3.eth.contract(address=CONTRACT , abi=ABI)
43

44 # ------- Helpers ----------
45 def _send_tx(fn, label: str):
46 nonce = w3.eth.get_transaction_count(ACCOUNT_ADDR)
47 tx = fn.build_transaction ({
48 "from": ACCOUNT_ADDR ,
49 "nonce": nonce ,
50 "gas": 200_000 ,
51 "gasPrice": w3.to_wei (30, "gwei") # simple legacy

pricing for testnets
52 })
53 signed = w3.eth.account.sign_transaction(tx, PRIVATE_KEY)
54 tx_hash = w3.eth.send_raw_transaction(signed.rawTransaction)
55 INFO(f"{label} tx sent: {tx_hash.hex()}")
56 rcpt = w3.eth.wait_for_transaction_receipt(tx_hash)
57 INFO(f"{label} tx mined: block={rcpt.blockNumber} status ={rcpt.

status} gasUsed ={rcpt.gasUsed}")
58 # Try to decode relevant events from this receipt
59 try:
60 for e in contract.events.EvaluationTriggered ().

process_receipt(rcpt):
61 INFO(f"EvaluationTriggered by={e[’args ’][’by ’]}")
62 for e in contract.events.IrrigationStatusChanged ().

process_receipt(rcpt):
63 INFO(f"IrrigationStatusChanged -> active ={e[’args ’][’

active ’]} reason ={e[’args ’][’reason ’]}")
64 except Exception:
65 pass
66 return rcpt
67

68 def set_soil(v): INFO(f"Calling setSoilMoisture ({v})");
return _send_tx(contract.functions.setSoilMoisture(int(v)), "

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

75

setSoilMoisture")
69 def set_temp(v): INFO(f"Calling setTemperature ({v})");

return _send_tx(contract.functions.setTemperature(int(v)), "
setTemperature")

70 def set_hum(v): INFO(f"Calling setHumidity ({v})");
return _send_tx(contract.functions.setHumidity(int(v)), "
setHumidity")

71 def set_lux(v): INFO(f"Calling setLightIntensity ({v})");
return _send_tx(contract.functions.setLightIntensity(int(v)), "
setLightIntensity")

72 def evaluate (): INFO("Calling triggerEvaluation ()");
return _send_tx(contract.functions.triggerEvaluation (), "
triggerEvaluation")

73

74 # ---------- Simulator ----------
75 NODE_ID = 1
76 SEQ = 0
77

78 def banner ():
79 INFO(f"RPi4 Blockchain Simulator start | chain_id ={ CHAIN_ID}

account ={ ACCOUNT_ADDR}")
80 INFO(f"contract ={ CONTRACT} | node={ NODE_ID}")
81 INFO("Mode=SIMULATED (no radio). Values are injected directly

before evaluation.")
82

83 def rx_line(soil , temp , hum , lux):
84 global SEQ
85 # Log line similar to OG gateway "RX/Processed" (no smoothing

here)
86 INFO(f"RX node={ NODE_ID} seq={SEQ} soil={soil :.2f} temp={temp

:.2f} hum={hum:.2f} lux={lux}")
87 INFO(f"Processed node={ NODE_ID} seq={SEQ} soil={soil :.2f}->%0.2

f temp={temp :.2f}->%0.2f hum={hum:.2f}->%0.2f lux={lux :.0f
}->%0.0f" % (soil , temp , hum , lux , lux))

88 SEQ = (SEQ + 1) & 0xFF
89

90 def scenario_normal ():
91 INFO("=== Scenario: NORMAL (soil drops , irrigation activates;

then recovers , deactivates) ===")
92 # steady environment
93 base_temp , base_hum , base_lux = 25, 50, 12000
94 set_temp(base_temp); set_hum(base_hum); set_lux(base_lux)
95

96 # soil decreases across activation threshold
97 for soil in [45, 41, 37, 33, 29]:
98 rx_line(soil , base_temp , base_hum , base_lux)
99 set_soil(soil)

100 evaluate ()
101 time.sleep (0.8)

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

76

102

103 # simulate irrigation effect: soil rises above 60% (
deactivation)

104 for soil in [52, 58, 61]:
105 rx_line(soil , base_temp , base_hum , base_lux)
106 set_soil(soil)
107 evaluate ()
108 time.sleep (0.8)
109

110 def scenario_edge_high_temp ():
111 INFO("=== Scenario: EDGE (high temperature safety override) ===

")
112 soil , hum , lux = 30, 50, 15000
113 set_soil(soil); set_hum(hum); set_lux(lux)
114 for t in [36, 37, 38]:
115 rx_line(soil , t, hum , lux)
116 set_temp(t)
117 evaluate ()
118 time.sleep (0.8)
119

120 if __name__ == "__main__":
121 banner ()
122 scenario_normal ()
123 scenario_edge_high_temp ()
124 INFO("Simulation complete.")

