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Resumen

En los últimos años, el avance de la Inteligencia Artificial Generativa —y en particular,
de los Modelos de Lenguaje de Gran Escala (LLMs)— ha transformado radicalmente la
forma en que las organizaciones procesan y entienden el lenguaje natural. En este con-
texto de innovación tecnológica acelerada, uno de los retos persistentes en los entornos
empresariales sigue siendo la calidad y coherencia de los datos maestros. Este aspecto
está estrechamente relacionado con el proceso de armonización de datos, cuyo objetivo es
garantizar la consistencia entre fuentes de información heterogéneas [1]. Este problema
resulta especialmente crítico en sectores logísticos como el de la cadena de suministro,
donde decisiones operativas y estratégicas dependen directamente de la fiabilidad de la
información disponible.

Este Trabajo de Fin de Máster se enmarca en el equipo de Supply Chain Data & AI
de Accenture y aborda precisamente este desafío, proponiendo una solución basada en
LLMs para automatizar la identificación y corrección de errores en Master Data Tables
(MDT), un elemento esencial en la metodología de trabajo de cualquier proyecto dentro
del grupo. El objetivo de reducir la intervención manual, mejorar la escalabilidad de los
procesos de validación de datos y aumentar la precisión en la toma de decisiones operati-
vas.

A partir de un caso de uso representativo, se ha desarrollado una herramienta capaz
de detectar registros duplicados o inconsistentes dentro de grandes volúmenes de datos
estructurados, utilizando técnicas avanzadas de representación semántica, búsqueda por
similitud y generación aumentada por recuperación (RAG). La solución propuesta com-
bina la potencia de modelos como CANINE-C para la creación de embeddings, con un
sistema orquestado mediante LangGraph que emplea agentes generadores y evaluadores
basados en LLMs, coordinados a través de flujos de trabajo iterativos que permiten la
autoevaluación del sistema. El proceso se completa con la integración de los resultados en
bases de datos externas para su validación por expertos, cerrando así un ciclo completo
de detección y trazabilidad de errores.

Por lo tanto, el desarrollo se apoya en una arquitectura monolítica dividida en tres etapas
funcionales y se enfrenta a desafíos como la optimización del rendimiento computacional
y la consistencia de las respuestas generadas por los modelos. Los resultados obtenidos
confirman el potencial de los LLMs como herramienta eficaz y adaptable para mejorar
la calidad del dato en entornos empresariales complejos, sentando las bases para futuras
aplicaciones en proyectos de armonización de datos a gran escala.
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Abstract

In recent years, the advancement of Generative Artificial Intelligence — and particularly
of Large Language Models (LLMs) — has radically transformed the way organizations
process and understand natural language. In this context of accelerated technological
innovation, one of the persistent challenges in business environments remains the quality
and consistency of master data. This is particularly relevant to the process of Data Har-
monization, which seeks to ensure coherence across heterogeneous sources of information
[1]. The issue becomes especially critical in logistics-related sectors such as supply chain
management, where both operational and strategic decisions depend directly on the reli-
ability of the available information.

This Master’s Thesis is carried out within the Supply Chain Data & AI team at Ac-
centure and directly addresses this challenge by proposing a solution based on LLMs to
automate the identification and correction of errors in Master Data Tables (MDT), a core
element in the working methodology of any project within the group. The main objective
is to reduce manual intervention, improve the scalability of data validation processes, and
increase accuracy in operational decision-making.

Based on a representative use case, a tool has been developed that can detect dupli-
cated or inconsistent records within large volumes of structured data, using advanced
techniques such as semantic representation, similarity search, and Retrieval-Augmented
Generation (RAG). The proposed solution combines the power of models like CANINE-C
for embedding generation with a system orchestrated using LangGraph, which leverages
generator and evaluator agents based on LLMs, coordinated through iterative workflows
that enable self-evaluation of the system. The process concludes with the integration of
the results into external databases for expert validation, thereby completing a full cycle
of error detection and traceability.

The development is supported by a monolithic architecture divided into three functional
stages and addresses key challenges such as the optimization of computational perfor-
mance and the consistency of the model outputs. The results obtained confirm the po-
tential of LLMs as an effective and adaptable tool to improve data quality in complex
business environments, laying the groundwork for future applications in large-scale data
harmonization projects.
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Chapter 1

Introduction

In recent years, the advancement of Generative Artificial Intelligence (GenAI), and in par-
ticular of Large Language Models (LLMs), has opened new possibilities in the processing
and understanding of natural language. These technologies make it possible to automate
complex tasks such as information extraction, pattern detection, and text generation,
with a level of semantic understanding that was previously unattainable. In this context,
the present work explores how to leverage the capabilities of LLMs to address a common
problem in data management within supply chains: the identification and correction of
errors in Master Data Tables (MDTs). By applying techniques based on GenAI, the goal
is to reduce manual intervention, improve the scalability of the solutions, and increase the
accuracy in handling critical data used for business decision-making.

This study is applied within a real-world business context, specifically in the Supply
Chain Data & AI team at Accenture, where data quality plays a crucial role in ensuring
operational excellence. The proposed approach involves designing a workflow powered by
LLMs to detect anomalies in structured data tables, with a focus on minimizing human
intervention. The expected contribution is to demonstrate the viability of using LLMs as a
scalable, accurate, and flexible tool for data harmonization in supply chain environments.

1.1 Motivation
With the rise of automation techniques based on artificial intelligence, many routine
and repetitive tasks that were once well-established across various businesses, companies,
and work environments are now being replaced. This is not just a personal perspective;
according to a recent report by the World Economic Forum [4], more than 88% of C-
suite executives (Chief Executive Officer (CEO), Chief Financial Officer (CFO), Chief
Operations Officer (COO), etc.) believe that the imminent implementation of Artificial
Intelligence (AI) in the workplace is imperative. They argue that these new technologies
will foster more creative and innovative teams, allowing them to move beyond stagnant
methodologies.
Despite having limited professional experience and only a basic understanding of the
subject when I began this project, I viewed it as a valuable opportunity for personal
and academic growth. Although I initially lacked deep knowledge about LLMs and the
emerging use of GenAI in business environments, I quickly recognized the relevance of
developing a solution based on these technologies to address a problem marked by its
manual, monotonous, and non-scalable nature.
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CHAPTER 1. INTRODUCTION 2

1.2 Project’s Objectives
The development objectives addressed in this Master’s Thesis are as follows:

a) Identification and traceability of potential duplicates: To identify and store,
in an external database, the identifiers of records flagged as potential duplicates.
This allows for manual review and subsequent analysis and cleaning. The exter-
nal database will support change traceability and enable human oversight in cases
where ambiguities or inconsistencies arise that automated models cannot confidently
resolve.

b) Evaluation of detection techniques: To study which techniques, methods, or
tools are most effective for extracting similar records or potential duplicates within
large datasets. Both statistical and machine learning-based approaches will be ana-
lyzed, including similarity search, clustering, and dimensionality reduction methods.
The suitability of each technique will be assessed based on the type and structure
of the data, as well as on performance criteria such as accuracy, coverage, and
computational cost.

c) Implementation of LLMs through prompt design: To explore the different
possibilities for applying LLMs in data review and extraction tasks. This includes
designing and implementing precise prompts to guide the models effectively. Various
prompt engineering strategies will be studied to adapt LLMs to specific tasks such
as duplicate detection, normalization, and entity extraction.

d) Impact assessment of LLMs in data quality workflows: To evaluate the
impact of using LLMs on the quality and efficiency of the data cleaning process,
comparing their performance with traditional methods. A set of evaluation metrics
will be defined to assess not only the reduction of duplicates but also semantic
coherence and the minimization of manual errors. This analysis will also highlight
current limitations of LLMs in this context and propose potential improvements or
hybrid strategies.

