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Resumen

En este trabajo se aborda el problema de la valoraciéon de opciones financieras
mediante técnicas de aprendizaje automatico, y en particular, mediante redes
neuronales multicapa (MLP). Partiendo de las limitaciones conocidas del mod-
elo clasico de Black-Scholes, se propone el uso de modelos data-driven capaces de
capturar relaciones no lineales mas representativas de los mercados reales.

Se desarrolla un pipeline completo de recoleccion, limpieza y preprocesamiento
de datos sobre opciones europeas del S&P 500, utilizando librerias de c6digo abierto
como yfinance y BeautifulSoup. Sobre este conjunto de datos, se implementan
dos modelos principales: un modelo Baseline MLP con las mismas variables de
entrada que Black-Scholes (precio spot, strike, tiempo hasta vencimiento e implied
volatility), y un modelo Extended MLP que incorpora variables adicionales de
mercado (open interest, volumen y moneyness).

El analisis comparativo de resultados muestra que ambos modelos MLP son
capaces de mejorar sustancialmente la capacidad predictiva frente al modelo de
Black-Scholes, especialmente en términos de error cuadratico medio (RMSE) y
coeficiente de determinacion (R?). El modelo extendido alcanza un R? superior al
92% sobre el conjunto de test.

Ademés, se lleva a cabo un analisis exhaustivo de interpretabilidad mediante
el uso de derivadas parciales del modelo (sensibilidades) y curvas « implemen-
tadas con la libreria NeuralSens. Este analisis permite comparar las sensibili-
dades aprendidas por la red neuronal con los clasicos Greeks de Black-Scholes,
mostrando como el modelo MLP captura patrones no lineales y dependencias lo-
cales especialmente relevantes en escenarios extremos de mercado (por ejemplo,
volatilidad proxima a cero, vencimientos muy cortos o opciones muy ITM).

Los resultados obtenidos ponen de manifiesto tanto las ventajas predictivas
como los retos interpretativos de los modelos neuronales en finanzas, y refuerzan el
potencial de enfoques hibridos que combinen modelos data-driven con herramientas
de explicabilidad financiera.
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Abstract

This work addresses the problem of financial option pricing through machine learn-
ing techniques, specifically using multilayer perceptrons (MLPs). Starting from
the well-known limitations of the classical Black-Scholes model, we propose data-
driven models capable of capturing nonlinear relationships that better reflect real
market dynamics.

A complete pipeline for collecting, cleaning, and preprocessing European option
data from the S&P 500 is developed, using open-source libraries such as yfinance
and BeautifulSoup. Based on this dataset, two main models are implemented: a
Baseline MLP with the same input variables as Black-Scholes (spot price, strike
price, time to maturity, and implied volatility), and an Eztended MLP that incor-
porates additional market variables (open interest, volume, and moneyness).

The comparative analysis shows that both MLP models substantially improve
predictive performance over the Black-Scholes model, particularly in terms of Root
Mean Squared Error (RMSE) and coefficient of determination (R?). The extended
model achieves an R? exceeding 92% on the test set.

Additionally, an interpretability analysis is conducted using the model’s partial
derivatives (sensitivities) and « curves implemented with the NeuralSens library.
This analysis enables a comparison between the sensitivities learned by the neural
network and the classical Black-Scholes Greeks, revealing how the MLP captures
nonlinear patterns and local dependencies that become especially relevant under
extreme market scenarios (e.g., near-zero volatility, very short maturities, or deep
ITM options).

The results highlight both the predictive advantages and interpretability chal-
lenges of neural network models in finance, reinforcing the potential of hybrid
approaches that combine data-driven models with financial explainability tools.
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Chapter 1

Introduction

Since its conception, financial markets have evolved into ever more complex
systems in which derivative products, such as options, play a key role. Finan-
cial options are widely used by investors for hedging, speculation, and portfolio
diversification.

By definition, a financial option is a contract that gives the holder the right,
but not the obligation, to buy or sell an underlying asset at a predetermined price
(the strike price) on or before a specified expiration date. The two main types
of options are call options, which give the holder the right to buy the underlying
asset, and put options, which give the holder the right to sell it [1].

The use of contracts with option features is not a modern invention. The basis
for such features emerges from the fundamental process of exchange, and there is
evidence that even in ancient times, merchants and traders used similar contracts
to hedge against price fluctuations [2].

The evolution of options revolved around two main elements: security of the
transactions; and the emergence of speculative trading. Both things were closely
related to the concentration of commercial activity, initially at medieval markets
and fairs and later on the bourse. One example of this is the Antwerp Bourse,
which was established in the 16th century [3], where, due to the rapid expansion
of seaborne trade, speculative transactions on ‘to arrive’ grain gained popularity
among merchants.

In the 19th century, Louis Bachelier set the foundations for modern financial
theory by introducing the concept of Brownian motion to derivative pricing in
his 1900 thesis [4]. Although his work had little impact at the time, it laid the



groundwork for future developments in the theory of financial derivatives. Almost
a century later, in 1973, Fischer Black and Myron Scholes, with the earlier contri-
bution of Robert Merton, published the Black-Scholes (BS) model [1], which led
to an enormous growth in options trading and provided mathematical legitimacy
to the field of financial derivatives.

Options trading has grown exponentially since the introduction of the BS model,
reaching in 2024, according to the Options Clearing Corporation (OCC), a value of
$1.4 trillion in traded options [5]. This explosive growth in options trading volume
has underscored the need for more robust and accurate pricing methods. While
the BS model marked a groundbreaking milestone in financial mathematics, its
simplifying assumptions, such as constant volatility and log-normal price distribu-
tions, often fail to capture the complex dynamics observed in modern markets. As
a result, there has been a growing interest in developing alternative models that
can better reflect market realities.

In recent years, the increasing availability of large-scale financial datasets com-
bined with relevant progress in computing power has opened the possibility of
data-driven approaches. In particular, machine learning (ML) techniques have en-
tered the scene as powerful tools capable of learning complex relationships from
data, making them very promising candidates for addressing the problem of option
pricing in a more versatile and adaptive way. Among them, Multilayer Perceptrons
(MLPs) have been proposed as a simple yet powerful architecture for modeling the
nonlinear relationships inherent in option pricing [6].

Therefore, this thesis aims to empirically evaluate the effectiveness of MLPs in
approximating option prices, taking advantage of their capacity to model complex
and nonlinear patterns and adapt to empirical data without relying on rigid as-
sumptions. In particular, we focus on two core goals: to demonstrate, through
concrete metrics such as RMSE and R2, that an MLP can outperform BS in fit-
ting observed market prices; and to enhance the interpretability of these models
through a sensitivity analysis of the partial derivatives of the model output with
respect to the input variables. The structure of this work will be further explained
in Subsection [L.3l

1.1 Motivation

While classical models like BS continue to play a foundational role in the pricing of
financial options, their simplifying assumptions—such as constant volatility and
log-normal asset returns—often lead to systematic pricing errors in real market
conditions [7, [8 ©]. These limitations have motivated the exploration of data-
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driven alternatives capable of capturing more complex relationships observed in
market data.

Another fundamental limitation of current ML models lies in their lack of in-
terpretability. Neural Networks (NN), in particular, are often perceived as black
boxes, providing little transparency about how inputs are transformed into out-
puts. This opaqueness poses a barrier to adoption in the financial industry, where
trust, regulatory scrutiny, and risk management require not only accurate but also
explainable predictions [10].

In this context, this work aims to explore the use of modern ML models for
option pricing with a dual focus: evaluating predictive performance and enhancing
interpretability. By doing so, it contributes to the ongoing effort to integrate
advanced ML into financial decision-making in a robust and explainable way.

