g
K179
COMILLAS

UNIVERSIDAD PONTIFICIA

. ICAl |

Msc Big Data

Master’s final project

Portfolio optimization with Machine Learning Algorithms

Author
Alberto Séez-Royuela Ariza

Supervised by
Alejandro Polo Molina

Madrid
June 2025






Abstract

Portfolio optimization is a core problem in quantitative finance and has increas-
ingly leveraged machine learning to improve forecasting and allocation. In this
thesis, we show how deep neural networks can enhance risk-adjusted asset allo-
cation by predicting optimal weights directly rather than modeling prices alone.
We compare a classical Markowitz mean—variance allocator, using historical means
and covariances, with a two-stage deep learning pipeline: first an LSTM network
trained on 60-day windows to forecast next-day prices for five large-cap tech stocks,
and second a feedforward NN that maps these forecasts to valid, long-only weight
vectors via softmax.

Training uses data from 2015-2023, and both strategies are tested on 2024
under identical constraints. The LSTM+NN approach achieves a 35.40 % annu-
alized return and a 1.67 Sharpe ratio, versus 22.18 % and 1.18 for Markowitz,
while maintaining comparable volatility and displaying shallower drawdowns dur-
ing volatility spikes. These results suggest that directly predicting allocations with
deep learning yields more adaptive, robust portfolios in non-stationary markets.



I want to thank my family for their unconditional support and for always
believing in me. I also thank my friends for their companionship and
encouragement at all times, which made this project more bearable.



Contents

1__Introductionl 1
(.1 Taterature Reviewl . . . . . . . . . . . . . ... ... 3

[2  Basic financial concepts| 7
[2.1  Financial Fundamentals and Investment Principles|. . . . . . . . .. 7
BT Whatl I Porifoli What Drives Tis Selecs l

[ tlond . ... e e 7
[2.1.2  Investment Management Types . . . . . .. ... ... ... 8

2.1.3 Asset Allocation Profiles . . . . . . . . ... ... ... ... 9

[2.1.4  Investment Portfolio Diversification and rebalancing . . . . . 10
3__Classical Models for Investment Portfolios| 11
[3.1 Mean—Variance Portfolio Optimization (Markowitz) . . . . . . . . . 11
3.2 Other Classical Modeld . . . . . .. ... ... . ... .. .. ... 13

[4  Deep Neural Networks: Theoretical Foundations| 15
[4.1 Introduction to Deep Neural Networks . . . . .. ... . ... ... 15
4.2 Feedforward (Multilayer Perceptron) Networks| . . . . . . .. . . .. 16
4.3  Recurrent Neural Networks. . . . . . . . . .. ... ... ... ... 17
[4.4  Long Short—Term Memory Networks . . . . ... ... . ... ... 20

[> Comparative Methodology: Classical vs. Machine Learning Port- |
[ folio Optimization| 27
BI TIntroduction] . . . . . . . . . . .. 27
[>.2  Data Acquisition and Preprocessing| . . . . . . . .. ... ... ... 28
0.2.1 Data Sources and Universe Selection . . . . . . . .. .. .. 28

[5.3  Training methodology| . . . . . . . . .. ... ... 29
[5.3.1 Model Hyperparameters| . . . . . . .. ... ... ...... 31

[0.3.2  Performance Metricsl . . . . . .. ... ... oL 33

(5.4 Empirical Results| . . . . . ... ... ... 000 34




0.1 Conclusion|. . . . . . . . . . 41
6.2 Future Workl. . . . . . . . .. 42
[A Glossary of Financial Definitions| 43
[A.1 Basic Concepts| . . . . . . . . . ... 43
(A2 Returnand Riskl . . .. ... ... ... oo 44
(A3 Portfolio Constructionl . . . . . . . . ... .. ... 45
[A.4 Classical Optimization Models| . . . . . . ... ... ... ... ... 45
[A.5> Portfolio Metrics and Constraintsf . . . . . ... ... .. ... .. 47




List of Figures

[4.1 Multilayer Perceptron (MLP).| . . . . . ... ... ... .. ... .. 16
4.2 Comparison of a Feedforward NN (top) and a RNN (bottom). In

the feedforward case, each input flows through a dense layer and

then through an activation tunction to produce an output. In the
recurrent case, the current input and the previous hidden state are
both passed into dense transformations; their results are summed
to form the new hidden state via a tanh activation, and that hidden
state is also used (via a separate dense layer) to produce the output
at each time step.| . . . . . . . .. ... Lo 18

[4.3 Internal dynamics of an LSTM cell: the input vector x; (blue) and
the previous hidden state h,_; (green) feed four gates (orange): in-
put (i;), forget (f;), output (o;), and candidate (g;). The cell state
¢; (red) is formed by combining f;c;_; and 4,9, and then produces

[ the new hidden state h,.| . . . . . . . . . .. ... 24
[5.1 Schematic Overview of the Two-Stage Deep Learning Framework |
[ for Adaptive Portiolio Allocation| . . . . . . . . . .. .. ... ... 31
(5.2  APPLE. Comparison of LSTM-predicted and real normalized prices [
| for all assets during 2024.] . . . . . ... ... ... .. 35
6.3 AMAZON. Comparison of LSTM-predicted and real normalized |
| prices for all assets during 2024.| . . . . . . . . . .. ... ... ... 35
.4 GOOGLE. Comparison of LSTM-predicted and real normalized prices |
| for all assets during 2024.] . . . . . . .. ... ... . .. 35
(5.5 META. Comparison ot LSTM-predicted and real normalized prices |
| for all assets during 2024.| . . . . . . . . ... ... L. 36
5.6 MICROSOFT. Comparison of LSTM-predicted and real normalized [
| prices for all assets during 2024.| . . . . . .. . ... ... .. 36
[>.7  Comparison of annualized return, volatility, and Sharpe ratio for |
| Markowitz and LSTM+NN portfolios (2024). . . . . . ... .. .. 38
[>.8  Drawdown evolution for the Markowitz and LSTM-+NN portfolios [
| during the 2024 evaluation window.| . . . . . . .. . ... ... ... 39

vii



[5.9  Cumulative wealth evolution: $1 invested according to Markowitz |

and LSTM-+NN strategies during 2024.| . . . . . . . . .. ... ... 40




List of Tables

[(b.1 Summary of main hyperparameter choices| . . . . . . . .. ... .. 33
(5.2 Mean Squared Error (MSE) comparison for next-day price predic- |
tion: LSTM vs. Historical Mean (2024 Test Set)| . . . . . .. .. .. 37
[5.3  Out-of-sample performance comparison: Markowitz vs. LSTM+4+NN |
(2024)] . . . 37

X






Chapter 1

Introduction

A portfolio is a structured assembly of financial instruments, such as equities,
bonds, commodities, ETFs and derivatives, designed to meet specific investment
objectives. The primary goal of portfolio optimization is to determine the weight
allocation that maximizes expected return for a given level of risk, or equivalently
minimizes risk for a target return. This challenge is central to asset manage-
ment, impacting the long-term wealth of pension funds, endowments and private
investors alike.

Since Markowitz’s Mean—Variance framework introduced in 1952 the concept
of constructing an efficient frontier through quadratic optimization of expected
return against portfolio variance [1], researchers sought to simplify practical im-
plementation. Building on this foundation, Sharpe (1964) and Lintner (1965) de-
veloped the Capital Asset Pricing Model (CAPM), which reduced portfolio choice
to a combination of the risk-free asset and a single market portfolio by linking
each asset’s expected return to its systematic risk (beta) [2], [3]. Together, these
models form the bedrock of modern portfolio theory, prized for their closed-form
solutions and intuitive economic interpretation.

However, real financial markets deviate substantially from the assumptions on
which these frameworks are based. Asset returns frequently show fat tails, skewness
and clustering of volatility, while correlations evolve over time and under stress
exhibit abrupt regime shifts. Moreover, the estimation of expected returns and
covariances from finite historical samples introduces substantial noise: portfolios
optimized on these estimates often display extreme, non-intuitive weights and
perform poorly out of sample [4].

Meanwhile, the proliferation of high-frequency market data, alternative infor-
mation sources (e.g. news sentiment, macroeconomic indicators) and advances in
computational power have encouraged the rise of Machine Learning (ML) in fi-
nance. Deep Neural Networks (DNNs) and Recurrent Neural Networks (RNNs)
have demonstrated the ability to learn complex, non-linear relationships and cap-



CHAPTER 1. INTRODUCTION

ture temporal dependencies that classical models cannot [5], [6]. By leveraging
these capabilities, it becomes possible to generate more accurate forecasts of re-
turns and risk metrics, which can then feed into an optimized allocation routine
to produce portfolios that adapt dynamically to evolving market conditions.

This document offers a concise yet comprehensive overview of our Master’s Fi-
nal Project. First, we review the traditional foundations of portfolio optimization
in Section 2. In Section 3, we motivate the specific research gap and discuss the
classical models. Section 4 presents the theoretical foundations of deep neural
networks, and Section 5 describes our methodology and compares the classical ap-
proach with the proposed model. Moreover, the code of the project can be found
at https://github.com/AlbertoSaezR /Portfolio-Optimization-



1.1. Literature Review

1.1 Literature Review

The foundation of modern portfolio optimization was laid by Harry Markowitz
in 1952 [1], who introduced the idea that portfolio risk can be measured by the
variance of returns and that, by carefully combining assets, an investor can achieve
an “efficient frontier” of portfolios offering the highest expected return for each level
of risk [1]. In practice, this means that instead of holding a single asset, investors
should allocate across a diversified set of assets to reduce overall volatility without
sacrificing returns. Building on this, the CAPM of Sharpe and Lintner in the
1960s provided a market-equilibrium framework. Under idealized assumptions, all
investors hold combinations of the risk-free asset and a single market portfolio,
and each asset’s expected return is related to its systematic exposure (“beta”) to
that market portfolio [2], [3]. CAPM thus gave a clear economic interpretation of
risk and return and became a cornerstone of financial theory and practice.

However, applying these models to real data revealed persistent challenges.
Estimating expected returns and covariances from finite historical samples intro-
duces considerable noise: portfolios optimized on these estimates often display
extreme, non-intuitive weights and perform poorly out of sample [4]. To miti-
gate this, shrinkage techniques, such as Ledoit—Wolf, blend sample estimates with
structured targets to produce more stable covariance matrices [7]. Moreover, ro-
bust optimization methods incorporate worst-case scenarios into the optimization,
guarding against model misspecification [8]. The Black-Litterman approach fur-
ther refines expected returns by combining market-implied equilibrium returns
with investor-specified views, yielding allocations that align better with both the-
ory and practitioner intuition [9]. Despite these enhancements, empirical studies
have shown that when estimation error is high, even a simple 1/N equal-weight
strategy, allocating the same weight 1/N to each of the N assets, can outperform
more elaborate optimizers out of sample [10]. This underscores the importance of
balancing theoretical optimality with the practical limitations of real-world data.