C.2 Simulation Logs

1 INFO RPi4 Blockchain Simulator start | chain_id =80002 account =0xAbc
...123

2 INFO contract =0xDeF ...789 | node=1
3 INFO Mode=SIMULATED (no radio). Values are injected directly before

evaluation.
4

5 INFO === Scenario: NORMAL (soil drops , irrigation activates; then
recovers) ===

6 INFO RX node=1 seq=0 soil =45.00 temp =25.00 hum =50.00 lux =12000
7 INFO Calling setSoilMoisture (45)
8 INFO setSoilMoisture tx sent: 0x7c ...3f1
9 INFO setSoilMoisture tx mined: block =135900 status =1 gasUsed =46241

10 INFO Calling triggerEvaluation ()
11 INFO triggerEvaluation tx sent: 0xa1 ...9bd
12 INFO triggerEvaluation tx mined: block =135901 status =1 gasUsed

=48712
13 INFO EvaluationTriggered by=0xAbc ...123
14

15 INFO RX node=1 seq=4 soil =29.00 temp =25.00 hum =50.00 lux =12000

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

77

16 INFO Calling setSoilMoisture (29)
17 INFO setSoilMoisture tx sent: 0x55...e4a
18 INFO setSoilMoisture tx mined: block =135905 status =1 gasUsed =46241
19 INFO Calling triggerEvaluation ()
20 INFO triggerEvaluation tx sent: 0xb3 ...91c
21 INFO triggerEvaluation tx mined: block =135906 status =1 gasUsed

=48977
22 INFO EvaluationTriggered by=0xAbc ...123
23 INFO IrrigationStatusChanged -> active=True reason =1
24

25 INFO RX node=1 seq=7 soil =61.00 temp =25.00 hum =50.00 lux =12000
26 INFO Calling setSoilMoisture (61)
27 INFO setSoilMoisture tx sent: 0x6d...a7e
28 INFO setSoilMoisture tx mined: block =135912 status =1 gasUsed =46241
29 INFO Calling triggerEvaluation ()
30 INFO triggerEvaluation tx sent: 0x90...c22
31 INFO triggerEvaluation tx mined: block =135913 status =1 gasUsed

=48980
32 INFO EvaluationTriggered by=0xAbc ...123
33 INFO IrrigationStatusChanged -> active=False reason =3
34

35 INFO === Scenario: EDGE (high temperature safety override) ===
36 INFO RX node=1 seq=8 soil =30.00 temp =36.00 hum =50.00 lux =15000
37 INFO Calling setTemperature (36)
38 INFO setTemperature tx sent: 0x44...b59
39 INFO setTemperature tx mined: block =135920 status =1 gasUsed =45112
40 INFO Calling triggerEvaluation ()
41 INFO triggerEvaluation tx sent: 0x2a...e10
42 INFO triggerEvaluation tx mined: block =135921 status =1 gasUsed

=49011
43 INFO EvaluationTriggered by=0xAbc ...123
44 INFO IrrigationStatusChanged -> active=False reason =2

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

78

Bibliography

[1] Food and Agriculture Organization. The state of food and agriculture 2023: Reveal-
ing water scarcity. FAO Publications, 2023.

[2] Peter H. Gleick. Water and climate: New challenges and opportunities. Environ-
mental Science Policy, 129:1–7, 2022.

[3] Khaled Salah, Vivek Sharma, and Ala Al-Fuqaha. Smart agriculture assurance: Iot
and blockchain for trusted sustainable produce. Computer Standards Interfaces,
86:103707, 2023.

[4] Harald Sundmaeker, Cor Verdouw, Sjaak Wolfert, and Lucia Perez Freire. Internet
of food and farm 2020. Digitising the Industry, pages 129–150, 2016.

[5] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and future
directions. Future Generation Computer Systems, 29(7):1645–1660, 2013.

[6] LoRa Alliance. Lorawan specification v1.0.4. LoRa Alliance Technical Documenta-
tion, 2024.

[7] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart contracts
for the internet of things. IEEE Access, 4:2292–2303, 2016.

[8] Polygon Labs. Polygon technology overview: A scalable layer 2 for ethereum, 2024.

