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original e inédito y no ha sido presentado con anterioridad a otros efectos. El
Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido
tomada de otros documentos está debidamente referenciada.
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Abstract

In the context of increasingly complex and interconnected global supply chains,
timely access to accurate and explainable insights is essential for operational effi-
ciency and risk management. Traditional analytical tools struggle to address the
relational intricacies of supply chain data, often leaving domain experts dependent
on technical specialists to extract actionable knowledge. This thesis presents the
development and evaluation of a conversational system based on Graph Retrieval-
Augmented Generation (Graph-RAG), designed to bridge this gap by integrating
a large language model (LLM) with a graph-structured supply chain knowledge
base.

The proposed prototype receives user queries in natural language, translates
them into Cypher graph queries, retrieves relevant data from a Neo4j database,
and generates contextually grounded answers in plain English. The solution was
developed and tested using an anonymized dataset representative of real-world
supply chain networks and evaluated on a suite of practical use cases. Quantita-
tive and qualitative analyses demonstrate that state-of-the-art LLMs can generate
accurate graph queries and coherent responses for complex supply chain scenarios.
The system significantly lowers the barrier for non-technical users to interact with
large, heterogeneous supply chain datasets, enabling more efficient and transparent
decision-making.



Resumen

En el contexto de cadenas de suministro globales cada vez más complejas e in-
terconectadas, el rápido acceso a información precisa y explicable es esencial para
la eficiencia operativa y la gestión de riesgos. Las herramientas anaĺıticas tradi-
cionales tienen dificultades para abordar las relacionales complejas de los datos de
la cadena de suministro, lo que a menudo obliga a los expertos en la materia a de-
pender de especialistas técnicos para extraer conocimiento. Esta tesis presenta el
desarrollo y la evaluación de un sistema conversacional basado en Graph Retrieval-
Augmented Generation (Graph-RAG), diseñado para reducir esta brecha mediante
la integración de un gran modelo de lenguaje (LLM) y una base de conocimiento
sobre la cadena de suministro modelada mediante grafos.

El prototipo propuesto recibe consultas de los usuarios en lenguaje natural,
las traduce en consultas Cypher sobre el grafo, recupera los datos relevantes de
una base de datos Neo4j y genera respuestas fundamentadas en el contexto en
inglés sencillo. La solución se desarrolló y probó utilizando un conjunto de datos
anonimizado representativo de redes reales de cadenas de suministro y fue evaluada
en un conjunto de casos de uso prácticos. Los análisis cuantitativos y cualitativos
demuestran que los LLM de última generación pueden generar consultas sobre
grafos precisas y respuestas coherentes incluso en escenarios complejos de cadena
de suministro. El sistema reduce significativamente la barrera de entrada para que
los usuarios no técnicos interactúen con grandes volúmenes de datos heterogéneos
de la cadena de suministro, permitiendo aśı una toma de decisiones más eficiente
y transparente.



Acknowledgements

I would like to thank my supervisor Caleb for his guidance and being there in
all the countless daily meetings.

Special thanks to the Supply Chain Planning team at Accenture for providing
this interesting project and an amazing environment to make this possible.

I also want to thank the classmates I have met this year at ICAI. I hope that
the friendships we have built will last forever.

Finally, i wish to thank my parents, who are always there supporting me,
looking forward to me coming home a few days and giving me lots of tuppers to
make my life easier in Madrid.





Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Primary Objective . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Sub-objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of art 7
2.1 Supply Chain Data Analysis: Methods and Challenges . . . . . . . 8
2.2 Large Language Models (LLMs) . . . . . . . . . . . . . . . . . . . . 10
2.3 Retrieval-Augmented Generation (RAG) . . . . . . . . . . . . . . . 12
2.4 Graph RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Graph Databases: Concepts and Applications . . . . . . . . . . . . 17

2.5.1 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Proposed Solution 23
3.1 Data Modeling for Supply Chains . . . . . . . . . . . . . . . . . . . 24

3.1.1 Data Structure Design . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Data Ingestion into Neo4j . . . . . . . . . . . . . . . . . . . 26
3.1.3 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 System Architecture & Implementation . . . . . . . . . . . . . . . . 29
3.2.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Detailed Workflow and Internal Logic . . . . . . . . . . . . . 30
3.2.3 Development and Supporting Technologies . . . . . . . . . . 32