On the other hand, ML techniques have gained traction in finance by addressing
the limitations of purely parametric models. Early work applied linear and regu-
larized regression methods, such as Ridge and Lasso, to forecast asset returns and
volatility [11]. These regression approaches stabilize coefficient estimates by penal-
izing large weights, thereby reducing overfitting. In parallel, tree-based ensemble
methods like Random Forest and Gradient Boosting Machines were introduced to
capture richer, non-linear relationships in financial time series without requiring
Gaussian assumptions [|12], [13]. By incorporating feature selection and regular-
ization, these models mitigate overfitting and improve out-of-sample performance.

Building on these foundations, DNNs have demonstrated the ability to approx-
imate highly non-linear functions when provided with sufficient data and model



CHAPTER 1. INTRODUCTION

capacity [5]. In particular, fully connected architectures (such as multilayer per-
ceptrons, or MLPs) and sequence-based models, like Temporal Convolutional Net-
works (TCNs), have outperformed shallow learners in forecasting price movements
and volatility patterns on large-scale datasets [14], [15]. These deep architectures
excel at learning complex relationships within historical market data that classical
models often fail to capture.

At the same time, Reinforcement Learning (RL) has emerged as a paradigm
for treating trading as a sequential decision-making problem [16], [17]. In this
framework, an agent observes market states and learns buy, sell, or hold actions
to maximize a cumulative reward that can account for transaction costs and risk
penalties. More recent studies 18], have combined deep policy-gradient meth-
ods with feature-selection pipelines to outperform both classical and supervised-
learning approaches in terms of risk-adjusted returns. By interacting with simu-
lated market environments, RL agents adapt their strategies dynamically, reacting
to changing conditions without relying on fixed distributional assumptions.

Although these ML methodologies have shown promise in forecasting, they do
not abandon the strengths of classical financial theory. Hybrid approaches have
therefore been developed to integrate data-driven predictions directly into portfolio
optimization routines. For example, ML models, such as DNNs or ensemble learn-
ers, can generate refined estimates of expected returns 1 and covariance matrices
>, which are then used as inputs to the traditional Mean—Variance optimizer.
By doing so, these “prediction-enhanced” methods reduce estimation noise and
stabilize allocations, leading to improved out-of-sample performance [19].

Similarly, evolutionary search techniques guided by ML-based fitness functions
offer a robust alternative for exploring the non-convex allocation landscape [20]. In
this approach, Genetic Algorithms or Particle Swarm methods evaluate candidate
portfolios using fitness scores derived from ML forecasts (such as predicted Sharpe
ratios) and iteratively refine the allocation to identify robust weight vectors. This
process captures non-linear interactions and adapts to changing market regimes
without discarding established financial principles.

Finally, end-to-end allocation networks represent a unification of forecasting
and optimization within a single neural architecture [21]. In these models, a neural
network (NN) is trained to predict market dynamics and directly output portfolio
weights, optimizing financial objectives (for instance, the Sharpe ratio or CVaR)
through backpropagation. By embedding optimization logic into the network itself,
end-to-end approaches bypass the need for a separate optimization step, allowing
the model to learn allocation strategies that account for both return forecasts and
risk metrics simultaneously.

In summary, the evolution of portfolio theory has moved from classical, para-
metric frameworks, such as Mean—Variance and CAPM, through enhancements

4



1.1. Literature Review

like shrinkage, robust optimization, and Black—Litterman, to modern, data-driven
methods that leverage ML and hybrid optimization. The next chapter will explore
how these insights motivate a specific research gap and inform the design of a hy-
brid LSTM-based model to improve return and risk forecasts in dynamic market
environments.



CHAPTER 1. INTRODUCTION




Chapter 2

Basic financial concepts

2.1 Financial Fundamentals and Investment Prin-
ciples

In this chapter, we introduce the fundamental concepts of investment portfolios
that underpin the analysis and methodology presented in subsequent sections.
Specifically, we define what constitutes a portfolio, discuss the factors driving
asset selection, and examine management strategies, asset allocation profiles, and
diversification techniques. These financial principles form the foundation for the
models and experiments developed later in this work.

2.1.1 What Is an Investment Portfolio and What Drives
Its Selection?

First of all, an investment portfolio is a collection of financial assets owned by an
individual, a company, or an investment fund. Such assets may include equities,
bonds, commodities, mutual funds, ETF's, currencies, cryptocurrencies, and index
trackers. Moreover, portfolios can also contain tangible assets, such as art, real
estate, and land, depending on the investor’s objectives and constraints.

The primary objective of any investment portfolio is to generate a return on
the capital invested; to achieve this goal, proper diversification is essential. In
particular, three key factors drive portfolio construction. First, investment goals
determine how success is measured. For some investors, success means reaching
a specified portfolio value, while for others it may be earning a steady annual
dividend income. Second, the time horizon indicates the expected duration of
the investment, which can range from a few months to several decades. Longer
horizons often tolerate greater risk in pursuit of higher returns. Finally, the risk
profile reflects an investor’s willingness to accept volatility. In particular, higher-

7



CHAPTER 2. BASIC FINANCIAL CONCEPTS

risk portfolios may offer the potential for greater returns but also carry a higher
likelihood of significant drawdowns, whereas more conservative investors prefer
lower volatility even if it means accepting more modest gains.

Depending on the balance of the three factors above, a portfolio’s asset allo-
cation will reflect the relationship between desired profitability, risk, and success
timeframe.

2.1.2 Investment Management Types

Portfolio management can be carried out according to several distinct methodolo-
gies, each characterized by the level of investor involvement, the decision-making
process, and the underlying investment philosophy. This section presents an
overview of the principal approaches, active management, passive management,
and collective investment schemes, and discusses their key features within the
context of contemporary portfolio theory.

Regardless of who is in charge of the portfolio, there are three management
methods, each with its own advantages and disadvantages. Each approach offers a
distinct balance of decision-making autonomy, flexibility, and potential for excess
return. The following subsections examine these management methods in greater
detail, beginning with active portfolio management.

Active Portfolio Management

In active portfolio management, the manager takes on the responsibility of ana-
lyzing and selecting the securities and assets that constitute the portfolio at any
given time. Thus, the manager decides what to buy, when to buy it, at what price,
and when to sell. Depending on how market conditions align with the underlying
investment hypothesis, this process may involve adjusting the portfolio daily, an-
nually, or at any interval in between. Consequently, active management offers the
flexibility to respond quickly to price fluctuations or emerging opportunities.

Moreover, the primary objective of active management is to achieve returns
that exceed those of a chosen benchmark. For instance, a U.S.—based portfolio
would aim to outperform a leading index such as the S&P 500. In contrast,
a Spanish investor might measure success against the IBEX 35, while a U.K.
investor could compare performance to the FTSE 100. Therefore, by continuously
monitoring market movements and revising positions, active managers seek to
generate higher risk-adjusted returns than a passive index-tracking approach.

8



2.1. Financial Fundamentals and Investment Principles

Passive Portfolio Management

In contrast to the active approach discussed above, passive portfolio management is
an investment strategy that aims to replicate the performance of a specific market
index (either in whole or in part), such as the S&P 500, rather than trying to
outperform it.

This approach involves selecting a diversified mix of assets that closely match
the composition of the chosen index and then holding them over the long term. By
doing so, investors can benefit from the general upward trend of the market while
minimizing trading costs and the need for constant monitoring. Therefore, the
objective is to achieve steady growth and reduce risk through broad diversification,
making this strategy attractive for those who prefer a more hands-off investment
style.

2.1.3 Asset Allocation Profiles

Beyond the choice between active and passive management, portfolio composition
also depends on how assets are allocated to match an investor’s objectives. The
percentage of a portfolio’s asset type weightings can suggest not only the investor’s
risk profile but also their time horizon. Hence, the different approaches that could
be considered include:

e Aggressive Focus Portfolio: 70-90% in stocks, 10-30% in government
bonds, 10% in cash to be able to take advantage of any investment that
arises.

e Balanced Portfolio: Bond exposure is increased as stock percentage de-
creases. This leans more towards 50-70% in stocks, 30-50% in government
bonds, with the remaining 10% held in cash/deposits/interest-bearing ac-
counts.

e Conservative Portfolio: Usually found with investors who have a low risk
appetite, a short time-horizon for capital drawdowns (or both), a conserva-
tive portfolio is usually no more than 20% in shares, with a heftier 50-60%
in bonds, and more available cash than the other portfolios (usually around
20-30%).

e Very Conservative Portfolio: While uncommon, it’s also possible to have
a portfolio which consists of 0% stocks, 50% in fixed income (such as bonds)
and 50% in deposits and remunerated accounts (cash).



CHAPTER 2. BASIC FINANCIAL CONCEPTS

2.1.4 Investment Portfolio Diversification and rebalancing

Diversification is a best-practice that involves spreading investments across vari-
ous asset classes, sectors, and geographic regions to reduce risk. This approach
mitigates risk by diversifying investments, thereby reducing the likelihood that
underperformance in a single asset will significantly affect the overall portfolio.
Portfolio diversification reduces risk, stabilizes returns and therefore helps to pre-
serve capital.

Examples of Diversification

e Assets: The ideal is to spread the capital among several asset classes, such
as stocks, indices, currencies, bonds, and commodities. The selection of the
assets and their percentage would depend on the risk profile of the portfolio.

e Markets: Diversification can also happen within the same asset class. For
example, the equity (stocks) portion can be distributed across different sec-
tors (banks, energy, electricity, etc.).

e Geography: Invest in both domestic and international markets to reduce
the risk linked to a single country’s economic performance.

Furthermore, periodic rebalancing serves to realign a portfolio’s weightings
whenever certain investments outperform others and shift the original allocation.
Over time, this drift can move a portfolio away from its intended risk—return profile.
By rebalancing, sometimes called readjusting, investors sell portions of assets that
have grown beyond target allocations and buy those that have fallen below. Hence,
rebalancing ensures that the portfolio remains aligned with financial goals and the
investor’s tolerance for risk.

10



Chapter 3

Classical Models for Investment
Portfolios

The objective of this section is to present the most influential classical portfolio-
optimization frameworks, to analyse their underlying assumptions and limitations,
and to motivate the adoption of DNNs for capturing complex, non-linear depen-
dencies in order to improve return forecasts and risk management.