1.2 Objectives

The main objective of this thesis is to empirically evaluate the effectiveness of
MLPs in option pricing, comparing their performance to the classical BS model
and analyzing the interpretability of their predictions through sensitivity analysis.
To this end, the specific goals of the thesis are as follows:

e Review the existing literature on option pricing models, with a focus on the
limitations of traditional approaches and the potential of ML techniques.

e Develop and implement MLP-based NNs for option pricing capable of cap-
turing the complex dynamics of implied volatility surfaces.

e Benchmark the performance of the proposed MLPs against the BS model
using quantitative metrics such as Root Mean Squared Error (RMSE) and
coefficient of determination (R?).

e Analyze the interpretability of the trained MLP models by computing and
visualizing the partial derivatives of the model output with respect to its in-
put variables, interpreting these partial derivatives as analogs to the Greeks,
thus enabling comparisons between classical sensitivities and neural network
behavior.

Interpretable Neural Networks for Option Pricing 3
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1.3

Methodology

This thesis will follow a structured approach to achieve the objectives outlined
above and will be divided into the following chapters:

Chapter 1: Introduction — Introduces the motivation behind the study,
outlines the research objectives, and describes the overall methodology fol-
lowed throughout the thesis.

Chapter 2: Classical Option Pricing Models — Presents the theoret-
ical foundations of option pricing, including the BS model, the concept of
moneyness, and the main sensitivity measures known as Greeks.

Chapter 3: Literature Review - Reviews previous research related to
data-driven approaches for option pricing, with a particular focus on studies
that apply ML and NN to improve pricing accuracy and model interpretabil-

1ty.

Chapter 4: Data Collection and Preprocessing — Describes the data
sources used in this work, the option chain extraction pipeline, and the pre-
processing steps applied to prepare the dataset for model training and eval-
uation.

Chapter 5: Model Development and Evaluation — Presents the de-
sign and implementation of the ML models, covering architectural choices,
training procedures, and evaluation metrics. It also includes a comparative
analysis with traditional models.

Chapter 6: Interpretability Analysis — Analyzes the interpretability of
the proposed models by examining their sensitivity to input variables changes
through derivative-based methods and visual sensitivity measures.

Chapter 7: Discussion, Conclusions, and Future Work — Summarizes
the experimental results, discusses the key insights derived from the models’
behavior, and proposes directions for future research.

Interpretable Neural Networks for Option Pricing 4
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1.4 Resources

To develop and evaluate this thesis, we will require access to a large and represen-
tative dataset of option prices and their associated market information.

We will focus on S&P 500 index options, which are widely used in financial
research and practice due to their liquidity and well-documented characteristics.
Importantly, S&P 500 options are European-style, meaning they can only be ex-
ercised at expiration. This simplifies the modeling process and aligns well with
many theoretical pricing frameworks.

The data will be collected using the yfinance Python library [11], which pro-
vides access to both historical asset prices and the full option chain (including
bid, ask, implied volatility, and open interest) for each security. This approach
enables full control over the data acquisition process and allows for transparent,
reproducible experiments.

This dataset will serve as the common data source from which training and
testing subsets will be extracted for our ML models, allowing for a fair comparison
with the BS benchmark. Additionally, the use of a custom-built dataset supports
the goal of making the entire research pipeline accessible and replicable for future
work.

The full process of data collection, cleaning, and feature engineering is described
in detail in Chapter [4 where we present the methodology used to construct the
final dataset employed in the experiments.

Interpretable Neural Networks for Option Pricing 5)
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Chapter 2

Classical Option Pricing Models

As introduced in the previous chapter, option pricing has long been one of the
central problems in quantitative finance. This chapter presents the theoretical
foundations of classical option pricing models, which serve as a baseline and point
of comparison for the data-driven approaches developed later in this work.

2.1 The Black-Scholes Model

As stated in Chapter |1, the BS model, introduced in 1973 by Fischer Black and
Myron Scholes, and later extended by Robert Merton, was the first widely adopted
framework for pricing European-style options [12]. The model is built upon several
simplifying assumptions: the underlying asset price follows a geometric Brownian
motion; markets are frictionless and free of transaction costs or taxes; volatility is
constant; the short-term risk-free interest rate is known and constant over time; no
arbitrage opportunities exist; and the underlying asset pays no dividends |7, [13].

Under these assumptions, the price of a European call option can be expressed
in closed form as follows:

C(S) =5 -®(d) — Ke ™ - d(dy),
~ In(S/K)+ (r+0%/2)T
dy = T : (2.1)

dgzdl—O'\/T
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where:

e ('(S) is the price of the call option at time ¢,

S is the current price of the underlying asset,

K is the strike price,

T is the time to maturity (in years),

r is the risk-free interest rate,

o is the volatility of the underlying asset,

®(-) denotes the cumulative distribution function of the standard normal
distribution.

This model allows practitioners to compute theoretical option prices based on
observable market inputs. However, the restrictive assumptions of the model often
limit its accuracy when applied to real-world financial markets.

2.2 Moneyness

A key concept in option pricing is moneyness, which refers to the relationship
between the current price of the underlying asset and the strike price of the op-
tion. Moneyness helps categorize options based on their intrinsic value and their
likelihood of being exercised profitably.

For call options:

e In-the-money (ITM): S > K

e At-the-money (ATM): S~ K

e Out-of-the-money (OTM): S < K
For put options, the definitions are inverted:
o ITM: S< K

e ATM: S~ K

e OTM: § > K

Moneyness plays a critical role in determining the option’s intrinsic value, which
is the difference between the current price of the underlying asset and the strike
price. The intrinsic value is zero for OTM options, while ITM options have a
positive intrinsic value [14].

Interpretable Neural Networks for Option Pricing 8
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2.3

Option Greeks

Beyond pricing itself, a key aspect of option trading and risk management is un-
derstanding how option prices respond to changes in market conditions. For this
purpose, traders rely heavily on a set of sensitivity measures known as Greeks.
These quantify how the price of an option reacts to infinitesimal changes in key
variables such as asset price, volatility, time, and interest rates.

Greeks can be analytically derived from option pricing models such as BS, and
the most commonly used for options include:

Delta (A): Quantifies how much the option price changes as the underlying
asset price varies:

e

A==
S

Gamma (I'): Captures the curvature of the option price with respect to the
underlying price, i.e., how Delta itself changes as S moves:

e

I'=as

Vega (v): Reflects the sensitivity of the option price to variations in the
implied volatility of the underlying:

_ac
o

v

Theta (©): Represents the time decay of the option, indicating how its
price change as the expiration date approaches:

e

O=%7

Rho (p): Expresses the sensitivity of the option price to changes in the
risk-free interest rate:
_oC

P~ or

These sensitivities provide valuable information for hedging, risk management,
and trading decisions under various market conditions [15].
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For example, if a trader were to choose between two options with identical
strike prices and expiration dates, but different Delta values, the option with the
higher Delta would be more sensitive to changes in the underlying asset’s price.
This sensitivity would directly affect the trader’s decision depending on their risk
preferences and market outlook.

2.4 Limitations of Classical Models

While the BS model and its associated Greeks have become foundational tools
in modern financial markets [16], their simplifying assumptions often fail to cap-
ture real-world complexities. In particular, assumptions of constant volatility,
log-normal price dynamics, and frictionless markets are frequently violated. As
a result, systematic pricing errors may arise, especially during periods of market
stress or when pricing exotic instruments.

These limitations have motivated extensive research into alternative pricing
methodologies. In recent years, data-driven approaches such as ANN have gained
increasing attention for their ability to model nonlinear dependencies directly from
observed data [17]. The following chapter provides a detailed review of previous
research in this direction.

Interpretable Neural Networks for Option Pricing 10
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Chapter 3

Literature Review

This chapter provides a review of the most relevant research efforts that have
attempted to improve option pricing beyond classical analytical models. In par-
ticular, we focus on the growing body of work exploring data-driven approaches,
with an emphasis on the application of MLL and NN to address the limitations of
traditional models and capture the complex dynamics observed in real financial
markets.

