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Abstract 

Modern machine learning (ML) and deep learning (DL) systems are routinely deployed in high-stakes domains, yet 

explanations of their predictions remain fragmented across method families (feature attribution, surrogate models, 

saliency maps). This paper proposes a unified interpretability metric (UIM) that integrates fidelity, stability and 

sparsity into a single score and augments it with an agreement factor that rewards cross-method consistency. We 

validate the UIM across heterogeneous datasets and models: tabular Alzheimer’s biomarker data using Logistic 

Regression (LR), Random Forest (RF), SVM, and MLP; and brain MRI classification using a CNN assessed with 

SHAP and Grad-CAM++ overlays. Empirically, SHAP delivers higher fidelity and stability than LIME across models, 

while LIME tends to be sparser; UIM consolidates these trade-offs into and actionable ranking. On images, Grad-

CAM++ with masking and Deep SHAP converge on hippocampal/temporal regions in fully optimized CNNs, 

reinforcing clinical plausibility. Overall, UIM enables principled comparison and selection of interpretability tools 

across modalities and architectures. 

Keywords: Explainable AI; interpretability; SHAP; LIME; Grad-CAM++; Alzheimer’s disease; unified metric; 

robustness; sparsity; stability 

 

Highlights 

 

• Proposes a Unified Interpretability Metric (UIM) 

combining fidelity, stability, sparsity, and a cross-method 

agreement factor. 

• Validates UIM on tabular biomarkers (n=2,149; 

35 features) and MRI four-class datasets for 

Alzheimer’s disease. 

• SHAP shows superior fidelity/stability; LIME 

yields sparser local explanations — trade-offs 
reconciled by UIM. 

• CNN study: Fully optimized models produce 

Grad-CAM++ and SHAP maps localized to 

hippocampal/temporal regions, aligning with 

clinical literature. 

• Practical guidance on when to prefer SHAP vs. 

LIME and how to combine them for more 

trustworthy deployment in healthcare. 

• Optimization boosts interpretability: Tuning 

improves stability and cross-method agreement. 
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1. Introduction 

As ML/DL models scale in complexity and societal 

impact, interpretability becomes an ethical, regulatory, 

and engineering imperative. Post-hoc tools such as 

SHAP [2] and LIME [1] help probe black-box 

predictions, while Grad-CAM++ extends visual 

reasoning in CNNs [3]-[4]. Yet, objective comparison 

of quality remains elusive because tools emphasize 

different desiderata (e.g., local fidelity, sparsity, 

stability, computational cost). This work tackles that 

gap by designing a unified metric to quantify and 

compare explanation quality across models and data 

modalities, and by validating it in a clinically relevant 

use case: Alzheimer’s diagnosis. 

Contributions. (i) We formalize a Unified 

Interpretability Metric (UIM) that aggregates fidelity, 

stability, and sparsity into a single score with an 

agreement term for cross-method convergence;(ii) we 

conduct a systematic evaluation across 

LR/RF/SVM/MLP on tabular biomarkers and a CNN on 

MRI images; and (iii) we report empirical guidelines 

for selecting/combining XAI tools in practice. 

 

mailto:201811828@alu.comillas.edu


2  

 

2. Motivation, Objectives, Scope & Related Work 

2.1. Motivation 

Interpretability tools often disagree or vary in 

robustness across datasets and model classes. Without a 

standardized yardstick, practitioners cannot compare 

explanations or assemble reliable governance. We aim 

to build such a yardstick and test it under diverse 

conditions (linear, tree-based, kernel, neural models; 

tabular vs. images). 

2.2. Objectives & Scope 

Objective: define, implement, and validate a unified 

metric that is model-agnostic and data-agnostic. 

Scope: Two open datasets (tabular biomarkers and 

MRI), four ML baselines (LR, RF, SVM, MLP), and 

one CNN with SHAP/Grad-CAM++ overlays 

 

2.3 Related Work 

Model-agnostic surrogates such as LIME fit a sparse 

local linear model around each instance, making 

explanations readable but sensitive to kernel width, 

sampling strategy, and random seeds; this can yield 

volatility on highly non-linear boundaries or when 

features interact strongly [1], [8]. SHAP grounds 

feature attributions in Shapley values, offering 

axiomatic guarantees—local accuracy, missingness, 

and consistency—and model-specific speed-ups (e.g., 

TreeSHAP), at the cost of heavier computation and 

background-data choices that influence results [2],[8]. 