3.1 Mean—Variance Portfolio Optimization (Markowitz)

The Mean—Variance framework, introduced by Harry Markowitz in 1952 [1], rep-
resents the cornerstone of modern portfolio theory. Its primary insight is that in-
vestors care simultaneously about expected return and risk, where risk is quantified
as the variance (or standard deviation) of portfolio returns. Under this paradigm,
an investor seeks the portfolio weights w = (wy, ..., wy)' that minimize portfolio
variance for a given target return, or equivalently maximize expected return for a
given level of risk.
Consequently, let
= (,ul, . ,MN)T and X = [Uij}gjzl

denote the vector of expected returns and the covariance matrix of returns for N
assets, respectively. Then, the classical mean—variance optimization problem can
be written as

min  w'Xw subject to w'p = Ips 1"w=1 w>0,
weRN
where

e w 'Y w is the portfolio variance

11



CHAPTER 3. CLASSICAL MODELS FOR INVESTMENT PORTFOLIOS

e w'p = p, enforces that the portfolio’s expected return equals a pre-specified
target u,

e 17w = 1 ensures full investment of capital
e w > 0 prohibits short-selling (non-negative weights).

Hence, by solving this quadratic program repeatedly for different levels of p,,,
one traces out the efficient frontier, which is the set of portfolios offering the
maximum possible expected return for each level of risk.

Therefore, the economic interpretation of the model is as follows. The efficient
frontier encapsulates the trade-off between risk and return: portfolios below the
frontier are sub-optimal (they offer lower return for the same risk), while those
above the frontier are unattainable under the model’s assumptions. An investor’s
personal risk appetite then determines the appropriate point on this curve.

In this regard, the key assumptions and limitations of the Mean—Variance model
are as follows:

1. Returns are jointly normally distributed. This justifies using variance as a
complete measure of risk.

2. Expected returns p and covariances 3 are known and stationary. In prac-
tice, these parameters must be estimated from historical data, often with
significant noise.

3. Investors are risk-averse and care only about mean and variance. Other
higher-moment preferences (skewness, kurtosis) are ignored.

4. No transaction costs, taxes, or market frictions. Trading is assumed friction-
less.

The estimation error in p and X is particularly problematic in high-dimensional
settings (many assets, limited data), leading to extreme and unstable weight vec-
tors that perform poorly out of sample. This “error maximization” property has
motivated a rich literature on regularization (shrinkage), robust optimization, and
Bayesian enhancements.

From a computational perspective, as the problem is a convex quadratic pro-
gram, efficient solvers (e.g. CVXPY, OSQP) can handle portfolios of hundreds or
thousands of assets in seconds. However, the quality of the resulting allocation is
fundamentally tied to the reliability of the input estimates, underscoring the need
for advanced ML methods to improve parameter forecasting.

12



3.2. Other Classical Models

3.2 Other Classical Models

Beyond the Mean—Variance framework, several influential models have shaped
portfolio theory:

e Capital Asset Pricing Model (CAPM) [2], [3]: Links each asset’s ex-
pected return to its sensitivity (5) to the market portfolio; underpins the
Capital Market Line but struggles with empirical anomalies (e.g. size, value)
[22].

e Arbitrage Pricing Theory (APT) [23]: Extends CAPM by expressing
returns as a linear combination of multiple macroeconomic factors (e.g. GDP
or Gross Domestic Product growth, inflation), allowing richer risk-factor
structures.

e Black—Litterman Model [9]: Introduces a Bayesian blend of market-
implied equilibrium returns and investor views, smoothing extreme alloca-
tions and improving intuitive portfolio adjustments.

e Risk Parity [24]: Equalizes risk contributions across assets by inversely
weighting by volatility, often leading to overweighting of low-volatility bonds
and underweighting of equities.

e Conditional Value-at-Risk (CVaR) Optimization [25]: Focuses on
downside risk by minimizing expected losses beyond a specified quantile,
offering explicit tail-risk control compared to variance-based approaches.

Each of these approaches addresses specific limitations of the original Mean—Variance
model, whether by incorporating multiple risk factors, blending subjective views,
balancing risk contributions, or focusing on tail risk, yet they remain sensitive to
input estimation error and often rely on similar underlying data assumptions.

Having surveyed the ways in which classical frameworks address risk and re-
turn, yet remain constrained by distributional and estimation assumptions, we
now turn to ML techniques that relax these assumptions and can capture richer
data patterns.

Although the literature includes numerous extensions, such as multi-period
optimization, dynamic CVaR models, and robust factor-uncertainty formulations,
this project will focus exclusively on the classical Mean—Variance (Markowitz)
method and its comparison with advanced ML models. All other models are
beyond the scope of this TFM and may be explored in future research.

13



CHAPTER 3. CLASSICAL MODELS FOR INVESTMENT PORTFOLIOS

14



Chapter 4

Deep Neural Networks:
Theoretical Foundations

4.1 Introduction to Deep Neural Networks

In the previous chapters, we have defined the financial optimization problem, re-
viewed classical portfolio models and explored the state of the art in data-driven
techniques. We now turn to the core ML architectures that will underpin our
hybrid optimization framework: DNNs, with a particular focus on RNNs and its
gated variants LSTM.

DNNs are composed of multiple layers of interconnected computational units
(neurons) that apply successive affine transformations and non-linear activations
to input features. Thanks to the Universal Approximation Theorem [26], even
relatively shallow networks can approximate arbitrary continuous functions. Fur-
thermore, modern deep architectures, enabled by advances in optimization algo-
rithms, regularization techniques, and GPU acceleration, can model extremely
complex patterns in high-dimensional data [5], [26].

In quantitative finance, DNNs have demonstrated state-of-the-art performance
for return and volatility forecasting, especially when combined with rich feature
sets (technical indicators, macroeconomic variables, sentiment scores). However,
financial time series exhibit strong temporal dependencies and regime shifts that
feedforward networks cannot capture effectively. This motivates the adoption of
sequence-aware models:

¢ Recurrent Neural Networks (RNNs) introduce hidden-state feedback
loops, enabling the network to retain information across time steps and model
sequential dependencies.

e Long Short—Term Memory (LSTM) and Gated Recurrent Units

15



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

(GRU) enhance standard RNNs with gating mechanisms that mitigate van-
ishing and exploding gradient issues, allowing for the learning of long-range
temporal patterns.

In the following sections, we will first review the mathematical structure and
training algorithms of feedforward DNNs to establish common ground. We will
then delve deeply into RNNs and their gated variants, explaining their internal
mechanisms, advantages and implementation considerations.

4.2 Feedforward (Multilayer Perceptron) Networks

A feedforward network (or Multilayer Perceptron (MLP) Figure is organized
into an input layer, one or more hidden layers, and an output layer. Each layer [
computes

h® — (b(W(l) h-Y 4 b(l))7

where W® and b®) are the weight matrix and bias vector, ¢ is a non-linear acti-
vation (e.g. ReLU, tanh, sigmoid), and h(® denotes the input features. Training
proceeds by minimizing a suitable loss function (e.g. mean squared error for re-
gression) via gradient-based methods such as stochastic gradient descent (SGD) or
Adam, using backpropagation to compute parameter updates efficiently , .

Figure 4.1: Multilayer Perceptron (MLP).

Consequently, to train the MLP, we minimize a loss function L(6) (e.g. mean
squared error) with respect to all parameters = {W® b®)}. Backpropagation
computes the gradient VyL by applying the chain rule layer by layer in reverse

16



4.3. Recurrent Neural Networks

order [27]. These gradients are then used in an optimizer, such as SGD or Adam,
to update parameters

0(—9—7’]V9L,

where 7 is the learning rate [28]. This procedure will also serve as the foundation
when we extend to RNNs and LSTMs, which use the same principles but propagate
errors through time.

While MLPs excel at capturing static, non-linear mappings between inputs
and outputs, they do not inherently handle temporal dependencies. Financial
time series, however, exhibit sequential patterns, momentum, mean reversion and
regime shifts, that require models with internal memory or specialized sequence
architectures.

4.3 Recurrent Neural Networks

In contrast to feedforward architectures, which process each input independently,
RNNs are specifically designed to handle sequential data by maintaining an in-
ternal hidden state that “remembers” information from previous time steps. This
persistence of memory makes RNNs a natural fit for financial time series, which
exhibit autocorrelation, momentum effects and regime shifts.

At each time step t, an RNN cell receives the current input vector x; (e.g., asset
returns or feature embeddings) and the previous hidden state s;_;, and updates
its state and output via:

st = O(Wan X + Winsi—1 +br),  ye = f(Wiyst +by),

where:
o W, and Wy, map inputs and prior state to the new state,
o W, maps the hidden state to the output yy,

e ¢ and f are non-linear activation functions (e.g. tanh, ReLU, sigmoid).

17



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

Feedforward Neural Network

= tayerimputs | = layerOupus

Activation
y_hat prediction

Recurrent Neural Network

= Layerinputs [= " Layer outputs

Dense Input Activation
g 1
& B3

Figure 4.2: Comparison of a Feedforward NN (top) and a RNN (bottom). In
the feedforward case, each input flows through a dense layer and then through an
activation function to produce an output. In the recurrent case, the current input
and the previous hidden state are both passed into dense transformations; their
results are summed to form the new hidden state via a tanh activation, and that
hidden state is also used (via a separate dense layer) to produce the output at each
time step.

Tanh
new hidden state

Sum
outputs

The top half of the Figure [4.2]illustrates a standard feedforward architecture: a
single “Dense” (fully connected) layer transforms the input features into a hidden
representation, which is then passed through an activation function (e.g. ReLU
or sigmoid) to produce the network’s output. As it can be observed, there is no
mechanism for retaining information from previous inputs, each sample is pro-
cessed independently.

In contrast, the bottom half depicts a simple RNN cell unrolled over a single
time step. Two separate dense layers take as inputs (1) the current feature vector,
labeled “Input” and (2) the previous time step’s hidden state, labeled “Hidden
state”. Neither of these dense layers uses bias terms for this depiction, biases
would be added in practice but are omitted here for clarity. The outputs of these
two transformations are then added (the “Sum outputs” node) to yield the new
hidden state. That combined signal is passed through a tanh activation (shown
in red as “Tanh new hidden state”) to form the updated hidden state for this

18



4.3. Recurrent Neural Networks

time step. Finally, a separate dense transformation of the hidden state produces
the network’s output at the current time step, which is again passed through an
activation (e.g. a softmax or identity, depending on the task).