3.1 Early Applications of Machine Learning in Fi-
nance

One of the first relevant contributions towards non-parametric modeling was made
by Hutchinson et al. [18], who applied NN and kernel regressions to learn option
prices directly from market data, pioneering a line of research that would later be-
come central to modern data-driven finance. Their work started by identifying the
inherent limitations of parametric pricing models such as BS, which rely on strong
assumptions regarding volatility, return distributions, and market efficiency. In
contrast, they proposed a non-parametric alternative based on learning networks
capable of estimating pricing functions directly from historical data, without re-
quiring a fixed functional form.

Hutchinson et al. evaluated several network architectures, including radial ba-
sis function networks (RBF), MLPs, and projection pursuit regression (PPR), and
demonstrated through Monte Carlo simulations that these models could success-
fully replicate the BS pricing formula with high out-of-sample accuracy. Further-

11



more, by applying their methodology to real data on S&P 500 futures options,
they showed that learning networks not only matched but often outperformed
BS, particularly in pricing and hedging effectiveness across different moneyness
and maturities. Their study concluded by highlighting the promise of learning
networks as viable alternatives to parametric pricing models and outlined sev-
eral directions for further research, such as expanding input features, optimizing
network architectures, and improving evaluation metrics for nonlinear models.

Building on these early findings, the following decade saw machine learning ap-
plications to option pricing become increasingly widespread, driven by advances
in computational power and algorithmic sophistication. Studies such as Mitra [19]
and Can & Fadda [20] applied MLP incorporating standard financial features like
spot price, strike price, time to maturity, interest rates, and historical volatility,
demonstrating the ability of machine learning models to capture complex relation-
ships beyond the reach of traditional formulas. Ruf and Wang [21] later provided
a comprehensive review of machine learning applications to derivative pricing up
to 2019, marking a transition point towards more sophisticated deep learning ar-
chitectures that now form the basis of ongoing research in this area.

3.2 Recent Advancements

Following the foundational contributions Hutchinson et al.[18] and the subsequent
stream of studies that demonstrated the viability of NN for option pricing[19,
20), 21], recent years have witnessed a significant acceleration in the use of more
advanced deep learning techniques. The increasing availability of high-frequency
financial data, coupled with advances in computing power and algorithmic design,
has enabled researchers to explore architectures capable of capturing more complex
temporal dependencies and nonlinear relationships that are characteristic of real
financial markets.

A representative example of this evolution is the study conducted in 2019 by
Stanford University students Alexander Ke and Andrew Yang, who investigated
the application of Long Short-Term Memory (LSTM) networks to option pric-
ing [7]. In their work, they compared three neural network architectures: a simple
MLP trained with 20-day historical volatility to predict option prices; an alter-
native MLP architecture estimating bid and ask prices separately; and finally, an
LSTM network designed to learn volatility dynamics directly from historical price
sequences. All three models demonstrated superior predictive accuracy compared
to the BS model, with the bid-ask MLP variant achieving the most favorable re-
sults.
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Subsequent studies have further refined these approaches by systematically an-
alyzing model robustness across different market conditions. For instance, Iltiizer
[8] examined how NN compare with BS under various volatility regimes. Her find-
ings suggest that NN tend to outperform BS for call options during tranquil market
periods, while BS may retain an advantage during turbulent phases, particularly
for calls, with an inverse pattern observed for puts.

Beyond recurrent architectures, the application of alternative machine learning
paradigms has also gained momentum. In this context, Berger [9] conducted a
comprehensive empirical comparison between deep learning models implemented
in TensorFlow, ensemble methods such as XGBoost, and automated pipelines gen-
erated by Google Cloud’s AutoML. His results demonstrate that while all machine
learning models achieved lower mean absolute error (MAE) than BS, the XGBoost
model with maximum depth 10 delivered the best performance, outperforming even
AutoML despite significantly lower computational cost.

3.3 Interpretability and explainability

A critical challenge of ML models in finance is their interpretability compared to
traditional parametric models, which offer explicit financial meaning to different
parameters. In contrast, NN and other ML algorithms often operate as black-box
models, making it difficult to assess whether their predictions adhere to fundamen-
tal financial principles such as no-arbitrage conditions, monotonicity with respect
to key variables, or consistency with the structure of implied volatility surfaces. As
a result, explainable Al (XAI) methods have been increasingly applied to provide
insights into ML pricing models and to ensure their economic plausibility [22].

For example, Pimentel et al. [23] applied SHAP (SHapley Additive exPlana-
tions) values to decompose LSTM predictions into the marginal contributions of
each input feature, including spot price, strike price, time to maturity, volatility,
and risk-free rate. Their analysis confirmed that the LSTM model learned eco-
nomically meaningful relationships, such as the positive sensitivity of call option
prices to underlying price and volatility, as well as the expected decay in option
value as time to maturity decreases, consistent with classical option pricing theory.

Similarly, Liang and Cai [24] employed Accumulated Local Effects (ALE) plots
to analyze the response of the model to variations in key inputs such as implied
volatility and moneyness. The ALE analysis provided a global visualization of how
these inputs affected predicted option prices, revealing that the model successfully
captured the shape of empirical implied volatility surfaces observed in real markets.
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In this context, this thesis will further explore sensitivity-based explainability,
with a focus on partial derivatives and alpha curves, as an alternative to global
XATI techniques.

3.4 Remaining Challenges and Future Directions

Despite the substantial progress made in recent years, several open challenges
remain in the application of machine learning to option pricing, offering margin
for continued research.

First, while NN have repeatedly demonstrated superior predictive accuracy rel-
ative to classical approaches, they often lack financial interpretability. As high-
lighted in recent studies [23], 24, 22], understanding how they internally process
financial inputs remains a central issue. Without proper interpretability tools,
there is a risk that models may learn spurious correlations or exhibit behaviors
inconsistent with fundamental financial principles. This thesis addresses this issue
by applying sensitivity-based interpretability techniques, such as partial deriva-
tives and alpha curves, enabling a direct comparison with classical Greeks and
offering financial insights into model behavior

Second, like most existing studies, this work relies on supervised learning frame-
works that directly map inputs to observed prices, without explicitly enforcing
financial principles such as no-arbitrage or risk-neutral valuation. Future research
may explore hybrid models that combine analytical structures with neural net-
works to improve financial consistency.

Finally, while this thesis focuses on static option snapshots, real markets are
dynamic, and adapting models to shifting volatility regimes remains challenging.
Incorporating temporal information or regime-switching mechanisms may enhance
robustness in changing market environments.

Overall, this thesis contributes to ongoing efforts by combining predictive per-
formance with interpretable neural network models, providing a framework that
balances flexibility and financial reasoning.
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Chapter 4

Data collection and Preprocessing

This chapter provides a comprehensive overview of the data collection and pre-
processing steps undertaken to prepare the dataset for training and evaluating
ML models for option pricing. The process involves several key stages, includ-
ing the selection of data sources, scraping option chain data, cleaning and feature
engineering, and summarizing the dataset’s characteristics. Each section will de-
tail the methodologies employed, the challenges encountered, and the solutions
implemented to ensure a robust and reliable dataset.

Unlike many existing studies that rely on pre-processed, and quite often pro-
prietary, datasets, in this work, we tried to focus on open source data collection
alternatives in order to ensure the reproducibility of our results.

4.1 Data Source and Ticker Selection

The primary data source for this study is the yfinance Python library, which
provides access to historical stock prices and option chain data for a wide range
of securities. This open-source library utilize Yahoo’s publicly available APIs for
accessing financial data, making it a suitable choice for our research. The library
allows us to retrieve not only the historical prices of underlying assets but also the
full option chain, including bid, ask, implied volatility, and open interest for each.

The list of tickers used in this study consists of companies listed in the S&P 500
index. This index was chosen due to its high liquidity, market representativeness,
and the widespread availability of options data across its members. The list of
S&P 500 tickers is retrieved dynamically from the corresponding Wikipedia page
using the BeautifulSoup library [25]. This approach ensures that the list is always
up to date with the latest index composition, avoiding reliance on static files.
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4.2 Option Chain Scraping Pipeline

Once the list of S&P 500 tickers was obtained from Wikipedia, a custom scraping
pipeline was developed to retrieve option chain data for each ticker through the
yfinance interface.