For CNNs, Grad-CAM and Grad-CAM++ provide 

class-discriminative localization; Grad-CAM++ 

improves handling of multiple object occurrences and 

fine-grained details, but saliency can degrade under re-

parametrization or inappropriate smoothing, motivating 

sanity checks and masking to reduce artifacts [3],[4].[9]. 

Beyond method mechanics, there is an active debate 

on post-hoc vs inherently interpretable modeling: 

some argue for replacing black boxes with intrinsically 

transparent models in high-stakes settings [6], while 

others call for a rigorous science of interpretability that 

standardizes objectives, protocols, and evaluation 

criteria [5]. Counterfactual explanations offer 

actionable, user-centric narratives but require careful 

feasibility and causality assumptions [7]. Surveys 

emphasize the lack of consensus on how to measure 

explanation quality—fidelity, stability/robustness, and 

sparsity are recurrent but often assessed with disparate 

proxies and no unified score [5],[8],[9]. This paper 

contributes by operationalizing these three dimensions 

into a single comparable metric that can be applied 

across models (linear, tree, kernel, neural) and 

modalities (tabular, imaging), helping reconcile method 

trade-offs and align practice with emerging governance 

and policy requirements (e.g., GDPR Art.22). 

 

3. Problem Statement and Assumptions 

3.1. Problem Statement 

Given a trained model 𝑓: 𝜒 →  ℝ𝐶 and an 

interpretability method M that produces an explanation 

𝐸𝑀(𝑥) for 𝑥 ∈  𝜒, we defined a unified score 

𝑈(𝑀; 𝑓, 𝐷) ∈ [0,1] 

that quantifies explanation quality along four 

dimensions: 

1. Fidelity (F) – faithfulness of 𝐸𝑀(𝑥) of 𝑓′𝑠 local 

decision surface; 

2. Stability (S) – robustness of 𝐸𝑀(𝑥) to benign 

perturbations, resampling, or random seeds; 

3. Sparsity (P) – parsimony of 𝐸𝑀(𝑥), favoring 

concise, human-usable explanations; 

4. Agreement (A) – convergence between 

different methods salient factors (features or 

regions). 

Let F, S, P, A ∈ [0,1] denote the normalized 

component scores for fidelity, stability, (inverse) 

sparsity, and agreement, respectively. We aggregate 

them via a weighted scalarization 

𝑈(𝑀; 𝑓, 𝐷) =  𝑤𝐹𝐹 + 𝑤𝑆𝑆 + 𝑤𝑃𝑃 + 𝑤𝐴𝐴,   ∑ 𝑤 = 1 

We report results with a pre-registered 𝑤 =
(𝑤𝐹 , 𝑤𝑆 , 𝑤𝑃 , 𝑤𝐴) and examine sensitivity in 

ablations; weights can be adapted to domain needs 

Figure 1: Optimized unmasked Grad-CAM++ 
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(e.g., higher 𝑤𝑆 in safety-critical settings). The score 

is computed per model and dataset and supports 

cross-method rankings and selection. 

3.2. Assumptions  

- Fidelity measured via alignment with the 

model’s local decision surface (e.g., 

recovery of SHAP’s completeness; LIME 

surrogate error). 

- Stability measured via perturbation variance 

(tabular) and masking /no-masking 

consistency (images) 

- Sparsity measured as the fraction or penalty 

of non-zero attributions/active features. 

- Agreement measured as normalized overlap 

among top-k features (tabular). 