Given the previously defined architecture, it is important to note that:

e State Propagation: Unlike the feedforward network, the RNN reuses its hid-
den state from the previous time step, enabling memory of past inputs and
the modeling of temporal dependencies.

e Dual Inputs: At each time ¢, the RNN cell combines information from the
new input vector x; and the past hidden state h;_;. Formally, if we denote
the weight matrices by W, (input-to-hidden), W, (hidden-to-hidden), and
Wiy (hidden-to-output), then the new hidden state h, is computed as

h; = tanh (W x; + Wi hyey),
and the output y; is given by

Yy = f(Why ht)

In our schematic, these operations correspond to the “Dense input” and
“Dense hidden” blocks feeding into the sum node, followed by the “Tanh
new hidden state,” and finally the “Dense output” feeding into the activation
“y_hat prediction.”

o Temporal Dynamics: By carrying h; ; forward, RNNs can learn patterns
spread across multiple time steps, essential for financial series that exhibit
momentum, volatility clustering, and structural breaks.

e Training Implications: During backpropagation through time (BPTT), gra-
dients must flow both through the dense layers at each step and along the
recurrent connections. This direct feedback loop often leads to vanishing
or exploding gradients in vanilla RNNs, motivating gated variants (LSTM,
GRU) described in the next section.

With this conceptual groundwork, we are now prepared to examine LSTM
networks, which introduce explicit gating to control the flow of information and
mitigate the training difficulties inherent in vanilla RNNs.

Why Not Feedforward?

Feedforward networks treat each time point in isolation, lacking any mechanism
to encode temporal context. As a result, they cannot capture serial correlations or

19



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

long—term dependencies, both of which are common in financial markets (momen-
tum, mean reversion, volatility clustering). On the other hand, RNNs overcome
this by propagating information forward through their hidden states, effectively
creating a dynamic memory.

Origins and Limitations

RNNs were popularized in the 1990s but soon encountered training difficulties:
during backpropagation through time, repeated multiplication by the same weight
matrices causes gradients to either shrink towards zero (vanishing) or grow explo-
sively (exploding), preventing the network from learning long-range dependencies
[29]. In financial contexts, where a shock’s effect may persist over many trading
days, this limitation can severely reduce model effectiveness.

Setting the Stage for LSTM

To address these issues, gated architectures such as LSTM networks introduce
explicit memory cells and learnable gating mechanisms that control the flow of
information. In the next section, we will dissect the internal structure of LSTM
cells, explain how their gates mitigate gradient problems, and illustrate why they
are particularly well suited for modeling complex temporal patterns in asset returns
and volatility.

4.4 Long Short—Term Memory Networks

Standard (vanilla) RNNs, despite their elegance, struggle to learn long-range de-
pendencies due to the vanishing and exploding gradient problems during backprop-
agation through time [29]. In financial time series, where events from many days
or even months ago may influence current asset behavior, this limitation severely
hampers model performance. The LSTM architecture, introduced by Hochreiter
and Schmidhuber (1997) [6], was specifically designed to mitigate these issues
by incorporating an explicit memory cell and gating mechanisms that regulate
the flow of information. The result is a recurrent unit capable of preserving and
propagating relevant signals over long sequences, making LSTMs particularly well
suited for applications such as volatility forecasting, regime detection, and return
prediction in quantitative finance.

Overview of LSTM Components. An LSTM cell augments the hidden-state
dynamics of a vanilla RNN with an internal cell state ¢, € RY, which can be thought
of as a “memory” that persists (largely unmodified) from one time step to the next,
subject only to carefully controlled updates. Three distinct gates, all implemented

20



4.4. Long Short-Term Memory Networks

via learned affine transformations followed by element-wise nonlinearities, control
how information flows into, out of, and within the cell state:

e Input Gate i; € (0,1)% Determines how much of the new candidate content
g: (sometimes called the “input modulation vector”) to write into the cell
state.

e Forget Gate f; € (0,1)% Decides which portions of the previous cell state
c;—1 should be “forgotten” (multiplied by small values) or retained (multi-
plied by values near 1).

e Output Gate o; € (0,1)% Controls how much of the updated cell state c;
should influence the hidden-state output h; at the current time step.

In addition, the cell computes a candidate update g; € (—1,1)¢ (via a tanh
nonlinearity) that represents new information extracted from the current input x;
and the previous hidden state h;_;. The final cell-state update is thus a convex
combination (element-wise) of “old memory” and “new information,” weighted by
the forget and input gates, respectively:

c, =fic, + g

Because f; and i; can be learned to take values near 1 or 0 (via their sigmoid
activations), the network can choose to preserve (or discard) information in ¢;_;
independently for each dimension, thereby preventing gradients from vanishing or
exploding when propagated over many time steps.

Mathematical Formulation

Formally, given an input vector x; € R™ at time ¢ and the previous hidden state
h, ; € R? the LSTM cell computes:

i, =0 (Wuxi + Wihey + by), il € (0,1)%
f,=o0(Wyx, + Wishioy + by), || €(0,1)%
o, = U(Wzoxt + Wiohi1 + bo), o] € (0,1)%,
g = tanh(Wyex, + Wighyy + by), g € (—1,1)%
c; = fici1 + ig,
h; = o, tanh(cy),

where:

e o(+) is the logistic sigmoid function applied element-wise, ensuring gate out-
puts lie in (0,1).

21



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

e tanh(-) is the hyperbolic tangent, producing values in (—1,1).
o Wi, Wap, Wao, Way € R%™ are input-to-gate weight matrices.
® Whis Wiy, Who, Wyy € R%*? are hidden-to-gate (recurrent) weight matrices.

e b;,b;,b,, b, € R? are bias vectors for each gate and the candidate cell
update.

The hidden-state h; itself can be used directly as either:

e An intermediate output at time t, when the LSTM is configured to return
sequences (return_sequences=True), or

e A final summary if one only needs hy after processing T time steps (i.e.
return sequences=False).

Intuition Behind Each Gate

e i; (input gate): By scaling the candidate g; element-wise, the network decides
which features from the new information “deserve” entry into the cell mem-
ory. For example, if a particular element of i; is near 0, the corresponding
dimension of g; is ignored in updating c;.

o f; (forget gate): Controls the extent to which the previous memory c¢;— is
retained. If an element of f; is near 1, that feature in c,_; is preserved; if it is
near 0, that portion of memory is reset. This mechanism allows the LSTM
to “forget” outdated information (e.g. a past volatility regime that no longer

applies).

e 0, (output gate): Determines which parts of the updated memory c; should
influence the hidden state h; (and hence any subsequent outputs or further
recurrence). By gating tanh(c;), the network can mask irrelevant memory
components when producing h,.

e g; (candidate cell update): Represents new content extracted from x; and
h;_; that might be useful to store in memory. Its values are squashed between
—1 and 1 by tanh, ensuring numerical stability.

Gradient Flow and Long-Range Dependencies

Because c¢; can be updated largely via element-wise multiplication by f;, ~ 1,
gradients can propagate backward through many time steps without vanishing. In

22



4.4. Long Short-Term Memory Networks

particular, the cell-state update ¢; = f;c;_1 + - - - implies

a‘ztcfl ~ I,;. Consequently, the “constant

error carousel” effect (Hochreiter & Schmidhuber, 1997) preserves error signals
across long intervals, enabling the learning of dependencies spanning dozens or
even hundreds of time steps [6].

which, when f; elements are near 1, allows

LSTM Variants and Extensions

Although the original LSTM formulation included additional “peephole connec-
tions” (allowing gates to inspect ¢,_; directly) and different activation choices, the
“vanilla LSTM” as presented above has become the de facto standard in many
libraries (TensorFlow, PyTorch, Keras). Several useful variants include:

e Peephole LSTM: Adds direct connections from c;_; to each gate (i.e. ad-
ditional weights We;, W.;, W,,) so that gates can condition decisions on the
previous cell state explicitly. This can improve performance on tasks with
precise timing requirements.

e Coupled Input-Forget LSTM: Ties the input and forget gates via f;, =
1 — i, reducing parameter count and sometimes improving generalization.

e Gated Recurrent Unit (GRU): A simplified variant that merges the
input and forget gates into a single “update gate” and discards the explicit
cell state, leading to fewer parameters and often comparable performance in
practice [30].

Application of LSTM to Financial Time Series

In a financial portfolio optimization context, we typically frame the problem as:
given a historical sequence of feature vectors {x; 71, X;_742,...,%X;} (e.g. returns,
technical indicators, sentiment scores over the last 7" days), predict a target vari-
able at time t+1 (e.g. next-day return, volatility, or covariance matrix component).
An LSTM network can be stacked with one or more layers (possibly interleaved
with dropout or batch-normalization layers) so that:

1. The first LSTM layer processes the input sequence and outputs a sequence
of hidden-state vectors {hgl)7 hgl), . ,hgpl)}.

23



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

LSTM Cell Dynamics

Figure 4.3: Internal dynamics of an LSTM cell: the input vector z; (blue) and the
previous hidden state h;_; (green) feed four gates (orange): input (i;), forget (f;),
output (o), and candidate (g;). The cell state ¢; (red) is formed by combining
fici—1 and 7;g;, and then produces the new hidden state h;.

2. If return_sequences=True, this entire sequence is passed to a second LSTM

layer; if return_sequences=False, only the final hidden state hgpl) is for-
warded to subsequent dense layers.

3. A final dense (fully connected) layer maps the chosen LSTM output(s) to
the desired prediction g;,;. For example, a linear activation could predict
a scalar next-day return, or a more elaborate head could output a vector of
expected returns for NV assets.

4. During training, a suitable loss function is minimized (e.g. mean squared er-
ror between ¢, and the true y; 1), with gradients computed via backpropa-
gation through time (BPTT), which now flows freely through the “constant
error carousel” of the LSTM cell state.

Figure [4.3 illustrates the internal structure of a single LSTM cell, highlighting
how the gates interact with the cell state and hidden state.
Interpretation of the LSTM Cell Diagram

In Figure , observe that each gate (input, forget, output) receives the same
concatenated input [Xt; ht,l], but uses its own learned weights and bias. The
candidate cell update g; is similarly computed from [Xt; ht,l} but passes through a

24



4.4. Long Short-Term Memory Networks

tanh nonlinearity. The forget gate f; then scales c;_; element-wise, while the input
gate i; scales g;, and their sum yields c;. Finally, the output gate o; determines
which parts of ¢; are exposed to form h;. By adjusting these gates dynamically at
each time step, the LSTM can (1) retain salient financial signals across many days,
(2) filter out noise or obsolete patterns, and (3) produce context-aware predictions.

Training Considerations and Regularization.

Training an LSTM on financial data requires careful attention to overfitting and
time series validation. Common practices include:

e Dropout on Recurrent Connections: Applying dropout within the LSTM cell
(e.g. variational dropout) to prevent co-adaption of gates.

e Weight Decay: Introducing an {5 penalty on all weights to encourage smaller
parameters and reduce variance.

e Farly Stopping: Monitoring validation loss on a rolling-window split (walk-
forward validation) and halting training when performance plateaus.

o Gradient Clipping: Clipping gradients to a fixed norm to avoid exploding
gradients, especially important when learning long sequences.