1.3 Resources Used
In order to fulfill the defined objectives and carry out the project efficiently, the resources
employed can be categorized as follows:

• Human support: The guidance provided by both my internship tutor and project
supervisor is a critical resource. Their experience in code review, project structuring,
and validation of each stage has played a key role in ensuring successful project
development.

• Hardware: The development is carried out on a company-provided laptop with
16GB of RAM, a detail worth noting due to its potential impact on certain com-
putational tasks. The project is conducted in parallel with an internal initiative at
Accenture. Naturally, the setup also includes essential peripherals such as a charger
and a mouse.

• Software and tools:



CHAPTER 1. INTRODUCTION 3

– An IDE (Integrated Development Environment) is used to write, edit,
and run code. Throughout the project, both Visual Studio Code and PyCharm
have been utilized. The core of the implementation is based on Python 3.19,
along with several libraries introduced throughout the thesis.

– A code repository, used for version control and collaboration. While GitHub
is commonly used in academic projects, this project employs BitBucket—an
enterprise Git solution integrated with Jira, a project management tool aligned
with the Scrum methodology.

– A brief mention is due for DBeaver, the database client used as the testing
environment for managing and visualizing database content.

• Other supporting resources: Additional support is provided through technical
documentation, specialized online forums, and collaboration tools such as Microsoft
Teams. Although these resources are less tangible, they are essential for enabling
agile communication, resolving technical challenges, and adhering to best practices
in software development.

1.4 Methodology
With the project objectives and available resources already defined, this section outlines
the methodology followed to address the problem and develop the project in a structured
and professional manner. The methodology is aligned with the working environment and
expectations established by Accenture, combining technical rigor with practical applica-
bility.

The project adopts an experimental methodology, based on the iterative design, imple-
mentation, and validation of an end-to-end system. The approach integrates practices
such as data analysis, prompt engineering, and quantitative evaluation, aiming to build a
replicable and measurable solution. The development is structured in the following stages:

• Problem familiarization and system design: The initial phase focuses on un-
derstanding the problem, adapting to the team environment, and outlining a high-
level system architecture. This stage involves collaboration with supervisors to
define the development goals and constraints.

• Research and preliminary implementation: Once the system architecture is
outlined, the next step involves researching tools, algorithms, and techniques that
could support the project’s objectives. Selected methods are tested through early-
stage implementations to assess their feasibility and effectiveness.

• Similarity detection development: A core part of the project involves devel-
oping mechanisms for detecting similar records in large datasets. This is achieved
through vector-based techniques, supported by dimensionality reduction and clus-
tering strategies when needed.

• Integration of LLMs): The system is then extended by incorporating LLMs to
support data validation and enhancement. This includes designing and iterating
over prompt-based instructions, selecting appropriate libraries, and optimizing the
pipeline for task-specific applications.
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• System integration and evaluation: The final stage consists of connecting the
system output to an external database, organizing the codebase according to internal
quality standards, and defining evaluation metrics. The goal is to assess not only
technical performance (e.g., duplicate reduction, semantic consistency) but also the
system’s maintainability and scalability.



Chapter 2

State of the Art

To understand the problem and the potential solutions to be implemented, it is necessary
to understand its context.

As mentioned in the introduction, the work presented here is part of the Supply Chain
Data & AI team within the Strategy & Consulting department at Accenture. As its name
suggests, this department is responsible for studying, managing, optimizing, and making
decisions regarding clients’ supply chains, with a strong focus on data analysis and usage.

In each client’s supply chain, the proposed solutions rely on what is referred to as “the net-
work”: a complete digital representation (digital twin) of their operations—from suppliers
to customers—including factories, distributors, and other operational locations.

This network is constructed using MDTs and transactional data from systems such
as SAP or SIEVO. The MDTs contain key information about entities within the supply
chain: materials, locations, specific characteristics of materials per location, customers,
and more.
The accuracy of this digital representation directly depends on the quality of the data
used. Poorly labeled or duplicated data can lead to errors that negatively affect decision-
making.
For instance, in supplier master data, it is common to find duplicate entries. This may
be due to the existence of multiple Enterprise Resource Planning (ERP) systems, manual
updates introducing redundancies, or the consolidation of information from different busi-
ness units across countries dealing with the same supplier. Even when the Primary Keys
(PKs) are unique, the attributes may indicate that the same supplier has been registered
multiple times.

Such inconsistencies can lead to serious consequences. If a supplier is duplicated
under different PKs, it might appear that certain materials have multiple sources (multi-
sourced), when in fact they depend on a single supplier (single-sourced). This false per-
ception could mask critical risks to the supply chain’s resilience by underestimating the
vulnerability to disruptions from that supplier.

Given the importance of this issue, the team developed a series of measures to correct
potential errors, initially based on manual data review or the application of basic Natural
Language Processing (NLP) techniques. However, these approaches are often manual,
inefficient, and, most importantly, not scalable across different clients. As a result, each
time a new client is onboarded, the team must invest additional resources to ensure data
quality.

5



CHAPTER 2. STATE OF THE ART 6

This project aims to explore and implement novel techniques for error and duplicate
detection using LLMs, thereby saving valuable time and resources for both the company
and its clients. Moreover, it seeks to contribute to the broader field of artificial intelligence
and its expanding applications.
Before the development of this project, the problem had been addressed using different
approaches:

• Initially, the team was unaware of the severity of the issue and relied on simple
manual data reviews. This method led to frequent forecasting errors, prompting
the development of more advanced solutions.

• The second approach involved more sophisticated language processing techniques,
such as text mining and regular expressions (regex). However, these methods were
highly complex and tailored to specific types of master data, limiting their scalabil-
ity.

With the advancement of LLMs, the proposed solution not only surpasses previous
methods but also significantly improves the team’s efficiency in managing multiple projects
concurrently.



Chapter 3

Theoretical Framework

3.1 What is an LLM / foundation model?
Large Language Models (LLMs), also known as foundation models, are advanced deep
learning architectures trained on massive datasets to understand and generate human-like
language [5]. They are built upon the transformer architecture introduced by Vaswani et
al. in 2017, which uses self-attention mechanisms to capture long-range dependencies and
contextual information in text [6].
These models are typically pre-trained on vast bodies of text, encompassing sources such
as books, websites, and academic articles. Pre-training involves predicting masked or
next tokens, allowing the model to learn the statistical patterns and semantic relation-
ships present in natural language. Once pre-trained, these models can be fine-tuned on
specific tasks (like text classification, question answering, or summarization) or used in
zero-shot and few-shot settings by leveraging prompt engineering techniques.

The term foundation model was popularized by researchers at Stanford, who emphasized
that these models serve as a versatile basis for a wide range of downstream applications
[7]. Foundation models exhibit emergent capabilities, such as in-context learning and
multilingual understanding, that make them adaptable to diverse domains.

LLMs, including models like Generative Pre-trained Transformer (GPT), Bidi-rectional
Encoder Representations from Transformer (BERT), and T5 (Text-to-Text Transfer Trans-
former), have demonstrated state-of-the-art performance across numerous NLP bench-
marks [8]. Their size — often measured in billions of parameters — allows them to
capture intricate patterns in language, but also raises challenges related to computational
cost and environmental impact, which has been marked popularly as one of the main
issues to be solved.

Moreover, these models have become the backbone of Retrieval-Augmented Generation
(RAG) systems, chatbots, and other generative AI applications. Despite their remarkable
capabilities, LLMs are not without limitations. They can sometimes generate plausible
but incorrect information, known as hallucinations, and they may encode biases present
in their training data.
To mitigate these challenges, research continues on topics such as model alignment, in-
terpretability, and efficient fine-tuning strategies [9].

7



CHAPTER 3. THEORETICAL FRAMEWORK 8

Overall, LLMs represent a significant breakthrough in AI, opening avenues for improved
human-computer interaction, knowledge discovery, and content generation. Having men-
tioned it, let’s see what a RAG is.