For every company in the index, the pipeline iterates over all available expiration
dates, downloading both call and put options. Each option contract includes
metadata such as:

e Ticker symbol

e Strike price

e Expiration date

e Option type (call or put)

e Bid and ask prices

e Implied volatility

e Open interest

e Last trade date

Each option is enriched with two additional fields:

e price (the spot price of the underlying asset at the time of download),

e remaining (the number of days remaining until expiration, calculated as
the difference between the expiration date and the current date).

To ensure scalability and reproducibility, the pipeline is implemented as a stan-
dalone Python script, designed to be executed daily. The output of this step
consists of two raw CSV files, one for call options and one for puts, saved in the
data/raw/ directory with the current date in the filename.

4.3 Data Cleaning and Feature Engineering

After the raw option data is collected, a preprocessing phase is applied to clean
the dataset and engineer relevant features for modeling.

First, the following filters are applied to ensure data consistency:

e Rows with missing values in critical fields such as bid, ask, or openInterest
are removed.
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e Contracts with non-positive implied volatility (impliedVolatility < 0)
are excluded, since implied volatility values equal to zero or negative are not
meaningful from a financial perspective and may be result of data errors or
market anomalies.

Then, several derived features are computed to enhance the dataset:

e Time to maturity (7'), calculated as the number of remaining days to
expiration divided by 365.

e Mid-price, computed as the average between bid and ask prices.

These features are crucial for training models that generalize well, as they en-
code time and pricing dynamics that are not directly available in the raw data.

4.4 Dataset Summary and Exploratory Statistics

After completing the scraping and preprocessing steps, the resulting dataset con-
tains a rich and diverse collection of option contracts across multiple tickers, expi-
ration dates, and strike prices. The final dataset used for model training consists
of approximately 263,000 option contracts, covering 500 different tickers. The
exact number of observations may vary slightly depending on the execution date
and the availability of option chain data on Yahoo Finance.

In this section, we present a statistical summary of the dataset and explore its
key characteristics.

4.4.1 Summary Statistics

Table[4.1]shows a general overview of the cleaned dataset, including key descriptive
statistics for relevant numerical features.

Variable Mean Std. Dev. Min Max
Spot Price (price) 317.85 619.69 8.59 5475.26
Strike Price (strike) 330.79 599.48 0.5 7900
Time to Maturity (7) 0.53 0.56 0.003 2.55
Mid Price (midPrice)  55.53 159.72 0.00 3986
Implied Volatility 0.52 0.59 0.00001 37.22
Open Interest 642.6 2854.98 0.00 231208

Table 4.1: Summary of the cleaned dataset.
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4.4.2 Distribution of Contracts

The dataset includes both call and put options, with a wide variety of maturities
and strike prices. The following characteristics were observed:

e Most options have a time to maturity (7') of less than 100 days, consistent
with the high trading volume of near-term contracts.

e Approximately 58% of the options in the dataset are OTM, indicating a
slight skew in favor of contracts with strike prices above (for calls) or below
(for puts) the spot price of the underlying asset.

e The distribution of implied volatility is right-skewed, with most values clus-
tered between 0% and 10%, but with some extreme values reaching above

20%.

e The mid-price also exhibits a right-skewed distribution, with a significant
number of contracts priced below $1000, but some high-value contracts ex-
ceeding $3000.

4.5 Limitations and Considerations

While the data collection and preprocessing pipeline was designed to ensure trans-
parency, reproducibility, and scalability, it is important to acknowledge several
limitations and methodological choices that may impact the generalizability of the
results.

4.5.1 Scraping Limitations

e Snapshot-only data: The dataset reflects a single snapshot in time, as
all option chain data was scraped on a specific execution date. As a result,
the dataset does not capture historical trends or temporal dynamics such as
volatility clustering, term structure shifts, or changes in market sentiment
over time.

e Limited coverage for some tickers: Although the S&P 500 contains
highly liquid stocks, not all tickers have the same depth in their option chains.
Some companies, especially those with lower trading volume or lower investor
interest, may only offer a few expiration dates or a sparse set of strike prices.
This can reduce the representativeness or richness of the data for those assets.
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4.5.2 Modeling Decisions

e No imputation of missing values: Instead of applying interpolation or
statistical imputation techniques, all rows containing missing values in key
fields (e.g., bid, ask, open interest, implied volatility) were removed dur-
ing preprocessing. While this ensures data quality, it may bias the dataset
toward more liquid contracts.

e Bias toward short-term, liquid contracts: Due to filtering steps and
data availability, the final dataset contains a majority of short-term options
with fewer than 100 days to maturity and relatively high open interest. This
focus on near-term contracts enhances model reliability but may limit its
extrapolation capacity to longer-dated or less actively traded options.

These limitations do not compromise the validity of the results for the stated
objectives, comparing neural network pricing performance to the BS model and ex-
ploring model explainability. However, they should be considered when extending
this work to production-grade systems or other financial contexts.

4.6 Code Availability

All scripts, data collection pipelines, and preprocessing steps described in this
chapter have been implemented in Python and are fully available for reproducibility
purposes. The complete source code repository can be accessed at:

github.com/juansanchezf/optionGreeks

This repository includes data scraping scripts, feature engineering routines,
model training code, and all experiments performed throughout this thesis.
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Chapter 5

Model Development and Evaluation

In this chapter, we describe the methodology followed for training and evaluating

neural network models for option price prediction. The primary objective is to
assess the capability of deep learning techniques, particularly MLPs, to improve
upon the classical BS formula even when provided with the same set of inputs.
Subsequently, we extend the architecture to include additional inputs and evaluate
its performance gain.

To this end, two MLP architectures are implemented:

e A baseline MLP: Designed with the same inputs as the BS model, to
facilitate direct comparison under equivalent assumptions.

e An extended MLP: Which incorporates additional features to exploit more
of the available data and further improve predictive accuracy

In addition to evaluating predictive performance, the baseline model will also
be used in Chapter [6] to perform a sensitivity analysis of the model’s predictions.
This will allow us to understand how changes in input variables affect the predicted
option prices and how these new metrics can be compared to classical financial
instruments like the Greeks.

5.1 Baseline MLP: Reproducing BS Inputs

We begin by establishing a fair benchmark model. Specifically, we first design a
simple MLP that replicates the input space of the BS model: spot price (S), strike
price (K), time to maturity (7'), and implied volatility (o). This design isolates
the predictive power of the neural architecture itself under equivalent conditions.

21



5.1.1 Model Architecture and Training

The baseline model takes the price, strike, time to maturity, and implied volatility
as inputs and predicts the mid-price of the option, defined as the average of the
bid and ask prices. The dataset was split into training and test sets using an 80,20
proportion.

Next, a hyperparameter tuning phase was conducted using a grid search with
10-fold cross-validation over the following parameter grid:

param = {
MLP__activation’: [’relu’, ’tanh’],
’MLP__alpha’: [0.01, 0.001],
’MLP__hidden_layer_sizes’: [(30,), (40,), (60,)],
’MLP__learning_rate_init’: [0.001, 0.01, 0.05, 0.1, 0.2]

This tuning procedure explored different combinations of the regularization
factor, number of neurons for the hidden layer, initial learning rate and activation
function. The best combination, shown in Figure[5.1] corresponds to a hidden layer
of 60 neurons and o = 0.001, with a Tahn activation function and a learning rate
of 0.01. The model was trained using the Adam optimizer with a mean squared
error (MSE) loss function.
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Figure 5.1: Grid Search results for baseline MLP hyperparameters.
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5.1.2 Performance Evaluation

With the model fully trained, we proceed to evaluate its performance relative to
the BS analytical pricing formula. Predictions were obtained for both training and
test sets using each method. The BS predictions were computed with a constant
risk-free interest rate of r = 4.5% [26].