 

4. Methodology 

4.1 Datasets & Preprocessing 

Tabular biomarkers. We use a Kaggle dataset with 

2,149 patients and 35 features covering 

demographic (age, gender, education), lifestyle 

(smoking, physical activity), clinical (medical 

history, biomarkers), and cognitive variables 

(memory complaints, behavioral issues). The 

prediction target is binary: demented vs. non-

demented. Preprocessing included standardization of 

numerical variables and One-Hot Encoding for 

categorical features to ensure compatibility with 

linear and tree-based models [11]. No substantial 

missingness was observed after filtering, so 

imputation was unnecessary. To prevent data 

leakage, we applied a stratified train/validation/test 

split, maintaining the original class distribution. 

MRI images. The imaging dataset contains four 

diagnostic categories: MildDemented, 

ModerateDemented, VeryMildDemented, and 

NonDemented. Images were resized to a fixed 

resolution, intensity-normalized, and augmented with 

rotations and flips to increase robustness to spatial 

variability. To avoid data leakage, we performed 

splitting at the subject level —ensuring that slices 

from the same patient were not present in both 

training and test sets. This prevents overly optimistic 

performance and ensures generalization to unseen 

patients. 

4.2 Models 

Tabular models. We trained and evaluated four 

representative algorithms: 

- Logistic Regression (LR): a transparent 

linear baseline, widely used in clinical 

decision-making. 

- Random Forest (RF): an ensemble of 

decision trees that handles non-linearities 

and interactions robustly.  

- Support Vector Machine (SVM): effective 

for high-dimensional data, particularly with 

RBF kernels, though harder to interpret 

directly. 

- Multi-Layer Perceptron (MLP): a simple 

neural architecture that test’s non-linear 

function approximation. 

Performance was assessed with ROC-AUC (to 

capture discrimination across thresholds) and accuracy, 

and interpretability was analyzed with SHAP and 

LIME. 

Imaging model. We developed a Convolutional 

Neural Network (CNN) with three convolutional 

blocks followed by fully connected layers. Cross-

entropy loss was used for optimization. CNNs were 

selected due to their ability to learn spatial hierarchies 

of features from MRI scans [12]. Explanations were 

obtained via Grad-CAM++, applied to the second 

convolutional block for class-discriminative 

localization and Deep SHAP for pixel-level feature 

attribution. 

 

Figure 2: CNN architecture 

4.3 Optimization Protocols 

Tabular. Hyperparameters were tuned via grid 

search (e.g., regularization strength in LR, 

depth/estimators in RF, kernel parameters in SVM, 

hidden layer size in MLP). Each model was trained 

under controlled seeds to evaluate interpretability 

stability (variance of explanations under retraining).
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CNN. We evaluated three optimization regimes: 

1. Non-optimized baseline: trained with 

Adam, learning rate 10-3. 

2. Learning-rate optimized: grid search over 

a small set of learning rates. 

3. Fully optimized: Bayesian 

hyperparameter optimization with 

Optuna [16], tuning learning rate, weight 

decay, and optimizer choice (Adam vs. 

SGD). Early stopping was applied based on 

validation loss. 

This progressive optimization allowed us to assess how 

model quality and optimization directly affect 

interpretability stability and agreement, as better-

trained models often yield more consistent explanations. 

4.4 Interpretability tools 

Tabular methods. 

- LIME (Local Interpretable Model-agnostic 

Explanations): builds local surrogate models 

to approximate the decision boundary near a 

specific instance [1]. It produces sparse, 

human-readable explanations but is sensitive 

to kernel width, sample size, and random seeds 

[8]. 

- SHAP (SHapley Additive exPlanations): 

based on cooperative game theory, providing 

feature attributions with theoretical guarantees 

of local accuracy, missingness, and 

consistency [2]. Efficient implementations 

exist for tree-based (TreeSHAP) and neural 

models (DeepSHAP), but results on 

beackground sample choices and 

computational costs. 

Imaging methods 

- Grad-CAM++: extends Grad-CAM++ [3] by 

weighting gradient contributions, providing 

sharper class-discriminative heatmaps even 

with multiple occurrences of the same object 

[4]. However, naïve saliency maps can pass 

“sanity checks” poorly [9]; therefore, we used 

masking and insertion/deletion metrics to 

assess robustness. 