3.2 Embedding
Embeddings are dense numerical representations of data elements (e.g., words, phrases,
or documents) in a continuous vector space of low or moderate dimensionality [10]. Each
word or text is assigned a real-valued vector, whose relative position captures semantic
and contextual relationships. For example, in a vector space, similar words are located
close to each other (e.g., “football” and “soccer” vectors will have similar close distances).
This allows NLP models to process language more effectively. Furthermore, by reducing
the dimensionality of the data, we improve the computational efficiency of the agents.
However, this is not always the case, as we have encountered instances where the dimen-
sionality of the embeddings was higher than that of the original data — though these
cases are exceptions.
Some of the most common techniques related to create embeddings are:

• Word2Vec: Developed in 2013, Google’s neural network model learns word vectors
from a large corpus of text. This model includes two main architectures: Continuous
Bag of Words (CBOW), which predicts a target word based on its context; and Skip-
gram, which predicts the surrounding context given a single word. Although it is
effective, its embeddings are static, meaning that each word has only one fixed
vector, with no distinction between its possible acceptations or meanings. [11].

• FastText: This algorithm expands Word2Vec by taking n-grams into consideration.
Instead of learning a vector for each whole word, FastText learns vectors for subword
units or fragments. This allows for more flexible handling of rare words and better
performance with morphological variations [12] [13].

• Contextual Embeddings: Some examples like BERT, ELMo or GPT, are models
based in the ’transformer’ architecture, which generate vectors from the context
of a word [14]. Hugging Face has popularized the use of these models to obtain
full-text embeddings. More recent techniques (such as Sentence-BERT) fine-tune
BERT to generate sentence- or paragraph-level vectors, which are useful for semantic
similarity comparison.

Each technique has its advantages: static embeddings like Word2Vec or GloVe are
efficient and capture general relationships, while contextual embeddings based on trans-
formers (BERT, GPT, etc.) provide richer representations that take the full context of
the text into account. The choice between one or the other depends on the application:
in general, transformer-based models have significantly improved performance in many
modern NLP tasks. Later in the implementation, we will discuss which embedder suits
the best for our purpose.
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3.3 Vector Stores
A vector store (or vector database) is a specialized system designed for storing and in-
dexing high-dimensional embeddings, enabling efficient similarity search over unstruc-
tured data such as text, images, or audio [15, 16]. These systems support operations
like adding, querying, and deleting vectors, often accompanied by metadata filtering and
horizontal scaling capabilities [16]. They implement optimized nearest-neighbor search
algorithms—like HNSW, IVF, or product quantization—to rapidly retrieve the most se-
mantically similar vectors based on distance metrics (e.g., Euclidean or cosine) [15]. In
modern AI applications, including RAG, vector stores serve a crucial role by bridging
embeddings from language models to downstream retrieval tasks with low latency and
high throughput.

3.4 RAG
Retrieval-Augmented Generation (RAG) is a technique that combines the generative ca-
pabilities of LLMs with the precision of external information retrieval. Instead of relying
solely on the pre-trained knowledge of LLMs, a RAG system dynamically retrieves rele-
vant content from external sources — such as document collections or knowledge bases
— and uses it to improve the accuracy and relevance of the generated outputs [17].

The typical workflow of a RAG model involves two main stages. First, a retriever compo-
nent uses similarity search techniques to identify the most relevant documents or passages
based on a given query or prompt. Then, these retrieved documents are provided as con-
text to the generative model, which produces a final output that is better grounded in
up-to-date or domain-specific knowledge [18]. This approach improves the factual ac-
curacy and relevance of generated responses, addressing limitations of purely generative
models. Moreover, RAG systems enable dynamic adaptation to new information without
requiring expensive retraining of the entire language model.

Facebook AI Similarity Search (FAISS): FAISS is one of the main libraries used
in this project. Developed by Meta (previously known as Facebook) to perform efficient
similarity searches and clustering of dense vectors. It is widely used in applications where
vector embeddings represent data, such as text, images, or audio. FAISS provides a suite
of algorithms and data structures that enable fast nearest-neighbor search, even for very
large datasets.
According to its official documentation [19], FAISS supports both exact and approximate
search methods, allowing users to balance between accuracy and speed depending on their
needs. It is optimized for high-dimensional data and offers support for CPU and GPU
acceleration, making it suitable for large-scale machine learning and AI pipelines.
FAISS’s modular design allows researchers and engineers to choose between different in-
dex types and quantization strategies, tailoring the search process to specific applications
and data characteristics. This flexibility has made it a key component in modern RAG
systems and other AI-driven information retrieval tasks.
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3.5 Dimensionality Reduction Methods
When working with huge amounts of data, and more precisely, vectors, it is common
to use dimensionality reduction methods. This process is characterized for reducing the
number of input variables (features) in a dataset while preserving as much important
information as possible [20]. In our case, we have used several methods to optimize the
execution of our processes, as we will see later. Let’s briefly define some of these methods:

3.5.1 Principal Component Analysis (PCA)

PCA is a statistical technique used to reduce the dimensionality of datasets while preserv-
ing as much variability as possible. It transforms a set of possibly correlated variables into
a set of linearly uncorrelated variables called principal components. This transformation
is achieved through an orthogonal linear transformation, ensuring that the first principal
component accounts for the largest possible variance in the data, with each succeeding
component accounting for the remaining variance under the constraint of being orthogonal
to the preceding components [21].

PCA is widely applied in fields such as pattern recognition and computer vision, no-
tably in face recognition systems. In such applications, PCA helps in extracting the most
significant features from facial images, facilitating efficient and accurate recognition. The
method involves computing the eigenvectors and eigenvalues of the covariance matrix of
the dataset, which are then used to project the original data into a lower-dimensional
space. This projection retains the most critical information, enabling effective data anal-
ysis and interpretation [21].

The following image represents a small example on how does PCA work in a 2 dimen-
sion (two variables) dataset.

Figure 3.1: Example of principal components and data variance in a small dataset

3.5.2 Clustering

Clustering is an unsupervised machine learning technique that groups elements based on
similarity, without relying on predefined labels. As IBM Research highlights [22], cluster-
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ing enables the discovery of hidden structures within data by creating groups (clusters)
of similar records. There are several clustering algorithms, including:

• Non-Hierarchical Clustering (K-Means): This algorithm assigns data points
to k clusters by minimizing the variance within each cluster.

• Hierarchical Clustering: This approach builds a tree-like structure of clusters,
either through agglomerative (bottom-up) or divisive (top-down) processes.

• Centroid-Based Clustering: Algorithms like K-Means are examples of centroid-
based clustering, where each cluster is represented by the center (centroid) of its
data points.

• Distribution-Based Clustering: These methods assume data is generated from
a mixture of distributions, typically Gaussian distributions, and group data based
on this assumption.

In our study, when identifying the most similar records or those with the highest
probability of being duplicates, we considered not only similarity search by score, but
also the use of clustering algorithms. Specifically, clustering provides a complementary
approach to similarity search by grouping data points that exhibit similar characteristics,
improving the detection of potential duplicates or errors.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN): A
commonly used algorithm in density-based clustering is DBSCAN. It relies on two key
hyperparameters:

• Minimum Points: This represents the minimum size of each cluster, essentially
defining the core of a cluster. Since our goal is to detect potential data errors, we
consider a minimum size of two elements.

• Epsilon Value: This is the maximum distance between two points to be considered
as neighbors belonging to the same cluster.

To optimize the value of epsilon, we can employ HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise). HDBSCAN performs DBSCAN over
varying epsilon values and integrates the results to identify the clustering that provides
the best stability across epsilon values [23] [24].