The overall performance metrics obtained from both models are summarized in

Table 5.1k
Training Test
Model MAE RMSE R? MAE RMSE R?

Black-Scholes 10.72  80.39 0.75 10.75 87.17 0.71
Baseline MLP 12.26 52.78 0.89 12,51 57.39 0.87

Table 5.1: Performance comparison between BS and Baseline MLP.

Beyond these aggregated metrics, we conducted a more granular analysis to
compare how often each model outperformed the other on individual predictions.
Specifically, we computed the number of test cases in which the BS formula yielded
a prediction closer to the observed mid-price than the MLP, and vice versa.

The results of this pairwise comparison show that the BS model outperformed
the MLP in 19,434 instances, with an average improvement margin of 8.91 and
a median of 3.49 in absolute error. Conversely, the MLP provided a better ap-
proximation in 7,927 cases, achieving a substantially higher average margin of
improvement of 15.83 and a median of 2.24.

5.1.3 Discussion

As shown in Table [5.1] while the Mean Absolute Error (MAE) is slightly lower in
the BS model, the baseline MLP drastically reduces the RMSE and improves the
coefficient of determination (R?), especially in capturing large deviations in price.
This confirms the ability of neural networks to learn nonlinear patterns beyond
the assumptions embedded in the analytical formula.

Moreover, although the BS model yields more accurate predictions in a greater
number of individual cases, the neural network achieves considerably larger im-
provements in the subset of cases where it performs better. This asymmetric
behavior highlights the complementary nature of both approaches and reinforces
the potential of ML techniques in modeling financial instruments.
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These results motivate a more detailed sensitivity analysis, particularly centered
on those extreme cases where the MLP substantially outperforms the BS model.
Such analysis can reveal which input configurations drive the largest improvements
and help interpret the internal mechanisms behind the MLP’s predictions. This
will be thoroughly explored in Chapter [6]

5.2 Extended MLP: Adding Informative Inputs

Following the encouraging results obtained with the baseline model, we next in-
vestigate whether expanding the input space with additional market variables can
further enhance the model’s predictive capabilities. While the baseline model
demonstrated that a neural network can approximate the BS formula with com-
petitive accuracy, its input vector was constrained to the same variables that the
analytical model uses. However, real-world market dynamics often involve more
complex patterns and additional factors that influence option pricing. To capture
such information, we develop a more expressive model by enriching the input vector
with auxiliary features such as market volume, open interest, and the moneyness
indicator.

5.2.1 Model Architecture and Training

To incorporate this additional information, we extend the input space to include
three new variables: openInterest, volume, and a binary indicator inTheMoney,
which signals whether the option is currently profitable to exercise.

As in the baseline experiment, hyperparameter optimization was performed
through grid search using a cross-validated pipeline. This time, however, a wider
architecture space was explored to account for the increased input dimensionality:

e Hidden layer sizes: (80, ), (40,40), and (80, 40, 20)
e Activation functions: relu and tanh

e Learning rates: 0.01 and 0.001

e Regularization parameter alpha: 0.001

The results of the grid search, presented in Figure indicate that the best
performing configuration corresponds to a two-layer network (40,40) with ReL.U
activations, learning rate 0.001 and o = 0.001.
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Model Grid Search Errors (RMSE), grouped by Learning Rate
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Figure 5.2: Grid Search RMSE for the extended MLP model.

5.2.2 Performance Evaluation

Once the optimal configuration was determined, the model was retrained and eval-
uated on both the training and test sets. As before, we benchmark its performance
against both the BS model and the baseline MLP. The following table summarizes
the obtained performance metrics:

Training Test
Model MAE RMSE R? MAE RMSE R?

Black-Scholes 10.72 80.39 0.75 10.75 87.17 0.71
Baseline MLP 12.26 52.78 0.89 12.51 57.39 0.87
Extended MLP 7.22 38.64 0.932 7.20 41.92 0.921

Table 5.2: Performance comparison between BS, Baseline MLP and Extended
MLP.

In addition to these global metrics, we again analyzed the models’ performance
at the individual contract level to evaluate how frequently each approach produced
better predictions. Specifically, we computed the number of test cases in which the
BS formula yielded a prediction closer to the observed mid-price than the extended
MLP, and vice versa.
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The analysis shows that the BS model outperformed the MLP in 15,742 in-
stances, with an average improvement margin of 4.24 and a median of 1.66 in
absolute error. Conversely, the MLP produced more accurate predictions in 9,557

cases, achieving a substantially larger average improvement of 12.13 and a median
of 2.09.

5.2.3 Discussion

The results in Table demonstrate a clear performance gain from incorporating
additional market information into the model. The extended MLP significantly
outperforms both the baseline MLP and the BS formula across all evaluation
metrics. Notably, the RMSE is reduced by nearly 27% compared to the baseline,
and the coefficient of determination (R?) increases to over 0.92 on the test set,
suggesting a superior ability to capture the complex dependencies inherent in real-
world option prices.

Moreover, the MAE is also substantially reduced, indicating that the improve-
ments extend beyond isolated outlier scenarios and affect the overall distribution
of predictions.

When analyzing the individual prediction errors, we observe a similar pattern
to that observed with the baseline model: while BS yields a lower absolute er-
ror in a greater number of cases (15,742 vs. 9,557), the extended MLP achieves
much larger improvements in the subset of cases where it performs better. This
asymmetric behavior suggests that neural networks are particularly effective at
capturing pricing regimes where the simplifying assumptions of the BS formula,
such as constant volatility or frictionless markets, break down.

In summary, these results reinforce the added value of incorporating auxiliary
features beyond the standard inputs and highlight the expressive capacity of neural
networks when provided with richer information. This motivates the next stage of
the analysis, where we investigate in detail the sensitivity of the models to each
input variable through interpretability techniques.
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Chapter 6

Interpretability Analysis

This chapter explores the interpretability of the Baseline Model developed in
Chapter bl In particular, we aim to understand how variations in input features
affect the predicted option prices. We leverage techniques such as partial derivative
analysis and alpha curves [27], with a special focus on comparing their financial
significance with classical instruments like the Greeks.

In order to accomplish this task effectively, we will utilize the novel Neuralsens
Python library, presented in the paper “Neuralsens: Sensitivity Analysis of Neural
Networks”. This library provides a framework for analyzing NN models, enabling
us to evaluate variable importance based on sensitivity measures and characterize
relationships between input and output variables.

6.1 Motivation and Background

The motivation behind this chapter is to enhance our understanding of how NN,
particularly those used in option pricing, can be interpreted. While these models
often achieve high predictive accuracy, their complexity can obscure the underly-
ing mechanisms driving their predictions. By employing sensitivity analysis tech-
niques, we aim to shed light on the contributions of individual input features to
the model’s output. This interpretability is crucial for several reasons:

1. Risk Management: Understanding how input features influence option
prices can help traders and risk managers make informed decisions.

2. Model Validation: Sensitivity analysis can serve as a tool for validating
the model’s behavior, ensuring that it aligns with financial intuition and
theoretical expectations.
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3. Regulatory Compliance: In some jurisdictions, financial institutions are
required to provide explanations for their models’ predictions, making inter-
pretability a regulatory necessity [22].

While classical sensitivity analysis techniques such as the Greeks are well-
established in the context of the BS model and widely used by investors and risk
managers, they tend to capture the average influence of input variations under
model assumptions. However, these global measures often fall short in providing
insights into local behavior, particularly in extreme scenarios where the relevance
of certain inputs may change drastically. As NNs are capable of capturing highly
nonlinear relationships, it becomes increasingly important to develop localized in-
terpretability tools that reflect how the model behaves in specific regions of the
input space [16].