4 Evaluation and Results 33
4.1 Evaluation Methodology and Metrics . . . . . . . . . . . . . . . . . 34

4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Example of System Performance . . . . . . . . . . . . . . . . 40
4.3.3 Cypher Query Examples for Dataset Questions . . . . . . . 40
4.3.4 Interactive prompting . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions and Future Work 45
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 51



List of Figures

3.1 Standardized graph model representing a simple supply chain of
the finished good chair. Each node is named using the format
<material>@<location>. . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Neo4j data importer scheme representing the data model of nodes
and lanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Complete visualization of the supply chain graph in Neo4j Browser 28
3.4 Zoom in section of the graph. It illustrates the suppliers Firmenich

and Tastepoint, who deliver a material to a manufacturing plant
identified as US PL Jacksonville. At this location, a new product
(leftmost node) is manufactured from these two materials. Note
that each node represents a unique material-location pair, multiple
nodes may share the same location while differing in the material
component, allowing for a more granular representation of produc-
tion flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 High-level flow of the Graph-RAG prototype. . . . . . . . . . . . . 29
3.6 System backend detailed logic diagram. . . . . . . . . . . . . . . . . 30

4.1 Graphical interface built with Streamlit. When initial responses
are ambiguous or incorrect, targeted follow-up questions help the
system converge to the correct answer. The example illustrates
the scenario in which gpt-4.1 corrected its output after additional
clarification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii





List of Tables

3.1 Description of MatLoc Node Fields . . . . . . . . . . . . . . . . . . 25
3.2 Description of Lane Fields . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Performance of different OpenAI models on the question answering
dataset. All columns except Time and Cost are normalized between
0 and 1. Cost is measured for 1M input tokens and Time in seconds.
Manual: Manual validation score. Correct.: Correctness. Coher.:
Coherence. BERT: BERTScore. ROUGE: ROUGE-L. Time: Re-
sponse time in seconds. Cost: input cost in USD per million tokens. 38

4.2 Comparison between a high-performing and a low-performing model
for a representative supply chain query of the evaluation dataset. . . 40

xv





Chapter 1

Introduction

This chapter introduces the scope and structure of the thesis. First, we provide
context on the critical role and inherent challenges of global supply chains and
present the technologies that motivate our work. Next, we articulate the mo-
tivations that drive this project. Finally, we outline the primary objective and
specific sub-objectives that will guide the design, implementation and evaluation
of a conversational Graph RAG prototype for supply chain planning.
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CHAPTER 1. INTRODUCTION

1.1 Context

In today’s highly interconnected economy, global supply chains play a critical role
in almost every industry. According to some estimates, 80% of world trade flows
through multinational supply chain networks, and one in five jobs worldwide is
tied to these supply chains [1].

However, recent disruptions, from geopolitical tensions and pandemics to natu-
ral disasters, have exposed the vulnerability of these complex networks. Companies
and governments are increasingly concerned with supply chain transparency and
resilience, especially as new regulations (e.g., in the US and EU) demand deeper
traceability of suppliers to address sustainability and human rights issues. The
core problem is that supply chain data is vast, fragmented, and often incomplete
beyond a company’s immediate suppliers. A manufacturer may be familiar with
its direct suppliers, known as tier-1 suppliers, but often has limited or no visibility
into the suppliers that provide goods to those suppliers, referred to as tier-2 or
tier-3. This lack of insight can create significant blind spots in managing supply
chain risks.

Traditional tools struggle to capture the multi-tier, multi-entity relationships
(spanning materials, facilities, shipments, and finance) that characterize an inter-
national supply network. As a result, analysts find it difficult not only to gather all
relevant information, but also to explain complex chain dynamics in an intuitive
way to decision-makers. Even when advanced analytics are applied, their results
can appear as black boxes without clear explanations, eroding trust in AI-driven
insights.