KMEANS: Usually called unsupervised feature learning, K-Means is a classical and
widely used unsupervised clustering algorithm that partitions a dataset into k distinct
clusters[25].
It operates iteratively by assigning each data point to the nearest cluster centroid and
then recalculating the centroids based on the current assignments. The objective is to
minimize the Within-cluster Sum of Squared Distances (WCSS) between data points and
their respective centroids. Despite its simplicity and efficiency, K-Means has limitations,
such as sensitivity to the initial choice of centroids and the need to predefine the number
of clusters k. In the Results Chapter, we will discuss and dive deeper into how we can
implement this kind of clustering, and choose between algorithms.
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Overall, clustering provides a powerful tool to organize unstructured data into meaningful
groups, playing a vital role in applications such as anomaly detection, record linkage, and
data cleaning.

3.6 Other Techniques used in the project
Multiprocessing

The multiprocessing module in Python provides support for concurrent execution using
multiple processes. Unlike multithreading, which operates within a single process and is
constrained by the Global Interpreter Lock (GIL), multiprocessing bypasses the GIL
by creating separate memory spaces for each process, enabling true parallelism on multi-
core systems. This makes it especially useful for CPU-bound tasks that require heavy
computation, which will be a essential feature, as we will see in the Implementation
chapter.

The module offers a similar interface to the threading module, making it accessible
for developers familiar with multithreaded programming. It supports process creation,
synchronization primitives, shared memory, and inter-process communication via queues
and pipes [26].

Multithreading

On the other hand we can find Multithreading, which is the way of achieving multitask-
ing by dividing a task into threads. A thread of execution is the smallest sequence of
programmed instructions that can be managed independently by a scheduler, which is
typically a part of the operating system [27]. In many cases, a thread is a component of
a process. As we mentioned, multithreading also has a native Python module. However,
after some research, we discovered that the FAISS library also includes a multithreading
module. This allowed us to centralize several utilities we were looking for within a single
library, contributing to clearer and more efficient code. Later on, we will present the
implementation in detail and discuss the reasoning behind choosing one technique over
the other.

When to Use Multithreading vs. Multiprocessing

The choice between multithreading and multiprocessing depends largely on the nature of
the task. Multithreading is typically used for I/O-bound operations, such as reading files,
handling network requests, or waiting for user input. These tasks spend a significant
amount of time idle or waiting, which allows multiple threads to operate efficiently within
a single process, despite the GIL in Python. On the other hand, multiprocessing is better
suited for CPU-bound tasks that require heavy computation. Since each process has its
own Python interpreter and memory space, multiprocessing bypasses the GIL and can
take full advantage of multiple CPU cores. This makes it ideal for parallelizing tasks like
data processing, mathematical simulations, or machine learning model training.



CHAPTER 3. THEORETICAL FRAMEWORK 13

3.7 Hugging Face
Hugging Face is a company and open-source community that has become a central hub for
modern NLP and machine learning tools. It is best known for the numerous Transformers
libraries, which provides pre-trained models for a wide range of tasks, including text clas-
sification, question answering, summarization, and translation [28].

Hugging Face simplifies the use of powerful models such as BERT, GPT, RoBERTa,
and T5, making them accessible through intuitive APIs and a standardized interface.
The platform also includes tools like datasets for standardized and shareable datasets,
and tokenizers for efficient text preprocessing.

In addition to code libraries, Hugging Face offers a Model Hub — a collaborative
repository of thousands of pre-trained models contributed by the research and developer
community. This ecosystem promotes reproducibility, transparency, and rapid experi-
mentation in NLP and beyond, helping us in a great way on the task of finding the right
embedding model.

By lowering the entry barrier to using state-of-the-art models, Hugging Face has played a
key role in democratizing AI development and accelerating research in natural language
understanding and generation.

3.8 Software Architecture
Having seen most of the techniques that we are about to use, let’s analyze the code ar-
chitecture from a high-level perspective before diving into the detail, and search for these
techniques implementations.

Since the beginning, we adopted a monolithic design, despite being aware of its limi-
tations compared to a microservices-based architecture [29]. The architecture design was
constrained by a set of library choices and software versions defined by an internal guide-
line within the Accenture team, known as Intelligent Asset Management Services (ISCP).
This framework acts as a common ground across projects, enabling the sharing of tools
and methods, and ensuring the performance and maintainability of all code developed
within this environment [30].

The resulting architecture is composed of three sequential stages, each governed by a
distinct philosophy and purpose. Now we will briefly outline the main principles and
goals that define them.:

a) Data Rearrange and Similarity Extraction: This first step aims to reduce the
number of rows or records that the LLMs must compare. Although it might seem
irrelevant at first glance, the performance of the agents is directly related to the
number of records they must analyze, as we mentioned earlier. We achieve this
reduction by working within a vector space, which is built from the original data
and an embedding. Then, for each record, we simply retrieve the desired number
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of most similar vectors. In this implementation, we specifically aim to retrieve the
10 most similar vectors for each record, retrieving, in the end, a list formed by
10-element lists, being these elements the identification of the record or row, and
its distance with the original row. This process of searching for the most similar
vectors is known as "Similarity Search".

Figure 3.2: Diagram illustrating the architecture of the first step

b) Output from duplicates detection: The second and main step represents the
core of the project. In this stage, we aim to send blocks of text to a LangChain work-
flow. This workflow attempts to detect duplicates or similarities between records
and evaluate the resulting output. The output obtained is a list of two possible
elements, an array made up of the ids very possible duplicated rows, or the string
’None’. It is imperative that the prompts and the workflow work correctly so the
output structure does not vary from one iteration to another. This is the step where
we believe the most innovative advances are being made, as we are exploring new
ways of interacting with LLMs. This involves studying parameters such as temper-
ature, the prompts used, and how the information is structured and provided.

Figure 3.3: Diagram illustrating the architecture of the duplicate detection by LLMs step

c) Results preparation for visualization: This final step is the least critical, but
not necessarily the easiest. After retrieving the list of IDs corresponding to the
duplicated rows, we need to publish them to an external database so that the user
can manually review any potential errors present in the original data. To do this,
we must first link the retrieved IDs to their corresponding records. Then, we simply
need to create a table, define its columns, and write the gathered information into
it.
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Figure 3.4: Diagram illustrating the architecture of the retrieving data step



Chapter 4

Implementation

In this chapter, which constitutes the core of the thesis, we present all the details re-
garding the application and its successful implementation. We begin by analyzing the
defined architecture, outlining its three main components, their respective purposes, and
a high-level overview of their interactions.

Subsequently, we will introduce the data used, providing a brief description and the
rationale behind its selection.
Once already understood the general structure of the tool in the previous chapter, we
delve into each of the three components in detail, reviewing the corresponding code and
the modifications it has undergone throughout development. Finally, we discuss the main
challenges encountered during implementation and the strategies adopted to address them.

There are numerous possible implementations tailored to a wide variety of problems and
business needs [1], but this implementation can serve to numerous situations. We believe
this approach offers a clear and concise path for understanding the tool in a structured
and accessible manner.

4.1 Input Data
The main dataset used for experimentation, development, and analysis in the Results
chapter is a synthetic dataset that replicates the typical structure of a MDT related to
company suppliers. This dataset was provided by Accenture and does not contain any
real client information.
The following table presents a sample of the data. It consists of eight columns:

• LIFNR: which represents the position or identifier of the supplier in the data table.

• NAME1: the name of the supplier company.

• LAND1: a short code representing the country of the supplier.

• ORT01: a more explicit location detail, which may be a name or a code.

• PSTLZ: the postal code.

• STRAS: the street address of the supplier.

• TELF1: the telephone number of the supplier.