6.2 Methodology

To begin our interpretability analysis, we will first load the Baseline Model and
the dataset used for training in Chapter 5] The model is a MLP trained to predict
option prices based on various input features, including underlying asset price,
strike price, time to maturity, risk-free interest rate, and volatility. Its architecture
consists of one hidden layer with 60 neurons and uses the Tanh activation function.
The model was trained using the Adam optimizer with a learning rate of 0.001
and a regularization parameter of 0.01.

6.2.1 Partial Derivatives as Sensitivity Measures

Partial derivatives quantify how much the model’s prediction changes with an
infinitesimal change in each input feature. Formally, the sensitivity of the output
y, of the k' neuron in the output layer with respect to the input z; of the i
neuron in the input layer, evaluated at a specific input sample x,,, is defined as:

Yk
Szk‘xn - a_IZ ( n)

This expression quantifies how much the predicted option price y; would change
given a marginal variation in input feature x;, when evaluated at the specific
instance x,. To compute this sensitivity, the method jacobianmlp applies the
chain rule to propagate gradients through the network’s internal layers, recursively
combining weight connections and activation function derivatives at each step.
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Then we can access the returned object to obtain a summary of the sensitivities
for each input feature across all samples in the dataset. This summary includes the
mean, the standard deviation, and the squared mean of the sensitivities, providing
insights into both the average influence of each input feature and its variability
across different instances.

Input Variable Mean Std Mean Squared
Spot Price (5) 325.35 179.19 371.43
Strike Price (K) -251.83 169.08 303.33
Time to Maturity (7') 37.01  74.64 83.31
Implied Volatility (o) -35.79  349.43 351.26

Table 6.1: Summary of first-order sensitivity measures with respect to the pre-
dicted call price. Values represent average partial derivatives across the test
dataset.

6.2.2 Alpha Curves as Visual Sensitivity Measures

To complement the numerical summary of partial derivatives, we employ a visual
interpretability technique known as alpha curves. Introduced in the NeuralSens
framework [28], alpha curves provide a systematic way to analyze the global sensi-
tivity of a NN model with respect to each input variable by capturing not only the
average effect but also the distribution of local variations across the input space.

Formally, for each input variable z;, the alpha curve is defined as the sequence
of a-means of the absolute value of the partial derivatives:

OL) l/a

where N is the number of samples, f(x) is the model’s prediction, and o € R™
controls the aggregation behavior.

W 1K |af(x)
5= (vl

i=1

By varying the value of a, the curve reveals different aspects of the derivative
distribution:

e For a = 1, the curve reflects the mean absolute sensitivity (robust to out-
liers).

e For a = 2, it corresponds to the root mean square sensitivity (more sensitive
to large values).
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e As a — o0, the curve converges to the maximum observed absolute sensitiv-

ity.

Thus, alpha curves allow us to go beyond a single scalar importance score and
instead characterize the distributional shape of the model’s sensitivity to each
input. A relatively flat alpha curve indicates that the variable has a stable, linear
effect across all samples. In contrast, a steeply increasing alpha curve suggests that
the variable has localized, high-impact regions where its influence spikes, indicative
of nonlinearity or potential instability.

These curves provide an aggregated view of how sensitivity varies across differ-
ent regions of the input space. In the following section, we analyze their variation
across « values to uncover stability patterns and localized behaviors.

6.3 Global Analysis of Sensitivities

Having introduced the concept of alpha curves as a visual tool to summarize model
sensitivity, we now turn to a more detailed analysis of how these sensitivities behave
globally. This involves not only examining how sensitivity changes across different
alpha values, but also looking at the raw distributions of partial derivatives to
uncover irregularities, dominant patterns, and localized effects that may not be
apparent from summary metrics alone.

6.3.1 Stability Across Alpha Values

While alpha curves already provide an overview of how sensitivity evolves with in-
creasing «, it is useful to examine the rate of variation between successive a values.
Variables whose sensitivity increases rapidly with « are indicative of strong local
effects, whereas stable or flat alpha curves reflect globally consistent contributions.

In Figure we observed that the curve for implied volatility (o) not only
reaches the highest asymptotic value but also shows the most pronounced curva-
ture. This suggests that while 0 may not always dominate in average sensitivity, it
becomes highly influential in localized regions of the input space, consistent with
its known financial behavior in ATM scenarios.
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Figure 6.1: Alpha curves for each input variable in the Baseline MLP model.

In contrast, the curves for spot price (S) and strike price (K) grow more slowly
and consistently, indicating that their impact is less dependent on specific con-
figurations of input variables. The time to maturity (7") curve is the flattest for
low a but begins to rise more noticeably for higher values, hinting at conditional
relevance near expiration.

This analysis highlights the value of exploring the full spectrum of a rather
than relying solely on mean sensitivities (e.g., « = 1), as relevant variables may
only reveal their influence under certain conditions.

6.3.2 Distribution of Partial Derivatives

To further analyze the distribution of partial derivatives, we can visualize the
distribution of values for each input variable across the test dataset. This allows us
to identify the range and variability of sensitivities, as well as potential outliers that
may indicate regions of high sensitivity or instability in the model’s predictions.
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Figure 6.2: Distribution of partial derivatives for each input variable in the Baseline
MLP model.

Figure [6.2) presents the histograms of the partial derivatives with respect to
each input variable. As expected, most values concentrate around their respec-
tive means and medians, indicating that the model’s sensitivity remains relatively
stable for the majority of input samples.

However, the distribution of the partial derivative with respect to implied
volatility (sigma) stands out for its wider spread along the x-axis, reflecting the ex-
istence of a non-negligible number of cases where the model exhibits a high degree
of local non-linearity in response to changes in volatility.

Similarly, the partial derivative with respect to the spot price () displays a
noticeable spread, although narrower than that of o, suggesting that this variable
also contributes to significant variation in model sensitivity across the input space
and may warrant further investigation into its non-linear impact.

6.3.3 Global Summary Statistics

In addition to the distributional and visual sensitivity analyses, we compute global
summary statistics to quantify the differences between the NN sensitivities and the
classical Greeks derived from the BS model.
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BS Greeks NeuralSens

Sensitivity Median ~ Std ~ Median Std

A oBe 0592 035 0505 0.289
v (Vega) | 28 1504 137.18  39.69  589.434
© | o 1497 11168 26.51  132.39

Table 6.2: Median and standard deviations of Greeks and NN partial derivatives.

From these aggregated statistics, shown in Table [6.2] we observe that the NN
displays similar median sensitivity to the underlying price (S) compared to the
BS model, but shows higher median senstivities to both implied volatility (o) and
time-to-maturity (77), as well as substantially larger standard deviations. This
indicates that the neural network not only assigns greater importance to these
variables on average, but also captures a wider variability in their influence across
different regions of the input space. Such behavior suggests that the NN has
learned to model complex, non-linear interactions that are not fully captured by
the parametric structure of the Black-Scholes formula.

6.4 Local Analysis of Sensitivities

To complement the global analysis, we will now examine individual input samples
that exhibit atypical sensitivity patterns. The goal is to gain deeper insight into
specific regions of the input space where the model exhibits strong nonlinear be-
havior or localized instability, phenomena that may be obscured when averaging
over the full dataset.

As observed in Figure [6.2] most input samples cluster around the mean and
median values of the partial derivatives, but some cases emerge as clear outliers,
particularly for the input variables o, T', and S. These outliers can provide valuable
information about how the model behaves in edge scenarios, potentially revealing
cases of financial or numerical significance.

To formally identify outliers, we adopt a standard statistical rule based on
standard deviation: a sample is classified as an outlier for a given sensitivity if its
partial derivative exceeds the mean by more than three standard deviations, i.e.,

oC
B — | > 304,
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where p; and o; denote the sample mean and standard deviation of the sensi-
tivity for input variable x;. This criterion allows us to focus on those instances
where the model’s sensitivity deviates most strongly from its typical behavior.

The empirical distributions from which these thresholds are derived are illus-
trated in Figure[6.2] As can be observed, while most partial derivatives concentrate
around their respective means, a small number of extreme values emerge in the
tails of the distributions, motivating the identification of these samples as local
sensitivity outliers.