In this context, there is a pressing need for new approaches that make sense of
supply chain complexity and present insights in an explainable, user-friendly man-
ner. One promising direction is the use of knowledge graphs. They can integrate
data from disparate sources such as supplier databases, logistics records or mar-
ket data, representing the supply chain as a network of nodes and relationships.
Thanks to this representation, we can easily answer questions like which supplier
provides which component, or how a delay at one port affects downstream facto-
ries. By connecting different data sources into a unified graph, researchers have
shown it is possible to achieve visibility up to multiple tiers of the supply network
[2]. Moreover, such graphs enable the discovery of hidden patterns and bottlenecks
that would be hard to see in siloed tables or spreadsheets. However, extracting
insights from a graph still traditionally requires technical skills like writing graph
queries in Cypher or SQL and expert interpretation.

The rise of powerful large language models (LLM) has opened the door for
systems that allow users to pose questions in everyday language and receive coher-
ent, context-aware answers. Instead of manually querying databases or combing
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1.1. Context

through dashboards, a supply chain manager could ask “Which suppliers would be
most affected if Factory X in region Y shuts down?”, and receive an explanation
drawing on the data in the graph. Such natural language querying of a graph
could dramatically lower the barrier for non-technical users to gain insights from
big supply chain data.

1.1.1 Problem statement

Despite advances in analytics, two core challenges persist in global supply chain
management:

1. Data complexity and fragmentation. Global supply chains generate
“big data” (high-volume, high-variety information on shipments, inventories,
supplier performance, etc.) but this data is often underutilized because it is
scattered across systems and difficult to query holistically. Conventional data
analysis methods, like static reports or BI tools, are insufficient for capturing
the dynamic, multi-relational nature of supply chain problems, yet remains
siloed and difficult to query as a whole.

2. High barrier to timely insights. Extracting and interpreting supply chain
relationships currently requires proficiency in graph or SQL query languages
and extensive manual exploration. This constitutes an obstacle for domain
experts and decision-makers who may possess deep knowledge of supply chain
operations but lack proficiency in graph query languages or data science
techniques, thereby limiting their ability to directly access and interpret
complex relational data embedded within the graph. Moreover, even when
analysis is performed (e.g. a simulation identifies a vulnerable supplier),
explaining why that supplier is critical (perhaps due to being a single source
for a key material, connected to many products) is non-trivial.

The development of a Graph RAG (Retrieval-Augmented Generation) system
seeks to address the twin challenges of data complexity and explainability in global
supply chains.

The proposed system posits that by integrating an LLM with a graph-based
supply chain knowledge base, we can enable interactive Q&A in natural language
that is both rich in context and grounded in actual data. The LLM provides nat-
ural language understanding and generation capability, allowing users to simply
ask questions or seek explanations in plain English. The graph provides the fac-
tual backbone: a retrieval mechanism can pull relevant nodes, relationships, or
subgraphs from the knowledge base to feed into the LLMs response. In essence,

3



CHAPTER 1. INTRODUCTION

the system will augment the language model with supply chain knowledge on-the-
fly, ensuring that answers cite real data. This combination aims to overcome the
limitations of black-box AI by delivering explainable insights.

Natural language interaction is a key part of the solution because it aligns with
how humans reason and inquire. Supply chain domain experts may not know how
to code or query databases, but they know the questions they need answered. Early
indications of industry interest in this direction are evident: major companies like
Caterpillar have explored natural language dialogue systems for maintenance and
supply chain data [3]. Similarly, enterprises are looking to back their LLMs with
knowledge graphs to get more reliable business AI solutions, rather than using
language models in isolation.

4



1.2. Motivation

1.2 Motivation

This project is motivated by three main factors: business needs, technological
advancements, and academic interest.

During my internship on the Supply Chain Planning team at Accenture, I
witnessed how frequently operational questions emerged and how much time was
required to obtain clear answers. Planners need rapid insights into bottlenecks,
alternative sourcing options and risk mitigation, but must often rely on specialized
data analysts to query disparate systems, compile reports and interpret results.
This dependency introduces delays that can hinder timely decision-making.

From a business standpoint, Accenture recognized the potential value of a con-
versational tool that would allow logistics managers to pose questions in natural
language and receive immediate, data-driven responses. Such a prototype could
reduce analysis costs, accelerate planning cycles and offer a competitive advan-
tage by enabling clients to interact directly with their control-tower data without
writing queries or awaiting analyst support.