[9] Bader Al-Bassam and Stephan Reiff-Marganiec. Blockchain layer-1 and layer-
2 benchmarking for iot and smart contracts. IEEE Internet of Things Journal,
10(7):5893–5908, 2023.

[10] David Friedman, Alex Hunter, and Jada Wilson. Blockchain applications in preci-
sion agriculture: A review of opportunities and challenges. Journal of Agricultural
Informatics, 13(2):45–60, 2022.

[11] Provable. Provable things: Documentation and use cases. https://docs.provable.xyz,
2024.

[12] Youngsoo Kim and Robert Evans. Design and implementation of an iot-based smart
irrigation system. International Journal of Smart Agriculture, 5(3):101–110, 2019.

[13] P. Gupta and R. Singh. Smart irrigation system using arduino and gsm. Journal of
Electronics and Communication Engineering, 9(2):65–70, 2020.

79

[14] Min Yuan and Zheng Liu. Iot-driven precision agriculture: Smart irrigation system
with real-time monitoring. Agricultural Informatics, 12(1):33–44, 2021.

[15] P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky. In-
ternet of things platform for smart farming: Experiences and lessons learnt. Sensors,
16(11):1884, 2016.

[16] Jun Xie and Qiang Liu. Blockchain-enabled greenhouse management for organic
agriculture. Sustainable Computing: Informatics and Systems, 35:100741, 2022.

[17] Michela Tripoli and Josef Schmidhuber. Emerging opportunities for the application
of blockchain in the agri-food industry, 2018. FAO and ICTSD Joint Report.

[18] Andreas Kamilaris, Antoni Fonts, and Francesc X. Prenafeta-Boldú. The rise of
blockchain technology in agriculture and food supply chains. Trends in Food Science
& Technology, 91:640–652, 2019.

[19] Jiayi Lin, Chuan Wang, Qian Zhang, Li Li, and Xiaohui Liang. Blockchain and
iot-based food traceability for smart agriculture. ACM Transactions on Internet
Technology, 21(2):1–21, 2020.

[20] S. Kumar and P. Sharma. Smart agriculture with iot and blockchain: Automation
and data integrity. IEEE Access, 9:102950–102961, 2021.

[21] Adrián Sánchez-Mompó, Hugo Barbier, Wei-Jun Yi, and Jafar Saniie. Internet of
things smart farming architecture for agricultural automation. ECASP Research
Laboratory, Illinois Institute of Technology, 2021.

[22] A.K.M. Bahalul Haque, Tanvir Hasan Pranto, and Md. Rahman. Blockchain and
smart contract for iot-enabled smart agriculture. PeerJ Computer Science, 7:e407,
2021.

[23] Y. Huang, F. Gao, and S. Zhang. Blockchain-empowered iot for smart irrigation
systems: Opportunities and challenges. Journal of Cleaner Production, 359:132027,
2022.

[24] Sachin Kamble, Angappa Gunasekaran, and N.C. Dhone. A conceptual framework for
iot-based monitoring and smart decisions for precision agriculture using blockchain
and oracles. Computers and Electronics in Agriculture, 178:105476, 2020.

[25] Z. Xu and F. Zhang. Precision agriculture: Iot-enabled lora systems for smart farm-
ing. Applied Sciences, 13(4):2251, 2023.

[26] Martin Haefke, Stefan Fischer, and Michael Kauer. A wireless sensor network for
precision agriculture and its performance. Sensors & Transducers, 163(1):68–73,
2014.

[27] Deepak Gupta, Satyendra Yadav, Fadi Al-Turjman, Chi-Hua Hsu, et al. Climate-
smart agriculture using intelligent techniques, blockchain and internet of things:
Concepts, challenges, and opportunities. Computers and Electrical Engineering,
100:107971, 2022.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

80

[28] Richard G. Allen, Luis S. Pereira, Dirk Raes, and Martin Smith. Crop Evapotran-
spiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and
Drainage Paper 56. Food and Agriculture Organization of the United Nations (FAO),
Rome, 1998.

[29] J. Doorenbos and A. H. Kassam. Yield Response to Water. FAO Irrigation and
Drainage Paper 33. Food and Agriculture Organization of the United Nations (FAO),
Rome, 1986.

[30] Hamlyn G. Jones. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based
Methods, volume 55. Journal of Experimental Botany, 2004.

[31] T. Klein, M. Zeppel, W.R.L. Anderegg, J. Bloemen, M.G. De Kauwe, P. Hudson,
N.K. Ruehr, T.L. Powell, G. von Arx, and A. Nardini. Plant water stress and
mortality. Nature Plants, 3:17004, 2017.