These regularization techniques, combined with hyperparameter tuning (e.g.
selecting the number of LSTM layers, hidden-state dimensionality d, learning rate,
batch size), ensure that the model generalizes effectively to unseen market regimes
and does not simply memorize spurious patterns.

In summary, LSTM networks represent a powerful extension of vanilla RNNs,
addressing fundamental training difficulties and enabling the modeling of long-
term dependencies in sequential data. In the context of portfolio optimization,
they allow us to generate more accurate forecasts of future returns, volatilities, and
covariances by effectively “remembering” relevant financial signals over extended
horizons. In Chapter [5 we will implement an LSTM-based predictor and integrate
its forecasts into a NN to optimize portfolio weights, so a construction of a portfolio
that adapt dynamically to evolving market conditions will be made.

25



CHAPTER 4. DEEP NEURAL NETWORKS: THEORETICAL
FOUNDATIONS

26



Chapter 5

Comparative Methodology:
Classical vs. Machine Learning
Portfolio Optimization

5.1 Introduction

As already mentioned, in the context of modern quantitative finance, portfolio op-
timization has long been a central problem, attracting considerable attention from
both academia and industry [4], [7], [9], [14]. The classical approach, as formalized
by Harry Markowitz [1] in his seminal mean-variance optimization framework, has
become a foundational pillar of asset allocation and risk management. Neverthe-
less, recent advances in computational power, the availability of high-frequency
data, and the rapid evolution of ML algorithms have opened new horizons for
financial modeling and portfolio construction.

Consequently, the objective of this chapter is to present a rigorous and compre-
hensive comparison between two fundamentally different paradigms for portfolio
optimization: the traditional Markowitz mean-variance approach and a modern
data-driven solution based on deep learning techniques. The ML approach specif-
ically combines LSTM networks for time series forecasting with fully connected
NNs for direct portfolio weight assignment.

This comparative study is motivated by several important considerations. First,
the assumptions underlying the classical approach, such as the use of historical
means and covariances as stable predictors of future asset behavior, are often vio-
lated in practice due to non-stationarities, structural breaks, and rapidly evolving
market regimes. Second, traditional models are limited in their ability to cap-
ture complex, nonlinear dependencies and temporal patterns inherent in financial
markets. Finally, the rise of ML, and deep learning in particular, provides the

27



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

possibility of learning adaptive allocation strategies directly from historical data,
potentially outperforming rigid parametric models in out-of-sample environments.

Therefore, in this chapter, we propose and implement a robust experimental
framework designed to evaluate the strengths and limitations of both approaches.
First of all, we begin by detailing the process of data acquisition, cleaning, and
transformation, which is critical to any quantitative analysis. To ensure reliable
results, we divide the data into separate training and test sets, using the training
set for model fitting and the test set for evaluating their performance. Next,
we formalize the implementation of the Markowitz optimization, followed by the
design and training of a hybrid LSTM and fully connected NN model aimed at
directly learning optimal portfolio weights from historical return patterns. Finally,
each method is evaluated under identical market conditions, using the same set of
assets and the same out-of-sample test period, thereby ensuring the fairness of the
comparison.

Throughout the chapter, we place particular emphasis on performance metrics
that are widely recognized in the field, including annualized return, volatility, and
the Sharpe ratio [2]. The ultimate goal is to provide a statistically sound and
practically meaningful assessment of whether advanced ML models can deliver
superior portfolio performance when benchmarked against established classical
methods. This work thus aims to contribute to the ongoing discourse regarding
the role of artificial intelligence in the future of asset management, offering insights
that may inform both researchers and practitioners interested in the design of next-
generation portfolio optimization systems.

5.2 Data Acquisition and Preprocessing

5.2.1 Data Sources and Universe Selection

The foundation of any quantitative portfolio study lies in the careful selection and
preparation of the data. In this work, we focus on a representative set of large-cap
technology equities, specifically the stocks of Apple (AAPL), Microsoft (MSFT),
Google (GOOG), Amazon (AMZN), and Meta Platforms (META). This selection
is motivated by the liquidity, coverage, and economic relevance of these assets, as
well as their frequent inclusion in contemporary portfolio construction research.
Daily historical price data for each selected asset was retrieved from Yahoo
Finance, a widely used and reputable source for financial time series. The data
spans from January 1, 2015, to the latest available trading day in 2024 (December
30th), thereby ensuring that both the training and testing phases of the study
are based on a sufficiently long and recent time horizon. By starting in 2015, we
capture multiple market regimes, including periods of both volatility and stability,

28



5.3. 'Training methodology

which is essential for the robust evaluation of forecasting and allocation models.

Before feeding the data into the LSTM-based model, the raw price series under-
goes several preprocessing steps to ensure consistency, reliability, and suitability
for quantitative modeling. First, prices are aligned to trading days across all as-
sets so that missing values, caused by non-trading days or asset-specific events,
do not distort the analysis; when a price is absent, it is forward-filled to maintain
continuity in the time series. Next, any residual gaps remaining after this align-
ment are also imputed via forward-fill, based on the assumption that price changes
occur only on trading days and temporary data gaps do not reflect actual market
movements. After handling missing values, daily log-returns are computed from
the adjusted closing prices, since log-returns are preferred in quantitative finance
for their time-additive property and because they better satisfy the normality as-
sumptions of many models. Finally, for the deep learning components, particularly
the LSTM networks, all price and return series are normalized using a Min—Max
scaling approach. In particular, the parameters for normalization (minimum and
maximum values) are fitted exclusively on the training set and then applied to the
test set, thus preventing any information leakage and preserving the integrity of
the out-of-sample evaluation.

Finally, to ensure a fair and meaningful comparison between the portfolio op-
timization methods, both strategies are constructed and evaluated under identical
market conditions and data constraints. The dataset is strictly divided into a
training period (2015-2023) and a test period (2024), with all model parameters
determined using only the training data. Consequently, no information from the
test period is used during model development or feature scaling. Both approaches
operate on the same asset set and the same preprocessed return series. Addition-
ally, all portfolio allocations are subject to long-only, fully-invested constraints,
and no transaction costs or liquidity restrictions are included in the initial analy-
sis. This rigorous protocol is designed to guarantee that any observed differences in
out-of-sample performance arise solely from the optimization methodology, rather
than from discrepancies in data treatment or evaluation procedures.

To conclude, it is important to mention that these preprocessing and evaluation
steps are crucial to ensuring that the subsequent ML models operate on clean,
consistent, and stationary data, and that the performance results of both classical
and machine learning-based approaches can be meaningfully compared in a robust,
out-of-sample setting.

5.3 Training methodology

The focus of this chapter is to detail the architecture, training process, and pa-
rameter choices underlying each method, with particular emphasis on the design,

29



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

tuning, and implementation of the LSTM and NN components. It is important to
note that both methods are evaluated under identical data splits, constraints, and
evaluation protocols, as described in the preceding section.

Therefore, the experimental framework developed in this chapter is designed
to provide a fair, transparent, and statistically robust comparison between two
fundamentally distinct approaches to portfolio optimization. The first approach
is the classical mean-variance optimization method introduced by Markowitz [1],
which uses historical statistics of returns and covariances to derive a single set of
optimal portfolio weights, subsequently held constant throughout the evaluation
period. On the other hand, the second approach leverages advanced ML tech-
niques, combining a LSTM network for financial time series forecasting with a
fully connected NN trained to assign portfolio weights dinamically, based on the
LSTM predicted value of the assets.

While the theoretical foundations and architectural details of each model have
been thoroughly addressed in previous chapters, it is important here to clarify
their operational differences in empirical application. The classical Markowitz
model computes a single set of portfolio weights at the outset of the test period,
estimating an annualized mean vector and covariance matrix of daily log-returns
from the training window (2015-2023) and then maximizing the Sharpe ratio under
long-only, fully invested constraints (weights > 0 and summing to 1) via Sequential
Least Squares Programming (SLSQP). Once determined, these weights remain
fixed throughout the entire evaluation window, providing a static benchmark. In
contrast, the proposed LSTM+NN pipeline continually updates portfolio weights
on a rolling basis: first, a LSTM network forecasts future asset returns; then a
fully connected NN learns to map those predicted return sequences directly to
optimal weights. This dynamic recalibration during the test period is the core
objective of our study, enabling a direct empirical comparison between static mean-
variance optimization and a ML-based strategy that leverages recurrent neural
forecasts. A detailed explanation of the LSTM-+NN model that underlies our
proposed approach is provided below.

LSTM-based Prediction and Dynamic Allocation

The core of the proposed methodology lies in a two-stage deep learning pipeline
designed to provide adaptive and data-driven portfolio allocation. The first stage
consists of a LSTM network, specifically constructed to model temporal depen-
dencies and patterns in financial time series. At each point in time, the LSTM
receives as input a sliding window comprising the most recent n daily values (e.g.,
closing prices or returns) for all assets in the portfolio. This input is thus a matrix
of dimensions n x d, where d is the number of assets under consideration. The
LSTM processes this sequential data and produces, for each asset, a prediction of

30



5.3. 'Training methodology

the future price or return over the desired forecast horizon.

The second stage leverages these predictions to make allocation decisions.
Specifically, the sequence of predicted future returns (or prices) for all assets,
typically spanning the next m days, is concatenated into a single input vector.
This vector encapsulates both the cross-sectional and temporal predictive infor-
mation inferred by the LSTM. It is then fed into a fully connected (feedforward)
NN, which is trained to map this multi-asset, multi-period forecast into a set of
portfolio weights for the next trading day. The output of the network is a vector of
d weights, constrained (via a softmax activation function) to be non-negative and
to sum to one, thereby ensuring compliance with long-only, fully-invested portfolio
requirements.

During training, the NN learns to assign weights that maximize a risk-adjusted
reward, typically the Sharpe ratio or another utility-based criterion, across the
training set, using the historical realized returns as targets. In the test phase,
for each day, the latest LSTM predictions are used to dynamically update the
allocation in a rolling fashion, enabling the portfolio to react continuously to newly
observed data and anticipated market movements.

This LSTM+NN framework, Figure represents a significant improvement
from the classical static approach of Markowitz. Instead of holding constant
weights over the entire evaluation period, the portfolio composition is recalibrated
at each step, allowing for real-time adaptation to shifting risk-return profiles and
market dynamics. By integrating both time series prediction and allocation within
a unified, end-to-end trainable pipeline, the method leverages the strengths of deep
learning to address the inherently dynamic nature of financial markets.

1
h

ARPL Res tion (202:
" — Al AN
i 3 - L itz i
a b “\h J LSTM o1 1 M r,
Wl L) § A o p A
LAWY T ® i /f '

W Pl

Figure 5.1: Schematic Overview of the Two-Stage Deep Learning Framework for
Adaptive Portfolio Allocation

5.3.1 Model Hyperparameters

To ensure full reproducibility and transparency, this section describes in detail
the hyperparameter configurations and training procedures employed for both the
classical Markowitz approach and the ML pipeline.