Technologically, integrating Retrieval-Augmented Generation with a graph-
based knowledge store presents an underexplored opportunity in global supply
chains. While Graph RAG has shown promise in domains such as biomedicine
[4], improving factual accuracy and explainability, few implementations address
the challenges of multi-tier logistics data. Developing a working prototype will
validate methods for ingesting data into a graph database, retrieving relevant sub-
graphs and using an LLM to generate coherent explanations. Additionally, mea-
suring the end-to-end latency of retrieval, inference and presentation will establish
performance metrics essential for enterprise adoption.

Academically, this thesis represents the capstone of my Big Data studies. It
brings together skills in graph modeling, data pipeline orchestration, generative-
model APIs and user experience evaluation. The results will not only enrich my
portfolio but also provide empirical evidence on the practical benefits and limita-
tions of Graph RAG architectures in industrial settings.

In summary, the motivation for this project is threefold: to meet Accenture’s
business need for faster, self-service analytics; to explore a novel technological
application of Graph RAG in supply chain planning; and to fulfill academic ob-
jectives by rigorously evaluating an emerging conversational framework. These
driving factors converge on the goal of demonstrating that a graph-powered RAG
system can transform how supply chain teams access, interpret and act upon their
own data.

5



CHAPTER 1. INTRODUCTION

1.3 Objectives

This project pursues a set of goals aligned with the motivations already mentioned
in the previous section. A primary objective is defined alongside several sub-
objectives.

1.3.1 Primary Objective

To develop a conversational prototype based on Graph Retrieval-Augmented Gen-
eration that enables non technical users to obtain rapid, explainable answers to
operational questions.

1.3.2 Sub-objectives

1. Conduct a systematic review of the state of the art and existing approaches,
identifying the most relevant advances and predominant techniques in retrieval-
augmented generation.

2. Select a graph database and design a coherent schema representing supply
chain entities and relationships. Load a test dataset to serve as the basis for
subsequent development phases.

3. Develop the functional core of the Graph RAG system, establishing the mech-
anisms required to link natural-language queries with the underlying graph
data.

4. Evaluate the prototype using a set of representative questions, measuring
response accuracy with different metrics, time-to-insight and the degree of
explanatory clarity for the end user.

5. Produce comprehensive, structured documentation describing the theoreti-
cal foundations, development process, evaluation results and guidelines for
potential extension or deployment.

Through this work, the goal is to demonstrate the feasibility and added value
of combining graph technologies with advanced language models for supply chain
analysis and knowledge extraction.

6



Chapter 2

State of art

In this chapter, we review the scientific and technological underpinnings relevant
to integrating graph-augmented retrieval and large language models within sup-
ply chain data systems. We begin by examining modern techniques for supply
chain data analysis, we then explore large language models, tracing their evolu-
tion from Transformer-based architectures to their deployment in conversational
question-answering systems, with attention to strengths and limitations. Build-
ing on this, we present Retrieval-Augmented Generation (RAG) as a method to
enhance factual accuracy by combining generative models with external memory.
Then, we extend RAG into Graph RAG, highlighting how knowledge graphs can
improve multi-hop reasoning and transparency. The last section introduces the
core concepts of graph databases, emphasizing their suitability for representing
and querying networked supply chain data, and concludes with a focused overview
of Neo4j as a mature platform that supports both graph storage and integration
with AI systems. Collectively, this chapter lays the conceptual groundwork for the
proposed Graph RAG+LLM system in subsequent chapters.