16
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• REGIO: code of the region where the supplier is set

We must remember that the values are fictional, so the data does not exist, and the name
of the locations might not exist, and so the region and the telephone numbers.
Having defined the data columns, lets see a small representation of the data:

LIFNR NAME1 LAND1 ORT01 PSTLZ STRAS TELF1 REGIO
1000026 Walls Group ZV Y7Q0I 51330 720 Valencia Falls Apt. 838 438-655-0800x09277 WY
1000671 Sheppard-Garcia CY Warnermouth 98108 2982 Perez Forks 001-684-563-4845x158 VA
1000003 Herrera Inc IQ Mooreville 29678 80384 Greene Forge Suite 468 001-404-267-3992x964 NJ
1000013 Walls Group ZW Y7Q0I 51330 720 Valencia Falls Apt. 838 438-655-0800x09277 WYO
1000001 Williams-RoberM CL New Ryan 93050 177 David Ma5 (322)137-6078x77087 MT
1000008 Hicks PLC UZ South Wesley 83853 8247 Kristen Park 345.357.1579x617 KY
1000015 Zhang PLC IS Haydenstad 14090 193 Howell Grove 444-743-0952 KY

Table 4.1: Example of input data used in the simulation.

With a closer inspection, we can identify two very similar rows: both 1000026 and
1000001 share many fields in common. These examples illustrate precisely the kind of
cases this project aims to address. When searching for potential duplicates, we focus on
records where the information is nearly identical but may have been overlooked due to
small differences—such as in this case, where the values differ in the LAND1 and REGIO
fields. These types of errors originate from the automatic transfer of data into the MDT.
In this process, we can assume that data sharing the same identifier (in this case, LIFNR)
should be consolidated into a single record or row. However, if the associated informa-
tion differs, two entries that should represent the same entity may end up generating two
separate rows.
Other cases, which we will examine later, may involve misspelled words or minor gram-
matical differences, although these are less frequent.

Now that we understand how the input data is structured, we can begin the process. Be-
fore proceeding, it is important to note that this implementation is specifically designed
for this type of input, which is appropriate given that the tool is focused on Supply Chain
methodology.

4.2 Data Reduction Step

4.2.1 Process Data

Once the input data is available, it must go through several preprocessing steps to reach
an optimal working state.

We begin by removing the first row of the table, as the column names are not needed at
this stage. Then, we create a list in which each element is a string representing an entire
row. This list will be useful not only for obtaining the vectors but also as the input passed
to the LLM workflow.
As a small enhancement we discovered, we separate the fields within each row using a
pipe symbol (|). This change improves the LLM’s ability to distinguish between fields,
helping the agents avoid blending information from adjacent columns and enabling more
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accurate analysis.

The next step is to generate vector representations from the data. To that end, we
must import the embedding model from Hugging Face that we will use. But before this,
we highly recommend to divide the list into several data chunks, we do this to reduce the
computer work stress and time invested in embedding. After extensive research, we found
that the model which best suited our needs was Google’s CANINE-C [31].
This model stands out for operating at the character level, rather than tokenizing each
word or sentence (as we observed with other models in the previous chapter). It was
designed with two main objectives: predicting a hidden word in a sequence (Masked Lan-
guage Modeling, MLM) and determining whether two sentences belong to the same text
sequence (Next Sentence Prediction, NSP). These defined objectives are not the ones we
are targeting, but this does not mean that the model does not perform well for our task.
Under this premise, the model is designed to use the entire sentence to make decisions,
which makes it well-suited for tasks such as sentence or token classification, or question
answering — but not for text generation.

For this reason, it fits perfectly with the objective we are pursuing. By operating at
the character level, it becomes easier to capture small lexical differences between records.
It is also worth noting that the resulting embedding vectors have a dimensionality of 384,
which will be relevant afterwards, when we will analyze how to optimize the code and the
problems encountered.

One of the techniques considered and tested was dimensionality reduction using PCA.
Through PCA, we aimed to reduce the dimensionality of each vector, thereby decreasing
the execution time of the similarity search.
Although this approach had the potential to significantly speed up the process, it ul-
timately rendered the similarity search ineffective. Further details on this outcome are
provided in the Results chapter.

4.2.2 Data To Vector Store

Once we have the data chunks and the embedding model loaded, we proceed to vectorize
the data using multiprocessing.
With multiprocessing, we can divide the CPU into multiple cores, allowing us to execute
the vectorization process in parallel. In our case, after some testing, we decided to use 3
parallel processes. This enables a more efficient execution of the embedding step, which
accounts for the majority of the total processing time. In the next chapter, we will analyze
how execution time changes depending on the number of rows processed, and whether
multiprocessing is applied or not.

Once the list of vectors is generated, we aim to create a vector store. This vector store is
based on a FAISS index, which stores the vectors and organizes them according to their
Euclidean distance.

While developing the code, we designed a possible approach to manage the creation of
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the vector store by clustering the vectors. With that purpose in mind, we performed
clustering using the KMeans method provided by FAISS, setting the number of clusters we
considered optimal. In the next chapter, we will further explore the differences between
both approaches, and discuss the decisions made.

4.2.3 Similarity Search

Once the vector store has been created, let’s explain how the similarity search method
works for both of the approaches we designed: the vector store-based approach and the
clustering-based approach.

1. In the case of the vector store created, we simply execute a multiprocessing method
that returns a list of elements with the shortest distance to a given vector. In
our case, we set this number to 10 elements, although later we will analyze the
differences that arise when varying this parameter.

We must also highlight a very important parameter when performing similarity
search: the score_threshold. This threshold defines the maximum allowable dis-
tance — any records with a greater distance are excluded from the results. According
to the FAISS documentation, applying a score threshold can significantly improve
the quality of nearest neighbor results, particularly when working with dense and
high-dimensional vector spaces [32].

As a result, our worker returns a list of sublists, each containing the indices of the
most similar records. Furthermore, to assist the LLMs, we specify that if a sublist
contains fewer than two elements, it should be discarded. This allows us to avoid
evaluating records that are not likely to be duplicates.

2. On the other hand, to speed up the process, we can compare each vector only with
the vectors belonging to the cluster whose centroid is closest. In other words, the
task can be simplified: instead of comparing each vector with all others, we associate
each vector with its nearest centroid and compare it only with the vectors within
that cluster.

While this approach reduces execution time, is it really the best solution? Later,
we will analyze the performance differences between both methods.

3. A third option was considered and designed, based on the idea of a matrix opera-
tion. Thanks to the FAISS library, we had the ability to generate an N ×N matrix
containing the pairwise distances between all vectors. This approach could lead to a
faster, simpler, and more straightforward way of retrieving the most similar vectors,
compared to the other two methods previously discussed — especially if combined
with the use of the multithreading module to execute multiple operations in parallel.
In this case, we would simply need to extract the desired number of closest distances
for each element in the matrix.

Although this idea had a lot of potential, it came in a very late state of the develop-
ment and we decided to carry on, and maybe get back to it in a future imporvement
or update.
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In conclusion regarding the similarity search, regardless of the approach chosen, the
output is a list of sublists. Each sublist consists of ten tuples, each containing the ID that
links the vector to the original row and the computed distance. It is important to note
that the first element of each sublist will always be the vector itself, as it has zero distance
to itself. We will refer to this first record as the "original identifier", to distinguish it
from the possible duplicates.

4.3 Harmonization Workflow
As mentioned earlier, the last step results in a list composed of the ten most similar
records for each row. By reducing the number of records that the LLMs need to analyze
to a smaller subset, we can now build a LangChain-based workflow aimed at performing
self-evaluation.
This process begins with the definition of the workflow, where we establish the two agents
to be used. Although we could have worked with other, less expensive alternatives models,
we chose to use the GPT-4o API to ensure the highest possible quality of the results.
Lets take a look to both agents:

4.3.1 Generator Agent:

The purpose of this agent is to receive the initial input and search within the list of similar
records for those that are either exact matches or contain slight differences, which could
indicate potential errors (as the example shown before).
Once the duplicates have been identified, the agent returns a list containing the IDs of
the matching records. If no duplicates are found, the agent returns "None". Lets look to
an example of how does this agent work:

Figure 4.1: Example of the input format used in the workflow.
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Figure 4.2: Example of the output after duplicate detection.