- Deep SHAP: combines SHAP values with 

DeepLIFT propagation rules [15], producing 

pixel-level attributions. It benefits from 

SHAP’s completeness property but can be 

sensitive to the choice of background samples. 

Limitations and design considerations. These tools 

have well-documented caveets: instability under 

perturbations (LIME), dependence on background sets 

(SHAP), and noisy activations (Grad-CAM++). Our 

methodology explicitly incorporates stability analysis, 

agreement checks, and masking strategies to mitigate 

these issues [9], [14]. 

5. Architecture & Experimental Setup 

5.1 Software and Hardware Environment 

All experiments were implemented in Python 3.10 

with widely used open-source libraries. For traditional 

machine learning models, we relied on scikit-learn for 

Logistic Regression, Random Forests, and SVM 

implementations, ensuring reproducibility of 

preprocessing pipelines and evaluation metrics [11]. 

Neural network experiments used Pytorch, chosen for 

its flexibility and GPU support [12]. For interpretability, 

we used the official SHAP package (TreeSHAP, 

KernelSHAP, DeepSHAP) [2], the LIME library [1], 

and pytorch-grad-cam for Grad-CAM and Grad-

CAM++ [3], [4]. Hyperparameter optimization 

employed Optuna, a state-of-the-art Bayesian search 

framework [16]. 

All experiments were scripted for full 

reproducibility across random seeds and dataset 

splits, consistent with practices in interpretable machine 

learning research [5]. [8]. Experiments were run on a 

personal computer with an NVIDIA RTX-series GPU 

and CUDA acceleration, which could significantly 

reduce training and explanation-generation times, 

particularly for CNNs and SHAP’s background 

sampling. 

5.2 Unified Interpretability Metric (UIM) 

The central contribution of this work is the Unified 

Interpretability Metric (UIM), designed to evaluate 

explanation quality across diverse models and methods. 

Method-level score 

For each interpretability method M (e.g., SHAP, 

LIME), we compute: 

𝑆𝑚𝑒𝑡ℎ𝑜𝑑 = 0.5 ∙ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 + 0.3 ∙ 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 0.2 ∙ 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 

- Fidelity measures how well the explanation 

reflects the model’s actual function, e.g., 

surrogate 𝑅2in LIME or completeness in 

SHAP [1], [2]. 

- Stability evaluates robustness to perturbations 

and resampling [5], [9]. 

- Sparsity penalizes explanations that involve 
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too many features, consistent with cognitive 

science findings that human interpretability 

degrades with complexity [8]. 

The weights (0.5, 0.2, -0.2) reflect the relative 

importance assigned: high fidelity is prioritized, 

stability is next most critical, and sparsity is treated 

as a parsimony bonus rather than a primary goal. 

These design choices align with interpretability 

guidelines that prioritize faithfulness and 

robustness over simplicity when explanations 

inform high-stakes decisions [6]. 

Model-level unified score 

To consolidate across methods, we compute a 

model-level score: 

𝑈𝑚𝑜𝑑𝑒𝑙 =
1

2
(𝑆𝑆𝐻𝐴𝑃 + 𝑆𝐿𝐼𝑀𝐸) +0.2 ∙ 𝐴 

where A is the agreement term representing the 

normalized overlap between different methods top-

5 features (tabular) or salient regions (imaging). 

Agreement quantifies whether independent 

interpretability methods converge on the same 

explanatory factors, a property emphasized as 

crucial for building trust [5], [7]. The scaling factor 

𝜆 = 0.2 ensures that agreement improves 

interpretability scores without dominating them.  

This design balances per-method quality with 

cross-method convergence, producing a 

composite view of interpretability quality. Unlike 

single-metric approaches, UIM enables cross-

method ranking and selection—deciding which 

explanation tool to prefer in a given setting [2], [8]. 

5.3 Heuristic Normalization 

Interpretability components (Fidelity, Stability, 

Sparsity, Agreement) are naturally measured on 

different scales: for example, fidelity may be 

expressed as an 𝑅2, stability as correlation or 

variance, and sparsity as proportion of features 

used. To allow aggregation, we normalize each 

component to [0,1]. 