7



CHAPTER 2. STATE OF ART

2.1 Supply Chain Data Analysis: Methods and

Challenges

Global supply chains generate vast and complex data that require sophisticated
analysis to ensure efficiency and resilience. Recent global crises and regulatory
pressures have highlighted the need for greater supply chain transparency and
risk management. For example, the European Union’s Raw Materials Initiative
(RMI) underscores the importance of mapping critical raw material supply chains
and diversifying sources to reduce dependency [5]. However, obtaining end-to-
end visibility in supply networks remains difficult. Information beyond first-tier
suppliers is often opaque or incomplete, making it hard to identify vulnerabili-
ties deep in the supply chain. In one survey, nearly 80% of companies could not
name the number of their second-tier or deeper suppliers, indicating prevalent
data blind spots in multi-tier networks [2]. This lack of visibility hampers precise
risk forecasting and proactive mitigation. Traditional supply chain data analysis
has relied on enterprise resource planning (ERP) systems, spreadsheets, and man-
ual reporting, but these tools struggle with the scale and interconnectedness of
modern supply chain data. In the era of Industry 4.0, the volume and velocity
of supply chain data have increased dramatically, exacerbating the challenges of
data integration and analysis [6]. The relationships in a supply network form a
graph (or “supply web”) structure with multiple tiers of suppliers and customers.
Conventional relational databases are often ill-suited for capturing such multi-hop
relationships and may lead to poor performance or even fragile analytics when
dealing with deeply linked data [6]. For instance, recursive queries to trace a part
through several supplier tiers can become computationally expensive in a relational
model. To address these challenges, recent approaches have adopted graph-based
data models and advanced analytics. Modeling a supply network as a knowledge
graph enables the integration of heterogeneous data sources and facilitates rea-
soning over complex relationships [2]. Liu et al. (2023) present a framework for
supply chain resilience using knowledge graphs: by connecting disparate supplier
and procurement datasets, they achieved visibility up to tier-3 suppliers and ap-
plied graph algorithms to identify critical nodes (e.g., single points of failure in
the network) [2]. They also demonstrated the use of machine learning for link
prediction in the supply graph, inferring missing supplier relationships with rea-
sonable accuracy. This knowledge-driven approach supports risk identification by
uncovering, for example, that many suppliers might be concentrated in a single
region or share a high-risk profile [2]. Such insights are difficult to obtain with
traditional tabular data analysis. Another emerging method in supply chain ana-
lytics is the application of natural language processing (NLP) to unstructured data
(e.g., maintenance logs, procurement documents, news feeds). Large manufactur-
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2.1. Supply Chain Data Analysis: Methods and Challenges

ers have explored combining NLP with graph data models to capture and query
domain knowledge. For example, Chandler (2018) describes an industrial system
at Caterpillar that uses a graph database to store maintenance and supply chain
information, allowing users to query it via natural language dialogues [3]. In this
approach, free-form text data (work orders, incident reports, etc.) are parsed and
mapped into a graph of entities (machines, parts, locations) and relationships. The
graph representation provides a flexible yet structured way to link textual knowl-
edge (such as a description of a part failure) to the broader supply network context.
This enables powerful queries like, “Which critical components sourced from Sup-
plier X have experienced failures in the last year?” to be answered by traversing
the graph. The use case demonstrates that graphs can serve as a backbone for
NLP systems at scale, bridging the gap between unstructured text and structured
supply chain data [3]. In summary, supply chain data analysis is evolving from
siloed, manual approaches toward more automated, intelligence-driven methods.
Key challenges include data silos and heterogeneity (structured ERP data vs. un-
structured text), limited visibility across multiple tiers, and the need for real-time
risk assessment. Contemporary methods address these challenges by integrating
data into knowledge graphs and applying advanced analytics: graph algorithms to
analyze network connectivity, machine learning to predict disruptions, and NLP to
extract insights from text. These methods come with their own limitations, such
as the effort required to build and maintain a comprehensive knowledge graph
and potential data quality issues (incomplete or inconsistent data from suppliers).
Nonetheless, they lay the groundwork for more resilient and data-informed supply
chain management, which is crucial in an increasingly volatile global environment.
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2.2 Large Language Models (LLMs)

Large Language Models (LLMs) are a class of AI systems distinguished by their
size (hundreds of millions to hundreds of billions of parameters) and their abil-
ity to learn from massive text corpora. By leveraging deep neural architectures,
particularly the Transformer [7], LLMs have achieved remarkable proficiency in
natural language tasks. Notable examples include BERT [8]) for language under-
standing and GPT-3 [9] for text generation. GPT-3, with 175 billion parameters,
demonstrated that scaling up model size and training data can yield emergent
capabilities: it can perform tasks such as question answering, translation, and
summarization with little or no task-specific training (so-called few-shot learning).
This marked a turning point in NLP, as LLMs began to serve as general-purpose
language tools or foundation models, applicable to a wide range of domains.