As we can observe, the agent retrieves the LIFNR identifiers of the records that share
most of their values but differ in the ID. One detail that led us to modify part of the
implementation (specifically the similarity score threshold) was the agent’s tendency to
retrieve pairs of records that were similar to each other, but not to the original input
record — as seen in the case of “1000088” and “1000033”.

This agent only receives the prompt and the input text as the context. This prompt
is one of the main fields of study in this project, and we will detail the research after-
wards, along the prompt of the Evaluator agent.

4.3.2 Evaluator Agent:

On the other hand, the evaluator agent is responsible for reviewing and determining
whether the generator’s output is correct in both form and content. If the output is
deemed correct, the list is saved locally. However, if the response is incorrect, the agent
sends feedback to the generator and requests a new response. The output can be wrong
because of three main reasons: Wether the answer does not contain one record that is a
duplicate, or the opposite, and if the structure of the answer is not a list or a "None".

This structure requires the model to be configured with two prompts: one for analyz-
ing the output, and another for providing appropriate feedback to the generator. It also
needs to receive both the response from the previous agent and the original input.
Although this might seem somewhat redundant — why give two models the same input?
— the presence of an additional agent evaluating the output significantly increases the
number of successful results compared to using a single agent.
On the downside, the execution time nearly doubles, and consequently, the energy con-
sumption also increases.

4.3.3 Best practices for Prompt Engineering

Despite the fact we are not able to show directly the prompts used, we the consider it
important to highlight some key steps in prompt engineering, which has been essential
for developing the prompts required by both models.
It is crucial that the prompt be brief and concise — including unnecessary details will only
create confusion in the model’s response. Furthermore, it is essential to clearly separate
specific instructions using annotations such as quotation marks (“”) or dashes (-).
It is also highly recommended to include an example execution, showing both an input
case and the corresponding output, to guide the model’s behavior more effectively. These
few tips, along with other techniques, have significantly improved our results — making
the difference between a useful tool and a meaningless one.

Some of the prompt engineering strategies applied in this project were learned through
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the course ChatGPT Prompt Engineering for Developers, offered by DeepLearning.AI in
collaboration with OpenAI [33]. This training provided practical guidance on crafting
effective prompts for large language models, which proved essential for designing the in-
structions used by both agents.

In addition, we adjusted a series of parameters that control the behavior of the model [2]:

• temperature: This parameter determines the randomness of the model’s responses,
influencing how it selects the next word. The higher the temperature, the more
creative and varied the output tends to be.

Temperature works in such a way that, when generating a token, the model predicts
which tokens are likely to follow. This selection is then modulated by the temper-
ature: with a low temperature, the model favors high-probability tokens (more
deterministic behavior); whereas with a high temperature, it gives more weight to
lower-probability tokens, resulting in more diverse outputs.

• top_p (nucleus sampling): This parameter defines the subset of tokens to be con-
sidered during generation. The model selects from the smallest set of tokens whose
cumulative probability exceeds the value of top_p.

Figure 4.3: Illustration of nucleus sampling (p = 0.95) applied to the sentence "I would
like to see a ___". Inspired in the Vellum article [2]

4.3.4 Workflow Architecture

After understanding how the LLM agents operate, we now turn to the structure of the
workflow: its components and how it functions.
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Before explaining the architecture itself, we must highlight a small but important de-
tail regarding data distribution. For the workflow to execute correctly, it is essential to
associate the vectors extracted during the similarity search step with the corresponding
original text entries. As mentioned earlier in the development, we had already saved the
original records as string representations, making it easy to replace the list of vectors with
a list of the corresponding texts.

Another important detail is that we discovered that, for improved understanding and
performance of the LLMs, it is beneficial to add a header line to each list, containing the
names of the fields (the column names).

The implemented workflow follows the “Evaluator–Optimizer” structure defined in the
LangGraph library [34]. This workflow consists of two nodes—corresponding to the pre-
viously defined agents (Generator and Evaluator)—and four edges. Another important
element in the workflow worth mentioning is the state. The state is a defined class that
acts as a typed dictionary, storing various variables essential for the correct execution of
the workflow. These variables are continuously updated and reset in each loop of the
workflow. In our case, the state is used to store:The input text with its possible dupli-
cates, the output generated by the generator agent, the review and feedback provided by
the evaluator agent, and the three different prompts previously mentioned. The state
class offers great flexibility and ease of implementation.

We present these elements below by describing the overall workflow process:

1. Initially, the first edge represents the input of the text data into the generator agent,
with the state variables being reset.

2. Once a response is generated, it is passed to the evaluator agent. Depending on the
evaluation result (stored in the state), two possible edges can be followed:

(a) If the value of evaluation is "pass", the output is saved locally, and the loop
begins again with a new sublist from the main list.

(b) If the value of evaluation is not "pass", the evaluator sends feedback to the
generator, and the loop restarts with the same input until the evaluation
value becomes "pass".

In conclusion, in every iteration of the loop we send a list of texts that might be duplicate,
or not. The generator model retrieves a list of the identifiers of those records that it
considers a duplicate or an error. And the evaluator model reviews that response and
gives an evaluation and a feedback. The following image is an example of this loop:

Figure 4.4: Workflow iteration display example
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The final result from the workflow is another list, much smaller, with the lists of the
identifiers that are selected as duplicates. The list contains "None" elements, but these
will be deleted in the moment the list is finished.

For a better understanding of this simple workflow, lets have a look to a diagram that
resumes it.

Figure 4.5: Workflow implemented using LangGraph, following the Evaluator–Optimizer
pattern.

4.4 Database Results Insertion
Finally, we just need to export our data to an external database. In our case, we used
SQLite to test whether the execution was working correctly.
The table created to store the data contains a column called MASTER_ID, which represents
the original identifier, followed by the values of all the fields from the record identified as
a duplicate.
To achieve this, we had to go through a somewhat tedious process of rearranging the data
and associating the identifiers with the corresponding values from the original source.
We found that the cleanest way to build the final table was by creating a DataFrame from
the processed data and converting it directly into a database table.

In the initial approach, the result returned by the generator agent was a JSON object
containing the original identifier as the key and the duplicate identifiers as the values.
However, we changed this to a simple list so that both agents would have fewer difficul-
ties interpreting the given instructions. When we had the JSON object the DataFrame
was easier to create, but with a list of identifier, we had to separate the first value and
associate the rest with their information.
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4.5 Challenges Encountered

Embedding Times

The main issue we encountered during the development of this project was the significant
amount of time required to execute the entire process.
To give an idea, we aimed to process files containing around one hundred thousand records.
The similarity search alone took approximately 1581.03 seconds — roughly 26 minutes.
When including the execution time of the full workflow, the total duration could easily
be ten times longer than that.

As we could hardly improve the time spend by the workflow, all out attention was focused
into improving the time spend into embedding the data and doing the similarity search.
After some researching and tests, the only improvement we could established was the
introduction of multiprocessing with three cpu, reducing the time to approximately 14
minutes.

Errors in the responses

When working with LLMs, expecting consistently correct responses is more than just
challenging.
Errors may appear not only in the output produced by the generator agent, but also in
the evaluation and feedback provided by the evaluator agent.
This requires us to be extremely precise with the prompts used and to pay close attention
to the wording of the instructions — often needing to split hairs. Despite the fact that
we could show a great list of errors shown, we are only going to display one for a better
understanding.

Figure 4.6: Workflow error example.

It is clear that the example showed should retrieve a list of three identifier, the ones
detected as duplicates, but none are displayed. Neither does the evaluator detect this
error in the display.