- Internal baselines. Minimum and maximum 

values are drawn from observed distributions 

within each dataset-model combination. This 

ensures comparability across runs while avoiding 

distortions from extreme outliers [11]. 

- Variance adjustment. Stability scores are 

scaled by their variance across seeds, so that 

models with volatile explanations are penalized 

more strongly [9]. 

- Interpretability comparability. By mapping 

heterogeneous scales into a common normalized 

range, we ensure that the UIM can be applied 

consistently to both tabular and imaging domain, 

bridging different interpretability families 

(surrogate models vs. saliency maps) [3], [4]. 

As an example, in the tabular Alzheimer’s 

experiments, normalized SHAP fidelity values were in 

the range 0.78-0.90. After normalization, these fed 

directly into 𝑆𝑚𝑒𝑡ℎ𝑜𝑑, and subsequent aggregation 

yielded model-level unified scores (reported in §6). 

5.4 Complexity and Practical Considerations 

The UIM introduces overhead relative to reporting 

raw explanations. Fidelity and sparsity can be computed 

in a single run, but stability requires repeated sampling, 

and agreement requires computing overlaps across 

methods. In practice, computing UIM at scale is 

feasible: 

- SHAP complexity: Exact Shapley values 

are exponential in feature count, but 

approximations (TreeSHAP, KernelSHAP 

with sampling) make it tractable [2]. 

- LIME complexity: Scales with the number 

of samples drawn to fit surrogates; 

instability can necessitate repeated fits [1]. 

- Grad-CAM++: Requires one forward-

backward pass per image-class pair [4]. 

- UIM overhead: Overall cost is 

approximately 𝑂(𝑁 ∙ 𝐾 ∙ 𝑟), where N is the 

number of evaluated instances, K the 

number of interpretability methods, and r 

the number of resamples/repeats for 

stability. 

This added cost is justified by improved robustness 

and comparability of interpretability evaluations, 

echoing recent calls for rigorous interpretability 

benchmarks [5], [6]. 

6. Results 

6.1 Tabular ML Models (SHAP vs. LIME) 

We first applied the Unified Interpretability Metric 

(UIM) to the four tabular models: Logistic Regression 

(LR), Random Forest (RF), Support Vector Machine 

(SVM), and Multi-Layer Perceptron (MLP). 

Representative normalized component scores are shown 

below: 
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- LR: SHAP (F=0.90, S=0.90, Sp=0.80); LIME 

(F=0.85, S=0.80, Sp=0.90) 

- RF: SHAP (0.88, 0.85, 0.75); LIME (0.82, 

0.78, 0.85) 

- SVM: SHAP (0.78, 0.72, 0.70); LIME (0.75, 

0.60, 0.80) 

These component scores translate into method-level 

𝑆𝑚𝑒𝑡ℎ𝑜𝑑  and model-level unified scores. The resulting 

UIM ranking was: 

𝐿𝑅(0.823) ≈ 𝑅𝐹(0.818) > 𝑀𝐿𝑃(0.695) > 𝑆𝑉𝑀(0.562) 

Observations. 

- SHAP dominance: Across all models, SHAP 

consistently outperformed LIME on fidelity 

and stability. This is in line with SHAP’s 

theoretical guarantees of local accuracy and 

consistency [2]. 

- LIME sparsity advantage: LIME yielded 

sparser explanations (fewer active features9, 

which improves readability but came at the 

cost of higher instability—particularly evident 

with SVMs, where LIME’s surrogate 

regressions varied considerably across runs 

[1], [8]. 

- Agreement effects: The agreement term 

(AAA) boosted LR and RF scores, where 

SHAP and LIME identified largely 

overlapping top-5 features (e.g., age, memory 

complaints, MMSE scores). In contrast, 

agreement was low for SVM, reflecting 

divergent attributions between the two 

methods. 

Interpretation. These results suggest that linear and 

tree-based models are easier to explain consistently 

because their decision surfaces align with the 

assumptions of both SHAP and LIME. Kernel-based 

SVMs posed challenges: their non-linear boundaries 

often induced disagreements between surrogate-based 

(LIME) and Shapley-based (SHAP) explanations, 

resulting in lower unified scores. For practitioners in 

clinical domains, this implies that simpler or ensemble-

based models not only achieve competitive accuracy but 

also offer more trustworthy interpretability under UIM. 