LLMs operate by predicting the next word in a sequence, but their massive
training on diverse internet text allows them to capture a broad spectrum of factual
and linguistic knowledge implicitly. In the context of supply chain data systems,
LLMs offer potential benefits. They could, for instance, interpret and generate
reports from logistics data, understand complex supply chain documents, or answer
questions posed in natural language by synthesizing information from multiple
sources. Early research has explored fine-tuning LLMs on domain-specific corpora
(such as maintenance records or procurement contracts) to adapt their knowledge
to supply chain contexts. The result would be AI assistants capable of analyzing
unstructured supply chain information at scale and aiding decision-making with
human-like language explanations.

Despite their impressive capabilities, LLMs also have significant limitations.
Firstly, they store knowledge implicitly in model weights, which means their knowl-
edge is static up to the time of training and not easily updated. They have broad
but shallow knowledge in specialized fields, often lacking the depth or the most
up-to-date facts needed for expert tasks [10]. For example, an LLM trained on
general web data might not know the latest disruptions in a specific supply chain
or the intricate details of a company’s supplier network. Secondly, LLMs can pro-
duce information that appears fluent and convincing but is factually incorrect or
fabricated – a phenomenon known as hallucination. Because they lack direct ac-
cess to ground truth databases when generating answers, they may fill gaps with
plausible-sounding but erroneous statements [10]. This is particularly problematic
in a supply chain scenario, where decisions based on incorrect information (e.g.,
a wrong lead time or supplier location) could have serious consequences. Another
concern is that LLMs do not naturally provide provenance for their outputs. They
cannot explain why they gave a certain answer or cite a source, which undermines
trust in critical applications. Finally, the computational requirements of training
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and deploying LLMs are immense, raising practical issues of cost and integration
into existing systems.

Researchers and practitioners are actively seeking ways to mitigate these issues
while harnessing LLMs’ strengths. One promising direction is to augment LLMs
with external knowledge sources so that the model can retrieve up-to-date, rele-
vant information when needed, rather than relying solely on its internal memory.
By doing so, we can enhance the factual accuracy of LLM outputs and enable
the model to cite evidence for its statements. The next section discusses such
an approach, Retrieval-Augmented Generation, which combines an LLM with a
retrieval mechanism to improve performance on knowledge-intensive tasks.
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2.3 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is a technique that integrates large lan-
guage models with external knowledge retrieval to overcome some of the limitations
of standalone LLMs. In a RAG architecture, the language model is coupled with
a retriever module that can access a large collection of documents or a knowledge
base. For a given query or prompt, the system first retrieves relevant informa-
tion (e.g. text passages, articles, or facts) from the external source, and then the
language model conditions its generation on the retrieved evidence. This process
allows the model to inject up-to-date and detailed knowledge into its responses,
rather than relying purely on what was seen during pre-training [10].

The RAG framework was introduced by Lewis et al. (2020) for knowledge-
intensive NLP tasks [10]. In their seminal work, a pre-trained sequence-to-sequence
model (BART) was augmented with a dense vector retriever that indexes the entire
Wikipedia corpus. Given a question, the retriever finds the most relevant passages
from Wikipedia, and the generator model then produces an answer using not only
its parametric knowledge but also the retrieved text. Two variants were explored:
one where a fixed set of passages is retrieved once for the whole answer, and
another where new passages can be fetched at each decoding step. The results were
compelling: RAG achieved state-of-the-art performance on open-domain question
answering benchmarks, outperforming models that had to rely only on encoded
knowledge in their parameters [10]. Moreover, the answers generated by RAG
were observed to be more specific and factual, closely referencing the retrieved
documents, as opposed to the more generic outputs of parametric-only models.