Our main goal in exploring these edge cases is twofold: first, to understand
whether the MLP model exhibits consistent and interpretable behavior in regions
of high local sensitivity; and second, to assess whether its performance in these
scenarios surpasses or falls short of that of the classical BS model. This comparison
is especially relevant in stress conditions, where pricing accuracy becomes critical.

To this end, we examine the local input context and the resulting partial deriva-
tives in each case, and we compare the predicted prices generated by both models
against the true market prices. Visualizations of local sensitivity profiles and se-
lected input configurations are provided for each case, along with a brief financial
interpretation of the observed model behavior.

6.4.1 Case 1: Outlier in Sigma Sensitivity

In this selected case, the partial derivative of the predicted option price with
respect to implied volatility (o) was identified as an outlier. The input values and
model predictions for this sample are presented in Table

Metric S K T o Mid Price BS  MLP
Value 167.10 87.50 0.532 0.00001 33.80 81.67 48.07

Table 6.3: Input features and model predictions for the o-sensitivity outlier.

This input configuration corresponds to a scenario where the implied volatility
is nearly zero. From a financial standpoint, such a low value of ¢ is highly atypical,
as it implies an almost riskless market environment. Under this condition, the BS
formula tends to simplify drastically: if the option is I'TM, its price approaches
the intrinsic value, i.e., C' = S — K for a call; if the option is OTM, its value tends
to zero.

In the present case, the option is clearly ITM (S > K), so BS estimates the
price very close to the intrinsic value, disregarding any potential variation due to
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volatility. This leads to a significant overestimation compared to the observed mar-
ket price. The MLP model, however, appears to handle this extreme input more
robustly, yielding a prediction closer to the market mid price and demonstrating
reduced sensitivity to an implausibly low volatility input.

This suggests that the NN may have implicitly learned to discount extreme
input configurations when they do not align with realistic market behavior, offering
a form of regularization or robustness not present in the analytical BS formula.

Moreover, to analyze how the predicted sensitivities compare with the BS
Greeks, we compute the partial derivatives of the predicted option price with
respect to each input variable. The results are summarized in Table [6.4}

Sensitivity BS Greeks NeuralSens Partial Derivatives
A | e 1.0000 0.6809
v (Vega) | 2Lrice 0.0000 -2762.37
© | 2« 3.8444 29.3248

Table 6.4: Comparison between BS Greeks and MLP partial derivatives for the
o-sensitivity outlier.

As expected, the BS Vega converges to zero when volatility approaches zero
and assigns full exposure to the underlying asset price (A = 1). This behavior
can be further explained by considering the analytical limit of the Black-Scholes
formula when ¢ — 0. In this extreme regime, the option price simplifies as:

C(S) ~ max (S — Ke™'",0),

which implies that the pricing function essentially becomes a deterministic lin-
ear combination of S and K discounted at the risk-free rate. Under this approxima-
tion, the relationship between the option price and the underlying asset becomes
almost perfectly linear, leading to a Delta close to 1.

However, the MLP is able to capture that even in low-volatility regimes, small
nonlinearities still exist due to market effects, discrete trading, or non-continuous
adjustments in implied volatilities for extreme moneyness. As a result, the MLP
assigns a slightly lower Delta (A & 0.68), indicating that it does not fully adhere to
the rigid linear assumption of BS but instead learns a smoother sensitivity profile
that may better reflect empirical market behavior under such edge cases.
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6.4.2 Case 2: Outlier in Time to Maturity Sensitivity

In this case, we analyze a data point where the partial derivative of the predicted
option price with respect to time to maturity (7) is identified as an outlier. The
input configuration and resulting predictions are shown in Table [6.5]

Metric S K T o Mid Price BS MLP
Value 576.22 490.00 0.033 1.4137 111.50 108.42 111.40

Table 6.5: Input features and model predictions for the T-sensitivity outlier.

This configuration corresponds to a scenario where the time to maturity is very
short (7" & 12 days), implying that the option is close to expiration. In financial
theory, such options typically carry limited time value, and their price converges
rapidly toward their intrinsic value (S — K) [29]. In this case, both the Black-
Scholes model and the MLP provide fairly accurate predictions, differing by less
than 3 units with respect to the observed mid price.

However, when analyzing the sensitivities, noticeable differences emerge be-
tween the classical Greeks and the sensitivities learned by the neural network, as
summarized in Table [6.6]

Sensitivity BS Greeks NeuralSens Partial Derivatives
A | Lrice 0.7782 0.6860
v (Vega) | 2Lrice 31.0773 19.2093
© | 2L 683.4634 463.4519

Table 6.6: Comparison between BS Greeks and Neural Network partial derivatives
for the T-sensitivity outlier.

In this scenario, the MLP exhibits the same qualitative behavior as BS, cor-
rectly identifying the dominant role of time-to-maturity near expiration. However,
its sensitivities are systematically smoother and less extreme than those produced
by the analytical formula. This suggests that the neural network is implicitly regu-
larizing the highly nonlinear interactions between time-to-maturity and volatility,
likely as a consequence of the finite sample regime and the regularization applied
during training. Such behavior may be advantageous in practice, as it prevents
the model from overreacting to marginal changes in T' that may lead to instability
in risk management applications.
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6.4.3 Case 3: Outlier in Spot Price Sensitivity

This final case corresponds to an outlier in the partial derivative of the predicted
option price with respect to the spot price of the underlying asset (S). The input
configuration and corresponding model predictions are summarized in Table [6.7]

Metric S K T o Mid Price  BS MLP
Value 1241.47 780.00 2.526 0.5267  604.50 652.76  639.20

Table 6.7: Input features and model predictions for the S-sensitivity outlier.

This configuration represents a long-dated, deep I'TM option, where S > K
and T is over two years. In such cases, the option price is strongly driven by the
intrinsic value, but the sensitivity to the spot price remains important due to the
potential for further price movement over time.

In this case, the NN outperforms the BS model, providing a prediction signifi-
cantly closer to the observed market mid price. This suggests that the MLP may
be capturing pricing effects that are not fully reflected in the BS formula, poten-
tially incorporating complex interactions between volatility, time, and moneyness
that deviate from the classical assumptions made by the BS model.

To further analyze difference between sensitivities, we compute the partial
derivatives of the predicted option price with respect to each input variable. The
results are summarized in Table [6.8]

Sensitivity BS Greeks NeuralSens Partial Derivatives
A | Qbrice 0.8664 1.3930
v (Vega) | 250ce 4253361 261.4783
O | 2 63.3687 212.9347

Table 6.8: Comparison between BS Greeks and Neural Network partial derivatives
for the S-sensitivity outlier.

The most prominent difference appears in the sensitivity to the underlying asset,
where the NN assigns a marginal sensitivity A > 1, while BS constrains this value
below one due to its linear payoff assumption and constant volatility framework.
This suggests that the NN may implicitly incorporate nonlinear payoff effects or
market frictions that are not modeled in classical arbitrage-free theory.
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Similarly, discrepancies are observed in the sensitivities to volatility and time-to-
maturity, further indicating that the MLP captures a distinct sensitivity structure
that may better reflect market behavior for long-dated options with significant
intrinsic value.

These local case studies highlight how MLP may exhibit distinct sensitivity
structures when compared to classical Greeks. In the following section, we extend
this analysis to a global perspective, using alpha curves to explore how sensitivities
behave across broader regions of the input space

6.5 Discussion and Insights

The local sensitivity analysis performed in this chapter provides valuable insights
into how neural networks, specifically the trained MLP model, behave in com-
parison to the classical Black-Scholes model when evaluated under extreme or
challenging input conditions. Several important patterns emerge from these case
studies:

First, the MLP demonstrates remarkable flexibility in adapting to edge cases
that often challenge parametric models like BS. For instance, in the o-outlier case,
where the implied volatility approaches zero (an extremely rare market condition),
Black-Scholes converges mechanically to the intrinsic value, while the MLP still
corrects its output and maintains a more reasonable pricing closer to market obser-
vations. This suggests that the NN has implicitly learned to discount unrealistic
volatility inputs, incorporating a form of data-driven regularization not present in
the analytical formula.