This aligns with Rudin’s (2019) argument that 

inherently interpretable models should be favored in 

high-stakes domains [6]. 

6.2 CNN on MRI (Grad-CAM++ & Deep 

SHAP) 

We next evaluated interpretability on the MRI dataset 

using a custom CNN under three optimization regimes. 

Classification performance improved markedly with 

optimization: 

- Non-optimized: Test accuracy = 87.9% 

- Learning-rate optimized: 98.1% 

- Fully optimized (Bayesian search): 98.75% 

Qualitative improvements in interpretability. Grad-

CAM++ saliency maps evolved across these regimes. In 

the non-optimized model, heatmaps were diffuse, 

highlighting broad, non-specific areas of the brain and 

often leaking into background regions. After learning-

rate tuning, localization improved, though maps still 

contained noisy activations. In the fully optimized 

model, Grad-CAM++ with masking produced focused 

saliency localized in the hippocampal and temporal 

regions, both of which are well-established biomarkers 

for Alzheimer’s progression [12], [14]. 

Deep SHAP overlays complemented this view by 

providing pixel-level attributions. While noisier than 

Grad-CAM++ initially, Deep SHAP converged on 

similar hippocampal and temporal structures in the fully 

optimized model. The cross-method agreement 

between Grad-CAM++ and Deep SHAP thus increased 

with optimization, strengthening confidence in the 

plausibility of the explanations. 

Takeaways. 

1. Masking is essential. Unmasked Grad-

CAM++ maps often highlighted irrelevant 

background. Applying occlusion-based 

masking significantly improved fidelity and 

reduced noise, consistent with 

recommendations from Fong & Vedaldi (2017) 

[14]. 

2. Optimization stabilizes explanations. As 

CNNs were tuned, explanations became more 

reproducible across runs and aligned better 

with known clinical features. This indicates 

that interpretability is not static but can be 

directly improved by optimizing model 

training [16]. 

3. Cross-method convergence builds trust. 

When both Grad-CAM++ and Deep SHAP 

consistently identified hippocampal/temporal 

regions, explanation plausibility increased. 

This kind of convergence is critical in medical 

imaging, where trust depends on alignment 

with established biomarkers [7]. 

 



7  

 

 
Figure 3: SHAP Summary plot on LR non-optimized 

7. Discussion and Critical Analysis 

7.1. What UIM adds 

The Unified Interpretability Metric (UIM) addresses 

a persistent gap in explainable AI: the lack of a 

standardized way to compare explanation quality [5], 

[6], [8]. Existing evaluations emphasize single criteria 

such as fidelity or sparsity, which makes cross-method 

or cross-model comparisons inconsistent. UIM 

integrates fidelity, stability, sparsity, and agreement 

into a single, tunable score, enabling systematic cross-

method ranking and selection. 

Its flexibility is critical. Domains differ in their 

priorities: in regulated contexts, fidelity and stability 

dominate [6]; in user-facing systems, sparsity and 

readability may matter more [8]. By allowing weights 

to be adjusted, UIM becomes a diagnostic metric 

alongside accuracy or ROC-AUC. Importantly, the 

agreement component quantifies whether independent 

tools converge on the same factors, operationalizing a 

feature long emphasized as central to trust [7]. 

7.2. When to Prefer SHAP or LIME 

Our experiments reaffirmed the complementary 

strengths of SHAP and LIME [1], [2], [8]. 

- SHAP: More reliable in fidelity and stability, 

making it suitable for auditing, compliance, 

and safety-critical applications [6]. 

Computationally heavier, but TreeSHAP and 

DeepSHAP mitigate costs. 

- LIME: Produces sparser and more readable 

explanations, which are useful for exploration 

or stakeholder communication. However, it is 

less stable, with sensitivity to kernel width and 

random sampling [1]. Stability can be 

improved by repeated sampling or surrogate 

ensembles [8]. 