For Markowitz Optimization, daily log-returns were computed for each asset,

31



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

and annualized by multiplying by 252 (the typical number of trading days in a
year). The annualized covariance matrix was calculated analogously. The portfolio
optimization sought to maximize the Sharpe ratio under the constraints of long-
only positions (all portfolio weights > 0) and full investment (weights sum to
one). The optimization problem was solved using the Sequential Least Squares
Programming (SLSQP) algorithm, as implemented in scipy.optimize.minimize,
with an equal-weight initial guess. The Sharpe ratio was calculated assuming a
risk-free rate of zero.

On the other hand, the LSTM network was trained to predict the next-day
closing price of each asset based on a rolling input window of the previous 60
trading days. The network architecture consisted of a single LSTM layer with 64
units, followed by a dropout layer (rate: 0.2) and a dense output layer with linear
activation to match the number of assets. Training was performed using mean
squared error (MSE) as the loss function and the Adam optimizer (learning rate
= 0.001). The batch size was set to 32, and training ran for up to 50 epochs, with
early stopping applied if the validation loss failed to improve for five consecutive
epochs. A validation split of 20% was used, and all input features were normalized
via Min—-Max scaling, fitted exclusively on the training set to avoid information
leakage. Model development was conducted in Keras using the TensorFlow back-
end.

Since the overall model architecture has been described previously, we focus
here on the specific configuration of the NN component responsible for portfolio
weight assignment. The fully connected NN received as input the concatenated
predicted returns for all assets over the rolling 60-day window. The architec-
ture included two dense layers (128 and 64 units, respectively, each with ReL.U
activation), each followed by dropout (rate: 0.2), and an output layer with soft-
max activation to ensure that portfolio weights are non-negative and sum to one.
The network was trained to minimize mean squared error between the predicted
weights and target weights (derived from the rolling-window Markowitz solution
during training). Optimization again used Adam (learning rate = 0.001), batch
size of 32, up to 50 epochs, with early stopping based on validation loss. Dropout
provided regularization, and a 20% validation split was applied.

All random seeds were fixed prior to training to ensure reproducibility. Hyper-
parameters were selected based on empirical validation set performance within the
training period, and no information from the test period was used at any stage of
model selection or evaluation.

32



5.3. 'Training methodology

Component Parameter Value / Setting
Markowitz Algorithm SLSQP (scipy.optimize)
Risk-free rate 0
Initial weights Equal allocation
Constraints Long-only, weights sum to 1
LSTM Input window 60 days
LSTM units 64
Dropout rate 0.2
Output activation Linear
Loss function MSE
Optimizer Adam (Ir=0.001)
Batch size 32
Epochs 50 (early stopping)
Validation split 20%

NN for weights Input shape
Dense layers
Dropout rate
Output activation
Loss function
Optimizer

Batch size
Epochs

Validation split

60 days x No. assets
[128, 64] units, ReLU
0.2

Softmax

MSE

Adam (Ir=0.001)

32

50 (early stopping)
20%

Table 5.1: Summary of main hyperparameter choices

5.3.2 Performance Metrics

To enable a transparent and rigorous evaluation of portfolio performance, three
key metrics are reported for each strategy over the test period (2024):

e Annualized Return: The mean daily return of the portfolio, multiplied
by the typical number of trading days in a year (252), provides an annual-
ized measure of profitability. This metric enables a direct assessment of the
capital growth potential offered by each approach.

e Annualized Volatility: The standard deviation of daily portfolio returns,

scaled by the square root of 252, yields the annualized volatility. This serves
as a proxy for risk, quantifying the variability of portfolio returns over time.

33



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

e Sharpe Ratio: Defined as the ratio of annualized return to annualized
volatility, the Sharpe ratio provides a normalized measure of risk-adjusted
performance. It indicates how efficiently each approach transforms risk into
return and is widely used as a benchmark in portfolio management.

These metrics are computed for both the classical Markowitz approach and
the LSTM+NN-based strategy, using strictly out-of-sample data. For clarity and
reproducibility, all figures and tables report metrics rounded to two decimal places.

Moreover, while annualized return, volatility, and Sharpe ratio capture average
performance and overall variability, they do not reflect the severity and duration of
potential losses in adverse market conditions. In addition to standard performance
measures, it is critical to assess the risk profile of portfolio strategies through the
analysis of drawdown dynamics. The drawdown at any time ¢ is defined as the
percentage loss relative to the most recent historical maximum of the cumulative
portfolio value, and is formally given by

V(t) — maxs<; V (s)

maxs<; V()

Drawdown(t) = (5.1)
where V(t) denotes the cumulative wealth of the portfolio at time ¢. A drawdown
of zero indicates that the portfolio has reached a new maximum, while negative
values reflect periods of decline from the previous peak.

5.4 Empirical Results

A crucial factor of the success of any ML-based portfolio strategy is the predictive
accuracy of its underlying time series forecasting model. Figures [5.2, [5.3]
5.5 provide a comprehensive visualization of the LSTM network’s predictive
performance for each of the five constituent assets in the test period (2024). For
each asset, the figure displays both the normalized actual price trajectory and the
corresponding predictions generated by the LSTM model.

The visual comparison reveals the extent to which the LSTM is able to cap-
ture the short-term dynamics and overall trends present in the real price series. In
general, the predicted series closely follows the real data, successfully replicating
major movements and exhibiting low deviation in periods of stable market con-
ditions. Nonetheless, occasional discrepancies and lags are observed, particularly
during abrupt price reversals or periods of heightened volatility, which is charac-
teristic of the challenges faced by deep learning models in highly non-stationary
environments.

This figures serve not only to validate the predictive capability of the LSTM
architecture, but also to contextualize the results obtained in the subsequent port-
folio allocation stage. Since the assignment of portfolio weights by the downstream

34



5.4. Empirical Results

NN relies on these forecasts, the fidelity of the LSTM predictions is directly linked
to the quality of the resulting investment decisions and, ultimately, the out-of-

sample performance of the proposed ML-based portfolio strategy.

AAPL: Real vs. LSTM Prediction (2024)

——— Real AAPL
T --- LSTM Prediction AAPL

g L = =
o = [N] w

Normalized Price

o
w0

0.8

Figure 5.2: APPLE. Comparison of LSTM-predicted and real normalized prices

for all assets during 2024.

AMZN: Real vs. LSTM Prediction (2024)

—— Real AMZN
| ——- LSTM Prediction AMZN

= I =
o Ll N
: A

Normalized Price

o
o

Figure 5.3: AMAZON. Comparison of LSTM-predicted and real normalized prices

for all assets during 2024.

GOOG: Real vs. LSTM Prediction (2024)

=
S

—— Real GOOG
~=- LSTM Prediction GOOG

=
w

Normalized Price
=
N

=
[

=
=}

Figure 5.4: GOOGLE. Comparison of LSTM-predicted and real normalized prices

for all assets during 2024.

35



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

META: Real vs. LSTM Prediction (2024)

1.8 4 —— Real META
~=- LSTM Prediction META

Normalized Price
I e
w - w o ~

=
N

=
=

Figure 5.5: META. Comparison of LSTM-predicted and real normalized prices for
all assets during 2024.

MSFT: Real vs. LSTM Prediction (2024)

1 —— Real MSFT
—=- LSTM Prediction MSFT

Normalized Price

T T T T T T T T T T
2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01
Date

Figure 5.6: MICROSOFT. Comparison of LSTM-predicted and real normalized
prices for all assets during 2024.

Accorded to the previous images, the errors in LSTM predictions and mean-
variance are summarized in Table [5.2] the LSTM model achieves mean squared
errors that are orders of magnitude lower than those obtained using the historical
mean as a naive benchmark for next-day price prediction. This substantial reduc-
tion in prediction error highlights the limitations of static, mean-based forecasting
approaches when applied to non-stationary and trending financial time series. In
contrast, the LSTM’s architecture, which leverages recent sequential information,
enables the model to more accurately capture the dynamic patterns present in the
market data, resulting in markedly improved predictive performance for all assets
in the test set.

36



5.4. Empirical Results

Stock LSTM MSE Historical Mean MSE

AAPL 62.17 18125.36
AMZN 46.00 9856.72
GOOG 65.49 9714.71
META 758.91 116798.00
MSFET 239.36 71707.54

Table 5.2: Mean Squared Error (MSE) comparison for next-day price prediction:
LSTM vs. Historical Mean (2024 Test Set)

Given the fundamental objective of this study is to compare the effectiveness
of the two portfolio optimization methodologies, it is essential to present their
key performance indicators side by side. Table [5.3| summarizes the out-of-sample
performance of both portfolio optimization methods during the 2024 test period.
The results highlight the annualized return, annualized volatility, and Sharpe ra-
tio achieved by each approach. It presents the out-of-sample performance metrics
for both the classical Markowitz strategy and the proposed LSTM+NN approach
during the 2024 evaluation period. The results demonstrate that the LSTM+NN
strategy achieves a substantially higher annualized return (35.40%) compared to
the Markowitz benchmark (22.18%), while maintaining a comparable level of risk,
as reflected by annualized volatility (21.18% for LSTM+NN versus 18.86% for
Markowitz). Most notably, the Sharpe ratio, a key measure of risk-adjusted per-
formance, is significantly higher for the LSTM+NN portfolio (1.67) than for the
Markowitz portfolio (1.18).

Method Profit (%) Annualized Volatility (%) Sharpe Ratio

Markowitz 22.18 18.86 1.18
LSTM+NN 35.40 21.18 1.67

Table 5.3: Out-of-sample performance comparison: Markowitz vs. LSTM+NN
(2024)

These findings indicate that the dynamic, data-driven allocation enabled by
the LSTM and NN models can more effectively capture evolving market trends
and respond adaptively to new information, resulting in superior risk-adjusted
returns. In contrast, the static Markowitz portfolio, constrained by its reliance on
historical average returns and covariances, is less able to exploit changes in market
conditions during the test period. This empirical evidence underscores the value
of integrating advanced ML techniques into portfolio optimization, particularly in
environments characterized by non-stationarity and structural shifts in asset return

37



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

dynamics. Figure provides a visual summary of the same metrics, facilitating
a more intuitive comparison of the relative performance of each method.

Annualized Return (%) Annualized Volatility (%) Sharpe Ratio

0.8

0.6

0.4

2.5 0.2

0.0- 0.0

LSTM+NN LSTM+NN LSTM+NN

Figure 5.7: Comparison of annualized return, volatility, and Sharpe ratio for
Markowitz and LSTM+NN portfolios (2024).