Second, the distributional analysis of partial derivatives exposed substantial
heterogeneity in the NN’s sensitivities across different regions of the input space.
In particular, the wider dispersion of sensitivities with respect to o and T" highlights
that the network is capable of detecting local regimes where volatility and time
have a disproportionate influence on option prices, a behavior that may better
reflect certain real-world market conditions.

Third, in the T-outlier scenario, where time-to-maturity is extremely short
(approximately 12 days), both models achieve high pricing accuracy. However,
the sensitivities reveal important differences. While BS produces extreme © values
reflecting the rapid time decay near expiration, the MLP assigns lower but still
dominant sensitivity to time, suggesting a smoother treatment of near-maturity
risk. The same regularization is observed across Delta and Vega, with the MLP
consistently assigning slightly more conservative sensitivities. This behavior may
be advantageous in practice, as it prevents overreaction to marginal changes in 7T,
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reducing the likelihood of unstable hedging decisions near expiry.

Fourth, the introduction of alpha curves proved more useful than point es-
timates of sensitivities, offering a richer and more stable representation of how
variable importance changes under different data regions. The growth of the o al-
pha curve with increasing a strongly suggests that volatility plays an outsized role
in driving extreme sensitivity behaviors in certain subregions of the input space.

Importantly, these results suggest that, precisely in those regions of the input
space where classical models such as BS become less reliable, the partial deriva-
tives extracted from the MLP may serve as more informative sensitivity indicators
than the standard Greeks. This opens the door to leveraging NN sensitivities not
only for pricing, but also as potentially superior risk management metrics in ex-
treme market conditions where the limitations of parametric models become more
pronounced.

In summary, while the BS model continues to offer interpretable, stable, and
well-behaved local sensitivities, NNs provide an extended capacity to capture non-
linear interactions that may be more aligned with empirical option pricing behav-
ior. However, this added flexibility also introduces interpretability challenges that
make sensitivity analysis tools, such as partial derivatives and alpha curves, crucial
for model validation and practical deployment.

Overall, these findings reinforce the value of hybrid approaches that com-
bine data-driven models with domain knowledge and interpretability frameworks,
paving the way for more flexible yet transparent option pricing methodologies.
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Chapter 7

Conclusions and Future Work

In this final chapter, we synthesize the key contributions and findings of this
thesis, emphasizing both the predictive improvements achieved through MLPs and
the novel interpretability insights derived from sensitivity analysis. Additionally,
we discuss the practical relevance of these results, acknowledge limitations of the
current work, and outline promising avenues for future research.

7.1 Summary of Results

The objectives of this thesis were two: (1) to evaluate whether MLPs can approx-
imate and improve upon traditional analytical models for option pricing; and (2)
to explore how sensitivity analysis techniques may provide interpretability tools
that help explain the predictions of MLPs in a financially meaningful way.

The empirical evaluation carried out on a large-scale dataset of S&P 500 index
options confirmed that:

e Predictive Performance: Both the baseline and extended MLP architec-
tures significantly improved predictive accuracy compared to the BS model.
While BS outperformed the MLP on a larger number of individual predic-
tions, the MLP achieved substantially larger improvements in the subset of
cases where it performed better, leading to lower global RMSE and higher
R

e Sensitivity Behavior: The MLP successfully captured more complex, non-
linear relationships across the input space that were not modeled by BS.
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Sensitivity analysis revealed that the MLP assigns higher median sensitiv-
ities to implied volatility (o) and time-to-maturity (77), suggesting that it
internalizes additional dependencies present in real market data.

e Interpretability: The use of partial derivatives and alpha curves enabled us
to obtain interpretable sensitivity measures from the trained MLP, providing
a direct comparison with classical Greeks.

e Robustness in Edge Cases: The local analysis of extreme scenarios (e.g.,
near-zero volatility, short time-to-maturity, deep ITM contracts) demon-
strated that the MLP exhibited flexible and adaptive behaviors, sometimes
outperforming BS precisely where the analytical model’s assumptions fail.

7.2 Key Insights and Interpretation

The findings of this thesis underline that MLPs, despite their black-box nature,
can capture rich and complex pricing dynamics that are not accessible through
traditional analytical models. The partial derivatives extracted from the MLP
provided a first-order interpretability layer, allowing us to analyze sensitivities in
a way that is analogous, but not identical, to classical Greeks.

In particular, the analysis of global sensitivity measures revealed that while
both models exhibit broadly similar exposure to the spot price, the MLP consis-
tently assigns greater importance to volatility and time-to-maturity. This reflects
its ability to internalize more complex interactions present in real markets, espe-
cially in regions where volatility surfaces or time decay behave in a nonlinear way.
The use of alpha curves proved especially valuable to capture these nonlineari-
ties, highlighting how sensitivity magnitudes evolve as we consider higher-order
aggregation levels.

At the local level, the study of specific outlier cases confirmed that the MLP ex-
hibits adaptive behaviors. In some regions, such as deep ITM options with extreme
volatility configurations, the MLP provided more realistic price estimations than
BS. However, the analysis also revealed that in certain edge cases, particularly for
short-term maturities combined with high volatility, the MLP may exhibit overly
strong sensitivity reactions, pointing to the importance of carefully monitoring the
model’s behavior in underrepresented regions of the data.
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7.3 Practical Implications for Finance

From a practical standpoint, the results obtained suggest that MLP models, when
combined with proper interpretability tools, can serve as valuable complements to
classical pricing frameworks. Their ability to capture non-linearities makes them
particularly well-suited for markets or products where the assumptions of constant
volatility, frictionless trading, or log-normal price dynamics are violated.

The partial derivatives extracted from MLPs could also serve as alternative
sensitivity measures, particularly in regions where classical Greeks may provide
misleading or unstable estimates. This opens the possibility of using data-driven
models not only for pricing but also for risk management, hedging, and stress
testing purposes, provided that their interpretability and stability are carefully
monitored.

Moreover, the combination of MLPs with sensitivity analysis frameworks such
as NeuralSens allows practitioners to bridge the gap between predictive accuracy
and financial explainability, addressing one of the main obstacles preventing the
widespread adoption of ML models in regulated financial environments.

7.4 Limitations

Despite the promising results, several limitations of this study should be acknowl-
edged. The dataset used consisted of a single snapshot of the option market,
limiting the capacity to capture temporal dynamics such as volatility clustering.
Additionally, the MLP was trained without explicit enforcement of financial con-
straints such as no-arbitrage conditions, monotonicity, or convexity properties,
which could help ensure consistency with fundamental pricing principles.

The interpretability analysis was primarily applied to the baseline MLP ar-
chitecture. Extending these techniques to more complex models incorporating
additional features may require further methodological developments. Finally, the
empirical study focused exclusively on European call options; future extensions
should consider different option types and exotic derivatives to validate the gen-
eralizability of the approach.

7.5 Future Research Directions

Building on the insights obtained in this work, several directions emerge for future
research. Incorporating historical data and temporal dependencies would allow the
models to capture dynamic volatility patterns and regime shifts, providing more
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realistic pricing under evolving market conditions. Exploring hybrid modeling ap-
proaches that combine the flexibility of MLPs with embedded financial knowledge
may further enhance both predictive accuracy and theoretical consistency.

Moreover, extending sensitivity-based interpretability frameworks to deeper or
more complex neural architectures could improve the financial explainability of
increasingly powerful models. Applying these methods to other asset classes or
derivative products would also help validate the robustness of NN approaches
across a broader financial landscape.

Finally, translating MLP sensitivities into actionable risk management metrics
remains an important avenue for transforming these models into production-ready
tools that can complement or even enhance the classical Greek framework used by
practitioners today.
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