Iterations limit

Occasionally, the code raises an error related to the maximum number of allowed itera-
tions. This occurs when the generator model and the evaluator fail to reach a conclusion.
To address this issue, we can temporarily increase the maximum number of iterations
from the default value of 25 to 100. However, this is only a temporary workaround until
the root cause is fixed. One possible reason for the process entering this loop is the lack



CHAPTER 4. IMPLEMENTATION 26

of precision in the prompts, which may cause confusion for the model. To better under-
stand and resolve this issue, we can insert print statements to inspect what each node is
generating, allowing us to identify at which point in the workflow the loop is occurring.
Looking at the points were the loop is generated, we can try to understand why does this
loop appear, and stablish two possible corrections for it:

Text input cleaning

While reviewing each step of the loop, we noticed that an object called AIMessage was
being printed to the screen. This object contained the message itself, along with the
number of tokens used and other metadata.
To prevent the evaluator model from having to process the entire content of the object,
we modified the generation step so that it returned only the message.

Feedback not received

Another potential issue in the loop was that the generator agent might not take into
account the feedback provided by the evaluator agent.
To ensure that the generator received the feedback, we manually added it to the state
class. One possible drawback of this approach was that the feedback could accumulate in
the state, potentially hindering the generator’s performance.
Fortunately, the state is reset in each iteration, meaning that the feedback only influ-
ences the next message.
However, this implies that in cases where more than two corrections are required, the
generator could enter a loop of repeating previous errors that had already been addressed
in earlier feedback.

So, our final observation, is that the best way to fix the loop problem is by modify-
ing the prompts, with the advices mentioned earlier.



Chapter 5

Results

In this chapter, we present the results and the various tests conducted on the implemented
steps.
To work in a controlled scenario and obtain more precise insights, we modified the original
dataset to contain only 500 records. Among these, 50 were manually altered to include
errors following the specific structure we aimed to detect. This configuration allowed us to
systematically adjust different aspects of the code in order to correct the introduced errors.
The newly modified dataset is named DQ_checks_modified, although this information is
essentially irrelevant for understanding the development presented.

5.1 Similarity Search
In a first approach where we were using PCA and the embedding model ‘grammarly/coedit-
large’, we modify into two types of errors tests:

1. Simple test with 5 entries containing varied errors:

By introducing 5 errors of different types—such as minor grammatical mistakes
(capitalization, missing spaces, etc.), character omission or transposition, and mod-
ifications in phone numbers or postal codes—we aim to verify whether the workflow
is capable of detecting small or specific cases.

2. Relocation test:

This test is slightly more complex than the previous one, as it aims to assess whether
the model can identify potential cases where a company has changed its location or
phone number, and may therefore be duplicated in the Master Data Table.

The results given by the tests were awful. For example, in a case with some characters
modify like ’Zimbabwe’ to ’Zimvavwe’, or ’2014’ to ’3014’, the score or distances from the
vectors were of 80 points, which is a very bad result, as we will see later. After deleting
the PCA step (with the cost of more executing time), the distance retrieved was more
optimistic, about 2.5 points.
But this results were far from correct, so we decided to change the perspective and try
with another embedding model.
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5.1.1 Embedding performance

To verify whether the embedding is the component causing issues during execution, we
tested the same scenario using both embedding models: google/canine-c and grammarly/coedit-
large. In the following image, we can observe that the results remain constant, as the
vectors generated through the embedding process and the Euclidean distance calculation
are always the same.

Figure 5.1: Comparative image between Canine-c (left) and Coedit-large (right)

The image does not clearly indicate which result is correct or why. However, if we
examine the distances or scores of the first element (the closest vector), we observe that
the score is approximately 0.03, whereas the opposite one is around 0.15. This difference
provides a useful reference for the distance range we can expect when identifying potential
duplicate records.

5.1.2 Similarity Search time scale variations

An empirical analysis was conducted to measure the execution time of the semantic search
system as a function of the number of processed records. As the number of elements in-
creases, the time required to generate the vector store and perform similarity comparisons
grows significantly. The complete results are presented in Appendix A.

In conclusion, we ended up using a 3-CPU multiprocessing approach for both the em-
bedding and the similarity search. This means that, in a final implementation, the time
required to embed the documents, create a vector store from these vectors, and perform
the similarity search is approximately 756 seconds or almost 13 minutes for a hundred
thousand documents.
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Although no visual proof is provided in this document, our experiments consistently
demonstrated that the similarity search method outperforms alternative approaches in
terms of accuracy, reliability, and execution time. In particular, it proved more effective
than clustering-based methods when it came to correctly grouping or identifying duplicate
records.

This conclusion is supported by:

• Its consistent performance across multiple dataset sizes.

• Its ability to handle highly heterogeneous data without requiring predefined param-
eters (such as the number of clusters).

• The comparative under-performance of clustering, as shown by the low silhouette
scores and the dispersion of duplicate records across clusters.

As a result, similarity search was selected as the core mechanism for detecting potential
duplicates in our final implementation.

5.1.3 Clustering

This subsection is quite more detailed than the others, because we think that the study of
this technique required a lot of time and tests to useful not be written up. Unfortunately,
we decided not to use clustering for the reasons explained

After some tests and researching we decided to try on the KMEANS algorithm with
the Faiss implementation:

Figure 5.2: Example of Kmeans clustering implementation from Faiss Documentation [3]

This approach would allow for seamless integration between the existing similarity
search methodology and the new clustering functionality. However, using K-Means intro-
duces a significant limitation: the requirement to define the exact number of clusters in
advance. In a real-world scenario, it is not feasible to determine this number accurately,
as doing so would imply prior knowledge of the exact amount of errors or duplicates
present—making much of this effort unnecessary.

In the case of implementing this approach with the existing codebase, we propose the
following pipeline:

1. All records are passed through the embedding model to generate vectors. This set
of vectors is denoted as V .

2. We apply clustering using an algorithm (for simplicity, K-Means):
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(a) Perform a sweep over the number of clusters n ∈ {2, 5, . . . , 50} and compute
evaluation metrics for each run.

(b) Select the best run, e.g., for n = 10.

(c) Divide V into n = 10 clusters. That is, partition V into subsets Vn with
corresponding centroids Cn.

3. We define the search pipeline as follows:

(a) Given a vector a ∈ V , compute its similarity to all centroids Cn. For example,
assume C1 and C3 are the closest.

(b) Search for the most similar vectors within the corresponding subsets V1 and
V3.
One possibility is to combine V1 and V3 into a single vector store for the search.
Whether this is viable depends on the complexity of implementation.

To optimize the aforementioned hyperparameters—specifically, the number of clusters—we
developed a script that calculates both the silhouette score and the Calinski score for each
iteration. Also known as the Variance Ratio Criterion, the Calinski and Harabasz score is
defined as ratio of the sum of between-cluster dispersion and of within-cluster dispersion.
In each run, the number of clusters is varied. The results of these tests can be observed
in the following figures:

Figure 5.3: Calinski score through 100 iterations of different size clustering
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Figure 5.4: Silhouette score across 500 iterations of different size clustering.

These graphs do not show promising results regarding the clustering approach, but we
should not give up just yet. Since we needed additional evidence to confirm that cluster-
ing was not a better alternative to the already established similarity search method, we
decided to analyze how many duplicates were actually grouped by the clusters.

To this end, we created a new table that included an additional column, ID_OR, which
indicates the original identifier for each row. For example, a duplicate found in position
235 would have the ID_OR value corresponding to the position of the correct (original)
record. To be more specific, let us consider a particular value of ID_OR. By examining
the cluster IDs associated with this value, we often observe that the duplicated records
are distributed across multiple clusters. Therefore, we only consider as valid groups those
sets of records that share the same cluster identifier at least twice.

After manually modifying the entire dataset, adding all values to the new column, and
counting the number of duplicated records, we can confidently state that the total number
of duplicate groups is 26.

Now that we know the exact rows with errors and the full composition of each group,
we can begin evaluating how well the clustering process captures these groups. In the
following graph, we present a comparison between the silhouette score and the percentage
of total duplicate groups correctly grouped within any cluster:



CHAPTER 5. RESULTS 32

Figure 5.5: Comparison between the silhouette score and the percentage of detected
duplicate groups (till 500 clusters).