Furthermore, Figure [5.§| illustrates the evolution of drawdown for both the
Markowitz and LSTM+NN strategies over the evaluation window. This metric
provides insight into the depth and duration of losses experienced by each port-
folio, which are not captured by return and volatility statistics alone. A strategy
with smaller or shorter drawdowns can be considered more resilient, as it recovers
from market downturns more quickly and exposes the investor to less severe capital
losses. From the figure, it can be observed that the LSTM+NN strategy generally
experiences shallower drawdowns compared to the Markowitz benchmark through-
out most of the evaluation window. While both portfolios exhibit declines from
local peaks, the drawdowns of the LSTM~+NN approach tend to be less severe and
recover more quickly to new highs. In contrast, the Markowitz portfolio is sub-
ject to deeper and more prolonged periods of decline, particularly during market
downturns observed in late summer and early autumn. These results suggest that
the dynamic, data-driven allocation enabled by the LSTM+NN model provides
improved downside risk management, allowing the portfolio to recover faster from
adverse movements and maintain capital preservation more effectively than the
static Markowitz allocation. This analysis complements the evaluation of returns
and Sharpe ratios by offering a more comprehensive picture of portfolio robustness
under adverse market conditions.

Continuing with the comparative analysis of the models presented, figure [5.9
presents the evolution of cumulative wealth for an initial investment of $1 under
both portfolio strategies during the out-of-sample test period (2024). In this con-
text, the vertical axis reflects the value of a hypothetical portfolio that starts with
one unit of capital at the beginning of the year and is updated daily according to
the returns generated by each method. A value greater than 1 at the end of the

38



5.4. Empirical Results

Drawdown Evolution (2024)
0.00 4 ",V"'-V; LV
1 |
\ |

—0.02 A 1 |
A\ |
v j\
—0.04 4

~0.08 - v\'

—0.10 A

Drawdown

—0.12 A

—0.14 1 — Markowitz
LSTM+NN

T T T T T T T
2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01
Date

Figure 5.8: Drawdown evolution for the Markowitz and LSTM+NN portfolios
during the 2024 evaluation window.

period indicates that the initial investment has grown, whereas a value less than
1 signifies a loss relative to the starting amount. For example, if the LSTM+NN
portfolio reaches a final value of 1.15, this means that the investment has appreci-
ated by 15% over the year, net of compounding. Conversely, a final value of 0.95
would represent a cumulative loss of 5%. This visualization allows for an intuitive
comparison of not only the total returns achieved by each approach, but also their
behavior throughout different market phases. The superior end-of-period value at-
tained by the LSTM-+NN strategy demonstrates its enhanced capacity to capture
and exploit market opportunities, resulting in a higher growth of invested capital
relative to the classical Markowitz benchmark.

The empirical results presented before reveal clear distinctions between the
classical Markowitz approach and the advanced LSTM+NN-based strategy for
portfolio optimization. As evidenced by the comparative metrics, the LSTM+NN
approach demonstrates a capacity for dynamic adaptation to evolving market con-
ditions, a property that is unattainable by the static allocation inherent to the
Markowitz framework. Consequently, the dynamic rebalancing enabled by the ML
approach allows for a continuous response to the latest patterns in asset returns,
potentially capturing short-term market trends and reducing exposure to adverse
regimes. This adaptivity is reflected in the observed improvement in annualized re-
turns and Sharpe ratio for the LSTM+NN portfolio, provided that the underlying
predictive models (notably the LSTM) achieve sufficient accuracy in forecasting
future returns. Conversely, the Markowitz strategy, relying solely on historical
statistics, is inherently less responsive to abrupt market changes, which can lead

39



CHAPTER 5. COMPARATIVE METHODOLOGY: CLASSICAL VS.
MACHINE LEARNING PORTFOLIO OPTIMIZATION

Cumulative Wealth Evolution: $1 Invested (2024)

— Markowitz
1204 LSTM+NN

Cumulative Wealth
= = =
o = =
(] [=] v

=
o
=]

e
0
v

0.90 4

T T T T T T T
2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01
Date

Figure 5.9: Cumulative wealth evolution: $1 invested according to Markowitz and
LSTM+NN strategies during 2024.

to suboptimal performance in highly volatile or non-stationary environments.

However, it is important to recognize that the effectiveness of the LSTM+NN
approach is not guaranteed in all scenarios. The performance gains are contingent
on the predictive skill of the LSTM model and the ability of the NN to generalize
the relationship between historical return patterns and optimal portfolio weights.
If the LSTM fails to capture meaningful predictive signals, as may occur in highly
efficient or noisy markets, the dynamic portfolio may underperform, or even intro-
duce additional risk relative to the classical benchmark.

40



Chapter 6

Conclusions and Future Work

6.1 Conclusion

This work has provided a comprehensive and rigorous comparative analysis be-
tween two fundamentally distinct approaches to portfolio optimization: the clas-
sical mean-variance methodology pioneered by Markowitz, and a modern data-
driven pipeline based on LSTM networks combined with fully connected NNs
for direct and dynamic allocation of portfolio weights. Through a carefully con-
trolled experimental design, ensuring identical data, constraints, and strictly out-
of-sample evaluation, the study delivers robust evidence on the relative strengths
and weaknesses of each approach.

The empirical findings clearly demonstrate the potential of machine learning
techniques to enhance portfolio performance. The LSTM+NN strategy achieved
significantly higher risk-adjusted returns than the static Markowitz benchmark in
the out-of-sample period, largely due to its ability to dynamically adapt to new
information and evolving market conditions. This adaptivity enables the model
to capture short-term trends and respond promptly to changing asset relation-
ships, delivering both superior returns and improved downside risk management
as measured by the Sharpe ratio and drawdown analysis.

At the same time, this study highlights several practical challenges and limita-
tions associated with the deployment of advanced machine learning models in port-
folio management. Notably, the complexity and lower interpretability of LSTM-
based architectures can present hurdles for regulatory approval and institutional
adoption. There is also an inherent risk of overfitting, particularly when the avail-
able data may not be fully representative of future regimes. The success of the
approach is critically dependent on the predictive skill of the LSTM component as
poor forecasts can directly degrade portfolio outcomes. Moreover, the analysis has
abstracted away from real-world frictions such as transaction costs, liquidity con-

41



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

straints, and operational risk, all of which could affect practical implementation
and realized performance.

Despite these challenges, there exist promising avenues for addressing the iden-
tified limitations. Model complexity and interpretability may be improved through
techniques such as attention mechanisms or model distillation. The risk of overfit-
ting can be further mitigated by adopting more advanced regularization strategies,
ensembling methods, or cross-validation across multiple market regimes. To re-
duce sensitivity to hyperparameter choices and initialization, robust optimization
or Bayesian optimization techniques may be employed. Additionally, transaction
costs and other implementation frictions should be explicitly modeled and incor-
porated into the training and evaluation process in future work.

6.2 Future Work

Building on the encouraging results presented in this thesis, several directions for
future research emerge. First, extending the analysis to incorporate transaction
costs, bid-ask spreads, and liquidity constraints would provide a more realistic as-
sessment of practical investability. Second, exploring alternative ML architectures,
such as transformers, temporal convolutional networks, or hybrid models, could
further enhance predictive accuracy and allocation robustness. Third, evaluating
the generalizability of the approach across different asset classes, international mar-
kets, and varying macroeconomic environments would yield valuable insights into
its broader applicability. Finally, integrating interpretability techniques and model
risk analysis will be essential for bridging the gap between advanced data-driven
models and their real-world deployment in institutional portfolio management.

In summary, this thesis demonstrates the significant promise of ML, and par-
ticularly RNN, for advancing the field of portfolio optimization. By systematically
comparing classical and modern approaches, it provides both empirical evidence
and methodological guidance for future research at the intersection of quantitative
finance and artificial intelligence.

42



Appendix A

Glossary of Financial Definitions

This appendix compiles and organizes key financial terms used throughout this
TFM. Each definition is stated concisely to ensure the reader possesses the neces-
sary background before entering the machine-learning—driven portfolio optimiza-
tion methodology.

A.1 Basic Concepts

Asset: Any resource with economic value that can generate future returns. Ex-
amples include equities (stocks), bonds, commodities, currencies, and real
estate.

Share (Stock): A unit of ownership in a company or corporation. Shareholders
can earn returns via price appreciation and dividends.

Bond: A fixed-income security representing a loan from an investor to a borrower
(typically a government or corporation). Bonds pay periodic interest (coupon
payments) and return the principal at maturity.

Exchange-Traded Fund (ETF): A security that tracks a particular index, com-
modity, bond, or basket of assets. ETFs trade on exchanges like individual
stocks and offer diversified exposure with intraday liquidity.

Index: A statistical measure of the performance of a group of assets (e.g. the
S&P 500, FTSE 100, IBEX 35). Indices serve as benchmarks for portfolio
performance and are often replicated by index-tracking funds.

43



APPENDIX A. GLOSSARY OF FINANCIAL DEFINITIONS

A.2 Return and Risk

Return: The gain or loss on an investment over a specified period, typically ex-
pressed as a percentage of the initial investment. Common measures include:

P, — P

e Simple (Arithmetic) Return: R, = iz —L where P, is price at time
-1

t.

e Log Return: r, = ln(Pt/Pt_l). Log returns are additive over time,
simplifying continuous-time modeling.

Expected Return (u): The anticipated average return of an asset or portfolio,
usually computed as the historical mean or a forecasted value from a predic-
tive model.

Volatility: A statistical measure of the dispersion of returns, typically proxied by
the standard deviation of returns. High volatility implies larger fluctuations
and greater risk.

Covariance (0;;): A measure of how two assets’ returns move together. If assets
i and j have returns r; and r;, then

Cov(ry,r;) = E[(Tz — i) (ry — Nj)}'

A positive covariance indicates that assets tend to move in the same direction;
negative covariance implies inverse movements.

Correlation (p;;): The normalized form of covariance, bounded between —1 and
L,
~ Cov(rg,ry)

Pij = ——
0; 03

where o; and o; are the standard deviations of r; and r;, respectively.

Risk (Portfolio Variance): For a portfolio with weight vector w and covariance
matrix X,

Var(portfolio) = w' ¥ w.

Risk, in the mean—variance framework, is identified with this variance or its
square root (standard deviation).

44



A.3. Portfolio Construction

A.3 Portfolio Construction

Portfolio: A collection of financial assets (e.g. stocks, bonds, ETFs) held by an
investor. The portfolio is defined by a weight vector w = (wy, ..., wy), where
w; is the fraction of the total capital invested in asset i.

Portfolio Weight (w;): The proportion of total portfolio value allocated to asset

t. All weights sum to one:
N

i=1

Diversification: The practice of allocating capital across multiple, low-correlated
assets to reduce idiosyncratic risk. Proper diversification smooths returns
and limits drawdowns by ensuring that poor performance in one asset is
offset by others.