Strengths of RAG: The primary advantage of RAG is that it marries the flexi-
bility and fluency of LLMs with the precision of information retrieval. The external
knowledge base serves as a dynamic memory. It can be updated independently
of the model (for example, by adding new documents), immediately injecting new
information without retraining the language model. This makes RAG systems
adaptable in fast-changing domains like supply chain management, where new
supplier information or regulatory updates can be incorporated on the fly. RAG
also provides a form of transparency: since the model’s output is grounded in
retrieved passages, a user can be shown the sources that the model used (address-
ing the provenance issue to some extent). In knowledge-intensive scenarios, RAG
significantly reduces hallucinations, because the model has factual text to draw
from and is implicitly encouraged to stay faithful to that evidence. Lewis et al.
report that their RAG models produced substantially more accurate statements
on factual QA tasks compared to a purely generative baseline, thanks to grounding
in external text [10].

Despite these benefits, RAG is not without challenges. The effectiveness of a
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RAG system hinges on the quality of the retrieval component. If the retriever fails
to fetch the relevant documents for a query, the generator may still produce an
incorrect or unsupported answer (and perhaps with misplaced confidence). There-
fore, RAG inherits the classic information retrieval problems of recall and precision.
Another issue is that splitting knowledge into discrete documents or passages (as is
typically required for indexing) may lead to fragmentation of information. A sin-
gle fact might be spread across multiple documents, requiring multi-hop reasoning.
Traditional RAG, which usually retrieves a few top documents based on similarity
to the query, might miss information that is not explicitly mentioned in any single
document but can be inferred by connecting pieces from several sources. Han-
dling complex queries that involve multiple entities or relationships (for instance,
“Which suppliers of Supplier X also experienced delays due to the same hurricane
in 2023?”) remains challenging for text-only RAG. The model might need to re-
trieve separate passages about Supplier X’s suppliers and about the hurricane’s
impact, then connect them—something beyond the capability of naive retrieval
algorithms that treat each query independently.

There is ongoing research to address these limitations, and one notable direction
is the use of structured knowledge and graphs within the RAG paradigm. By
incorporating graph-based retrieval or knowledge graph information, it is possible
to better handle multi-hop queries and exploit relationships between pieces of
data that a flat document index would overlook [11]. In the next section, we
discuss Graph RAG, which extends the RAG concept by using graph-structured
knowledge bases and has shown promise in tasks requiring complex reasoning and
domain-specific knowledge integration.
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2.4 Graph RAG

Graph Retrieval-Augmented Generation (Graph RAG) is an emerging paradigm
that combines large language models with graph-structured knowledge sources to
enhance information retrieval and reasoning. In Graph RAG, the external memory
accessed by the language model is not a corpus of independent text documents, but
rather a knowledge graph or a graph-based index of the knowledge. This approach
retains the core idea of RAG—grounding LLM outputs in external data—but
leverages the rich relational structure of graphs to overcome some limitations of
text-based retrieval. A recent survey by Procko and Ochoa (2024) provides a
comprehensive overview of Graph RAG techniques, highlighting their benefits in
complex query scenarios and multi-relational data environments [11].

By using graphs, Graph RAG can capture complex relationships between enti-
ties, enabling more nuanced understanding and multi-hop reasoning. For example,
consider a supply chain knowledge graph where nodes represent organizations, fa-
cilities, and products, and edges represent supplier relationships or material flows.
A Graph RAG system could retrieve not just isolated facts about one supplier,
but an entire subgraph connecting a manufacturer to its tier-2 and tier-3 suppliers
when answering a query about supply chain risk. This subgraph retrieval provides
the language model with context that preserves the relationships (e.g., the chain of
dependencies or geographic co-locations) inherent in the query. Traditional RAG
would require stitching together multiple documents to get the same connected
context, whereas Graph RAG can directly navigate the knowledge graph to gather
relevant interconnected information.

The advantages of Graph RAG over text-only RAG have been noted in the
literature [11] and can be summarized as follows:

• Enhanced Knowledge Representation: Graphs store knowledge in a struc-
tured form, with nodes and edges encoding entities and their relations. This
enables the system to consider not just keyword overlap, but the actual se-
mantic relationships when retrieving information. A graph can represent
hierarchies, causality, and other relationships (e.g., part-of, located-in) that
are crucial for complex reasoning but might be implicit or scattered across
texts. By traversing the graph, Graph RAG can discover non-obvious con-
nections and answer queries that require joining facts from different parts of
the knowledge base.