Again, the result is not as god as expected. We can discard those number of clusters
whose percentage of groups gathered is less than the 20%. With this approach, the next
graph gives us a new perspective of the problem:

Figure 5.6: Comparison between the silhouette score and the percentage of detected
duplicate groups (till 50 clusters).

Based on the results, we can conclude that we are unable to achieve the minimum level
of quality or reliability required to implement this approach into our pipeline. Therefore,
we will explore alternative ways to improve the results or make this method viable. Al-
though we can see how the percentage improves with less number of clusters, we must not
forget that the main objective of using this technique, was to reduce the time invested on
the similarity search. But in the Appendix B, we can find some graphs that represent
the comparison between the time spent on clustering searching and the groups of errors
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found.

As a conclusion for discarding the clustering approach, our main hypothesis for its poor
performance is the high dimensionality introduced by the embedding process. This high-
dimensional space likely hinders the ability of clustering algorithms to form well-defined
and compact groups, especially when the number of true duplicates is small relative
to the dataset size. The following image is a representation we made of the clustering
distribution while we were researching for HDBSCAN performance, it can visually explain
why clustering may not be the most effective technique to use in this project:

Figure 5.7: HDBSCAN Clustering distribution for 500 records

5.2 Workflow
To test the precision and accuracy of the workflow outputs, we developed a dedicated
Python script to evaluate the results. This script took advantage of the column ID_OR,
originally created for assessing clustering performance, and we introduced a new column,
IS_OR, which indicates with a boolean value whether a given record is the original one.
From the clustering development, we also knew that the number of total error groups was
26. With this addition, we were able to filter the retrieved lists and retain only those
where the first identifier corresponds to the original record. This allowed for a more pre-
cise and accurate evaluation of the detected duplicate groups. In previous tests, we lacked
information about the exact structure of the groups (e.g., whether they contained 1, 2, 3,
or 4 errors).

In a first approach, the script just went through the lists obtained and crossed out those
identifier we knew were errors. But this solution did not provide the precise information
we were looking for, maybe a list erroneously collected a identifier that should not be
there, or in a list we could have the same identifier multiple times.

In order to perform a more detailed analysis of the process performance, we designed
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a grouped evaluation, where both the retrieved lists and those grouped by the common
ID_OR values were converted into sets using frozenset. This approach ensured that the
order of elements within each group would not affect the comparison— meaning that two
lists would be considered equivalent if they contained exactly the same elements, regard-
less of order.
In this process, we calculated the Exact Match Ratio (EMR), which measures the pro-
portion of correctly predicted duplicate groups out of the total number of real groups.
We also computed a weighted version of the EMR, which assigns greater importance to
larger clusters by weighting the matches based on the number of elements in each group.
Finally, we generated a breakdown of the EMR by group size, allowing us to identify
which group sizes were more prone to errors.

For a last test, we used the mentioned new column to retrieve those listed identifier
that had no errors or duplicates founded. This last and more explicit validation, con-
firmed once again that the vast majority of known duplicates were succesfully grouped,
further supporting the reliability of this approach.



Chapter 6

Conclusion

With the aim of improving the Data Harmonization process—an essential and common
step across all projects within the Supply Chain Data & AI department at Accenture—
this project sought to detect and remove potential duplicate records from the Master Data
Tables, which are often caused by inconsistencies arising from merging data from various
sources within a company.
With this objective in mind, we designed an automated system that leverages NLP tech-
niques and LLM implementations to avoid the tedious task of manual data review, as was
previously done. The architecture of the proposed process consists of three clearly defined
phases, each with its own objectives, but following a linear progression. The phases are:

1. Data Embedding and Similarity Search: In this step, we aim to reduce the
amount of raw data that LLMs need to analyze in each iteration. To do this,
we group together records that are detected as similar. This is achieved through
embeddings, which transform each record into vectors of a specific dimensionality.
Then, by computing the Euclidean distance between vectors, we generate lists of
the most similar records for each one.

2. LangGraph Self-Evaluated Workflow: The LLM-based loop is built using an
architecture with two interacting agents. The first agent, the Generator, analyzes
each list of similar records (in text format) and returns the identifiers of those records
that are likely to be duplicates or have high semantic similarity. The second agent,
the Evaluator, checks whether the Generator’s output is correct based on a set of
prompt rules, which define the expected structure of the answer. It determines
whether the Generator may have made a mistake. The final output of this workflow
is a list of lists containing the identifiers of the records detected as duplicates.

3. Database Results Insertion: Finally, for each list of detected duplicates, we link
the identifiers back to their corresponding records and insert them into a database
table that aggregates all potential duplicates for each original identifier.

Therefore, after executing this process and allowing sufficient time for completion, the
user only needs to review the flagged records in the Master Data Table—improving not
only execution time but also the overall scalability of the process.
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Future Improvements
Although the results have been very favorable and the implementation of the tool can be
considered a success, there are still some unexplored areas worth investigating:

• Matrix multiplication: One potential approach to reduce the execution time
of the similarity search was to compute a full distance matrix between all vectors
using matrix multiplication. This would allow us to directly extract the top X
closest distances for each record without iterating through pairwise comparisons.

• Prompt refinement: LLMs may occasionally fail due to inherent randomness in
their responses. To minimize such failures, it is essential to refine and optimize
prompt design. Even when randomness is present, well-crafted prompts can help
ensure consistent and high-quality outputs.

• Code optimization: This thesis does not include detailed explanations of the code
structure or implementation, primarily due to confidentiality reasons, as the code
is proprietary to Accenture. However, it is important to note that the codebase
used in this project could still be optimized—for example, by improving function
definitions, adjusting variables, or modifying parameters that may slow down the
execution process.





Appendix A

RAG System Execution Time

The following list details the measured times for vector store creation and similarity
comparison, using different input sizes and configurations, both with and without multi-
processing:

• 1 element:
Embedding and Vector store creation: 0.54 s
Similarity comparison: 0.08 s

• 5 elements:
Embedding and Vector store creation: 0.34 s
Similarity comparison: 15.85 s

• 10 elements:
Embedding and Vector store creation: 0.68 s
Similarity comparison: 0.07 s

• 100 elements:
Embedding and Vector store creation: 0.64 s
Similarity comparison: 0.53 s

• 1K elements:
Embedding and Vector store creation: 1.41 s
Similarity comparison: 4.38 s

• 10K elements:
Embedding and Vector store creation without multiprocessing: 359.30 s
Embedding and Vector store reation with multiprocessing: 102.35 s

Similarity Search comparison without multiprocessing: 51.26 s
Similarity Search comparison with multiprocessing: 20.52 s

• 100K elements:
Embedding and Vector store creation without multiprocessing: 6030.02 s
Embedding and Vector store creation with multiprocessing (2 CPUs): 737.61 s
Embedding and Vector store creation with multiprocessing (3 CPUs): 675.63 s
Embedding and Vector store creation with multiprocessing (4 CPUs): 684.03 s
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Similarity Search comparison with multiprocessing (3 CPUs): 81.01 s

• 1M elements:
Embedding with multiprocessing (3 CPUs): 6458.42
Vector store creation: 1154.85
Similarity Search comparison with multiprocessing (3 CPUs): 4708.96
Note: some executions triggered a MemoryError.



Appendix B

Clustering Comparison Between Time
and Quality

The following graphs illustrate the comparison between the time spent on similarity search
within clusters and the number of error groups detected. We present, in descending order,
three different cases: the first with 1,050 records, the second with 10,000 records, and the
last with 100,000 records.

Figure B.1: Similarity search time vs. detected error groups — Dataset of 1,050 records.

40
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Figure B.2: Similarity search time vs. detected error groups — Dataset of 10,000 records.

Figure B.3: Similarity search time vs. detected error groups — Dataset of 100,000 records.

These results were surprising, as we would not expect the fastest similarity check to
occur when the cluster has the largest size — this outcome appears counterintuitive. A
deeper research should help us to light the possible cause of this effect.
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