Thus, SHAP should be prioritized when explanations 

must be trustworthy and robust, while LIME remains 

valuable for quick, interpretable narratives. UIM 

makes this trade-off explicit and quantifiable. 

7.3. Visual Explanations for CNNs 

In In imaging tasks, explanations differ from tabular 

models. Grad-CAM++ provided class-specific saliency 

maps [4], but unmasked versions often produced diffuse 

or noisy highlights, consistent with concerns raised in 

saliency map literature [9]. Using masking and 

deletion/insertion metrics improved localization 

quality [14]. 

Deep SHAP complemented this with pixel-level 

attributions, offering Shapley-based guarantees [2], 

[15]. While noisier, Deep SHAP converged on similar 

hippocampal and temporal regions as Grad-CAM++ in 

fully optimized CNNs. This cross-method 

convergence enhances interpretability, especially in 

medical imaging where explanations must align with 

known biomarkers [12]. 

Crucially, we observed that model optimization 

improved interpretability as well as accuracy. Poorly 

trained CNNs produced unstable, diffuse maps, whereas 

optimized models generated explanations consistent 

with clinical expectations. This supports the idea that 

interpretability should be viewed as an optimization 

target rather than a purely post-hoc property [16]. 

7.4. Limitations 

Several limitations must be acknowledged: 

- Agreement definition. We used top-5 feature 

overlap; other k values or similarity metrics 

(e.g., Kendall rank correlation) might yield 

different results [8]. 

- Model scope. Imaging analysis was limited to 

a single CNN family; ensembles or vision 

transformers may behave differently [12]. 

- Dataset scope. Both datasets are limited to 

single sources; more diverse cohorts would 

better test generalization. 

- Cost. Stability and agreement require repeated 

runs and cross-method comparisons, adding 

computational overhead [16]. 

- Human validation. UIM captures machine-

measured quality but does not yet incorporate 

expert alignment, which is critical in clinical 

contexts [7]. 
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8. Future Work 

Several directions can extend the Unified 

Interpretability Metric (UIM): 

- Causal extensions: Current evaluation is 

correlational; integrating counterfactual fitness 

and mediation analysis would separate true causal 

drivers from spurious associations [5]. This would 

align UIM with emerging causal interpretability 

frameworks. 

- Human-in-the-validation: Explanation quality 

should not be only be machine-quantified but also 

aligned with expert judgment. Radiologists and 

neurologists could score heatmaps and 

attributions, serving as an external ground truth for 

plausibility. 

- Fairness-aware UIM: Interpretability must be 

equitable across patient subgroups. Future work 

should incorporate subgroup stability, disparate-

impact metrics, and fairness-oriented agreement 

measures to ensure explanations remain consistent 

across demographic or clinical cohorts. 

- Cross-modal agreement: Multimodal healthcare 

models are becoming common. Aligning top-k 

SHAP tabular features with MRI saliency maps in 

the same patient record could create holistic, cross-

modal explanations. This would support richer 

clinical narratives and stronger trust. 

- Scalability and efficiency: UIM add 

computational overhead. Exploring pruning, 

approximation, or sampling strategies could make 

it feasible for large-scale deployment in real-time 

healthcare settings. 

9. Conclusion 

This paper introduced and validated a Unified 

Interpretability Metric (UIM) that consolidates 

fidelity, stability, spartsity, and agreement into a 

single score. On tabular Alzheimer’s data, the metric 

favored Logistic Regression and Random Forest, 

highlighting SHAP’s strong fidelity and stability 

advantages, while LIME contributed sparsity. On MRI 

classification, Grad-CAM++ (with masking) and Deep 

SHAP converged on clinically relevant hippocampal 

and temporal regions in fully optimized CNNs, 

enhancing anatomical plausibility. 

The UIM offers a practical and auditable 

framework to rank and select interpretability methods 

across data modalities and models. By quantifying 

explanation quality, it provides guidance for 

practitioners and helps bridge the gap between 

theoretical XAI guarantees and real-world clinical 

deployment. Ultimately, this work contributes a step 

towards trustworthy, transparent and standardized 

AI in healthcare. 
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