Efficient Frontier: The set of portfolios that maximize expected return for a
given level of risk (variance), or equivalently, that minimize risk for a given
expected return. Under Markowitz’s Mean—Variance framework, the efficient
frontier is traced by solving:

min w' Sw st w'p= p, 1Tw=1, w>0.

Capital Allocation Line (CAL): The line that represents combinations of a
risk-free asset and a risky portfolio. Its slope (the Sharpe ratio) indicates
the best risk-return trade-off achievable by mixing the risk-free asset with
the market portfolio.

Sharpe Ratio: A measure of risk-adjusted return defined as
E[Rp] — Ry

Op

Sharpe Ratio =

where R, and o, are the portfolio’s expected return and standard deviation,
and Ry is the risk-free rate. Higher Sharpe ratios indicate more reward per
unit of risk.

A.4 Classical Optimization Models

Mean—Variance Optimization (MVO): The foundational framework introduced
by Markowitz [1]. Investors choose weights w to solve

min w'Sw st w' p= ps 1"w=1, w>0,
w

45



APPENDIX A. GLOSSARY OF FINANCIAL DEFINITIONS

yielding the efficient frontier of optimal risk—return trade-offs.

Capital Asset Pricing Model (CAPM): Developed by Sharpe (1964) and Lint-
ner (1965) [2], [3], CAPM links an asset’s expected return E[R;] to its sys-
tematic risk (5;):

E[R)] = Ry + B (B[R] — Ry), 51:%

Here Ry is the risk-free rate and R,, is the market return. CAPM assumes
market efficiency, homogeneous expectations and single-period investment
horizons.

Arbitrage Pricing Theory (APT): Proposed by Ross (1976) [23], APT mod-
els an asset’s return as a linear function of multiple macroeconomic factors
F k-

K
R = a; + Zﬁszk + €,
k=1

where [(;; are factor sensitivities. APT does not require a single market
portfolio but assumes no arbitrage and a large number of assets.

Black-Litterman Model: Introduced by Black and Litterman (1992) [9], this
Bayesian framework combines market-implied equilibrium returns (the “prior”)
with the investor’s subjective views to generate posterior expected returns:

—1
UBI, = [(TE)_1 + PTQ_IP} |:(TZ)_1 T+ PO g,

where 7 are equilibrium returns, P encodes view exposures, q are view re-
turns, €2 is view-error covariance, and 7 is a scaling factor.

Risk Parity: Allocates portfolio weights so that each asset (or asset class) con-
tributes equally to total portfolio risk. If o; is the volatility of asset i, a
simple risk-parity rule might allocate

1/0'1'
> ji(1/og)

)

effectively overweighting low-volatility assets to equalize risk contributions
[24].

46



A.5. Portfolio Metrics and Constraints

Conditional Value-at-Risk (CVaR) Optimization: Instead of minimizing vari-
ance, CVaR optimization seeks to minimize the expected loss beyond a spec-
ified Value-at-Risk (VaR) quantile o. If L(w) is the portfolio loss, then
CVaR,, is

CVaR,(w) = E[L(w) | L(w) > VaRa(w)],

and one solves
min CVaR,(w) st.1Tw=1, w>=0

to explicitly control tail risk [25].

A.5 Portfolio Metrics and Constraints

Turnover: The proportion of portfolio value traded (bought or sold) in a rebal-
ancing period. High turnover increases transaction costs and may erode net
returns.

Maximum Weight Constraint: A limit on the weight w; of any single asset to
prevent concentration risk, often written as

Ww; S Wmax VZ .

Long-Only Constraint: Prohibits short selling by requiring w; > 0. A long-only
portfolio holds only non-negative positions.

Leverage: The use of borrowed funds to increase exposure. In a leveraged port-
folio, ). |w;| > 1. Leverage magnifies both gains and losses.

Benchmark (Market Index): A standard against which portfolio performance
is measured. Common benchmarks include the S&P 500, MSCI World, and
IBEX 35.

Tracking Error: The standard deviation of the difference between portfolio re-
turns and benchmark returns. A low tracking error indicates returns closely
follow the benchmark.

Information Ratio: Measures alpha generation relative to tracking error:

E[R, — Ry

Information Ratio = —————,
g (Rp — Rb)

where R, is portfolio return, Ry, is benchmark return, and o(-) denotes stan-
dard deviation.

47



APPENDIX A. GLOSSARY OF FINANCIAL DEFINITIONS

A.6 Machine-Learning—Related Terms

Feature Engineering: The process of creating input variables (features) from
raw data (e.g. returns, technical indicators, macro variables, sentiment scores)
that improve a model’s predictive power.

Hyperparameter: A model parameter set externally (not learned during train-
ing) such as learning rate, number of hidden layers, dropout rate, and batch
size. Hyperparameter tuning (e.g. with Optuna or Ray Tune) searches for
the optimal configuration.

Backpropagation Through Time (BPTT): Extension of backpropagation for
sequence models (RNNs; LSTMs), which computes gradients by unrolling the
network across time steps and applying the chain rule. BPTT can suffer from
vanishing/exploding gradients without gating mechanisms.

Early Stopping: A regularization technique that halts training when validation
performance ceases to improve, preventing overfitting.

Dropout: A technique that randomly “drops” (sets to zero) a fraction of neu-
rons during each training iteration, forcing the network to learn redundant
representations and reducing overfitting.

Batch Normalization: A layer that normalizes inputs to each mini-batch to
have zero mean and unit variance, stabilizing training and allowing higher
learning rates.

Cross-Validation (Rolling Window): A method of evaluating time-series mod-
els by repeatedly training on a window of past data and validating on the
subsequent period (“walk-forward” testing), preserving temporal ordering to
avoid look-ahead bias.

48



Bibliography

1]

7

H. Markowitz, “Portfolio selection,
pp. 77-91, 1952.

The Journal of Finance, vol. 7, no. 1,

W. F. Sharpe, “Capital asset prices: A theory of market equilibrium under
conditions of risk,” Journal of Finance, vol. 19, no. 3, pp. 425-442, 1964.

J. Lintner, “The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets,” Review of Economics and Statistics,
vol. 47, no. 1, pp. 13-37, 1965.

R. O. Michaud, “The markowitz optimization enigma: Is ‘optimized’ opti-
mal?” Financial Analysts Journal, vol. 45, no. 1, pp. 31-42, 1989.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735-1780, 1997.

0. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional
covariance matrices,” Journal of Multivariate Analysis, vol. 88, no. 2, pp. 365—
411, 2004.

D. Goldfarb and G. Iyengar, “Robust portfolio selection problems,” Mathe-
matics of Operations Research, vol. 28, no. 1, pp. 1-38, 2003.

F. Black and R. Litterman, “Global portfolio optimization,” Financial An-
alysts Journal, vol. 48, no. 5, pp. 28-43, 1992.

V. DeMiguel, L. Garlappi, and R. Uppal, “Optimal versus naive diversifi-
cation: How inefficient is the 1/n portfolio strategy?” Review of Financial
Studies, vol. 22, no. 5, pp. 1915-1953, 2009.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267288, 1996.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

49



BIBLIOGRAPHY

[13]

[14]

[18]
[19]

[20]

20

J. H. Friedman, “Greedy function approximation: A gradient boosting ma-
chine,” Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.

T. Fischer and C. Krauss, “Deep learning with long short-term memory
networks for financial market predictions,” Furopean Journal of Operational
Research, vol. 270, no. 2, pp. 654-669, 2018.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv preprint
arXiv:1803.01271, 2018.

J. Moody and M. Saffell, “Learning to trade via direct reinforcement,” IEEFE
Transactions on Neural Networks, vol. 12, no. 4, pp. 875-889, 2001.

Y. Li, X. Zhao, J. Wang, and W. Zhang, “Deep reinforcement learning
for automated stock trading: An ensemble strategy,” IEEE Access, vol. 7,
pp. 23028-23 038, 2019.

M. F. Dixon, I. Halperin, and P. Bilokon, “Machine learning in finance: From
theory to practice,” Springer, 2018.

J. Heaton, N. G. Polson, and J. H. Witte, “Deep learning in finance,” arXiv
preprint arXiv:1602.06561, 2017.

X. Chen and Q. Lin, “Hybrid portfolio optimization using evolutionary al-
gorithms and neural networks,” Journal of Computational Finance, vol. 24,
no. 3, pp. 1-29, 2020.

X. Ding, T. Zhang, S. Wan, and X. Yu, “End-to-end portfolio optimization
using reinforcement learning,” Applied Soft Computing, vol. 98, p. 106 627,
2021.

E. F. Fama and K. R. French, “The cross-section of expected stock returns,”
Journal of Finance, vol. 47, no. 2, pp. 427465, 1992.

S. A. Ross, “The arbitrage theory of capital asset pricing,” Journal of Eco-
nomic Theory, vol. 13, no. 3, pp. 341-360, 1976.

E. E. Qian, “Risk parity portfolios: Efficient portfolios through true diversi-
fication,” PanAgora Asset Management, Tech. Rep., 2005.

R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-
risk,” Journal of Risk, vol. 2, no. 3, pp. 21-42, 2000.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366,
1989.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536,
1986.



Bibliography

28]

[29]

[30]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proceedings of the 3rd International Conference on Learning Representations

(ICLR), 2015.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEFEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157-166, 1994.

K. Cho, B. van Merriénboer, C. Giilgehre, et al., “Learning phrase repre-
sentations using rnn encoder—decoder for statistical machine translation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguistics,
2014, pp. 1724-1734.

o1



	Introduction
	Literature Review

	Basic financial concepts
	Financial Fundamentals and Investment Principles
	What Is an Investment Portfolio and What Drives Its Selection?
	Investment Management Types
	Asset Allocation Profiles
	Investment Portfolio Diversification and rebalancing


	Classical Models for Investment Portfolios
	Mean–Variance Portfolio Optimization (Markowitz)
	Other Classical Models

	Deep Neural Networks: Theoretical Foundations
	Introduction to Deep Neural Networks
	Feedforward (Multilayer Perceptron) Networks
	Recurrent Neural Networks
	Long Short–Term Memory Networks

	Comparative Methodology: Classical vs. Machine Learning Portfolio Optimization
	Introduction
	Data Acquisition and Preprocessing
	Data Sources and Universe Selection

	Training methodology
	Model Hyperparameters
	Performance Metrics

	Empirical Results

	Conclusions and Future Work
	Conclusion
	Future Work

	Glossary of Financial Definitions
	Basic Concepts
	Return and Risk
	Portfolio Construction
	Classical Optimization Models
	Portfolio Metrics and Constraints
	Machine‐Learning–Related Terms