[32] FAO. Coping with Water Scarcity: An Action Framework for Agriculture and Food
Security. Food and Agriculture Organization of the United Nations (FAO), Rome,
2012.

[33] Estimate gas fees — polygon gas station. https://docs.polygon.technology/
tools/gas/polygon-gas-station/. Accessed Aug. 27, 2025.

[34] Polygon pos gas tracker. https://polygonscan.com/gastracker. Accessed Aug.
27, 2025.

[35] Polygon gas tracker — quicknode. https://www.quicknode.com/gas-tracker/
polygon. Accessed Aug. 27, 2025.

[36] Aws iot core — pricing. https://aws.amazon.com/iot-core/pricing/. Accessed
Aug. 27, 2025.

[37] Aws iot greengrass — pricing. https://aws.amazon.com/greengrass/pricing/.
Accessed Aug. 27, 2025.

[38] Azure iot hub — pricing. https://azure.microsoft.com/en-us/pricing/
details/iot-hub/. Accessed Aug. 27, 2025.

[39] M. Pincheira, C. García, H. Astudillo, and H. García-Molina. Characterization and
costs of integrating blockchain and iot: A case study and cost model. Systems,
10(3):57, 2022.

[40] A. Tang et al. Assessing blockchain and iot technologies for agricultural supply
chains: A review. Discover Internet of Things, 4(1):Article 21, 2024. Open access
review summarizing feasibility, costs, and trade-offs.

Blockchain and IoT for Secure and Automated Smart Irrigation Systems
Jaime Huarte Rubio

81

https://docs.polygon.technology/tools/gas/polygon-gas-station/
https://docs.polygon.technology/tools/gas/polygon-gas-station/
https://polygonscan.com/gastracker
https://www.quicknode.com/gas-tracker/polygon
https://www.quicknode.com/gas-tracker/polygon
https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/greengrass/pricing/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/

	Introduction
	Motivation
	Context and relevance
	Social, economic and technological importance
	Problem statement
	Scope and Objectives
	Project Methodology
	Alignment with Sustainable Development Goals (SDGs)

	Technology Overview
	Internet of Things (IoT)
	LoRa and LoRaWAN Communication Protocol
	Raspberry Pi as Local Gateway
	Smart Contracts and the Polygon Blockchain
	Oracles and Off-Chain Data Ingestion
	Security and Fault Tolerance Mechanisms
	System Modularity and Interoperability

	State of the Art
	Existing Smart Irrigation Systems
	Example 1: SmartFarmNet Platform
	Example 2: IoT-Blockchain Integration Prototype by Xie et al. (2022)

	Blockchain Applications in Agriculture
	Research Gaps and Challenges

	System Design and Implementation
	System Architecture
	Layered Overview
	Communication Flow
	Design Rationale

	Sensor and Hardware Configuration
	ESP32 Sensor Nodes
	Sensors Used (Soil, Environmental, Light)
	Actuators and Relays
	LoRa Communication Modules
	Gateway: Raspberry Pi 4
	Hardware Integration and Power Considerations

	Data Preprocessing and Local Logic
	Frame Parsing, Validation and State Assembly
	Noise Filtering and Data Validation
	Event-Driven Data Transmission
	Integration with Blockchain as Oracle
	Design Rationale

	Blockchain Integration and Smart Contracts
	Smart Contract Design and Logic
	Security and Robustness Considerations
	Deployment with Remix IDE and MetaMask
	Operational Workflow and Event Semantics
	Reproducibility and Verification

	Oracle Configuration
	Role of the Raspberry Pi as Oracle Gateway
	Transaction Flow
	Implementation Considerations
	Security and Trust

	Results and Validation
	Testing Strategy and Scenarios
	Scenario design
	Sensor values simulation
	Blockchain interaction and logs

	Performance Metrics (Latency, Energy, Costs)
	Gas usage and transaction cost from simulator logs
	Daily transaction volume and daily cost
	Cloud IoT reference costs
	Latency and energy

	Discussion

	Conclusions and Future Work
	Appendix
	Source Code
	ESP32 Firmware
	Raspberry Pi Oracle Gateway
	Smart Contract - Solidity

	Build, ABI, and Scenario Artifacts
	SmartIrrigationV2_metadata.json (Compiler settings and source integrity)
	ABI slice (selected functions) from SmartIrrigationV2_metadata.json
	Minimal ABI for gateway binding (from SmartIrrigationV2.json)
	scenario.json (account and constructor transactions)

	Simulation
	RPi4 Blockchain Simulator
	Simulation Logs

	Bibliography