• Better Multi-hop Reasoning: Because of the explicit links in a knowledge
graph, Graph RAG can naturally perform multi-hop retrieval. It can follow
a chain of edges to gather evidence that spans multiple hops (for instance,
finding all suppliers indirectly affected by a raw material shortage via their
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supply network). This logical traversal goes beyond what a vector-similarity
search can do. Empirical studies indicate that Graph RAG can handle com-
plex queries with multiple intent more effectively, reducing the risk that the
model misses a critical intermediate piece of information.

• Efficiency and Context Preservation: Graph databases are optimized for
relationship-centric queries, which means a Graph RAG system can retrieve
relevant knowledge subgraphs quickly even in a large dataset. By focusing
on the subgraph that is relevant to a query, the language model does not
need to process as much extraneous text. This can lead to efficiency gains;
in some cases Graph RAG responses were generated with a fraction of the
tokens needed by a traditional RAG approach, due to more focused con-
text. Additionally, graphs can be updated incrementally (adding or remov-
ing nodes/edges) without reprocessing an entire corpus, allowing real-time
knowledge updates.

• Interpretability and Trust: The use of a knowledge graph offers a transparent
window into the model’s reasoning process. Users or auditors can visualize
the retrieved subgraph and see the chain of relationships that led to a given
answer. For high-stakes domains like healthcare, finance, or supply chain,
this interpretability is valuable. It provides an explanation of which facts
and connections the model considered, thereby building trust. In contrast,
a pure text RAG might retrieve a document, but it’s less clear which part
of the text or which combination of texts led to the conclusion. Graphs
naturally document the reasoning path (e.g., Company A → Company B →

Factory C for a supply chain risk path).

Early use cases of Graph RAG underscore these advantages. In the medical
domain, for instance, Graph RAG has been applied to question answering where
the knowledge source is a biomedical knowledge graph (genes, diseases, drugs,
etc.). The LLM can retrieve a biomedical subgraph that links a gene to a pathway
to a disease, providing grounded answers to complex clinical queries. In the le-
gal domain, researchers have used Graph RAG to navigate legislative documents:
a knowledge graph of laws and regulations allows an LLM to pinpoint relevant
statutes across a large body of text when answering legal questions. In the context
of supply chains, one can envisage Graph RAG being used to query a supply chain
knowledge graph for resilience analysis—for example, identifying how a disrup-
tion in one region might propagate through suppliers and which products would
be affected. By leveraging the structured relationships (supplier-of, located-in,
uses-material) in the graph, the LLM can generate a report that is both factually
accurate and tailored to the specific query, with the backing of the graph data.
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Despite its promise, Graph RAG is a nascent field and comes with limitations
and challenges. One major challenge is the requirement of a high-quality, up-to-
date knowledge graph. Many domains do not have readily available knowledge
graphs, and building one (via knowledge graph construction or manual curation)
can be labor-intensive and error-prone. If the graph is incomplete or contains
erroneous relationships, the Graph RAG system’s performance will suffer; it might
overlook answers that lie outside the known graph or propagate the graph’s errors.
This issue is analogous to the knowledge base quality problem in traditional expert
systems. Another limitation involves knowledge integration: how to effectively
encode the retrieved subgraph into a form that the language model can understand.
Graph data might need to be linearized (turned into text or a list of triples)
or embedded, and there is a risk of losing some structural information in that
conversion. Furthermore, large knowledge graphs pose scaling issues. While graph
databases handle big data well in terms of storage and retrieval, the language
model still has a finite context window. If a query requires a very large subgraph
as context, it might exceed the token limit of the model. Research is ongoing into
techniques for summarizing or chunking graphs to fit within model constraints
without sacrificing critical information.

Additionally, Graph RAG inherits concerns about knowledge conflicts and con-
sistency. When multiple sources or multiple paths in a graph provide conflicting
information (for example, two different data sources give different delivery lead
times for the same supplier), resolving these conflicts is non-trivial. The LLM
might need to decide which source to trust or how to reconcile differences, which
is an open problem. Privacy is another consideration: supply chain knowledge
graphs for a company might contain sensitive business information, so any Graph
RAG deployment needs to ensure secure handling of data and adherence to privacy
regulations.

In summary, Graph RAG extends retrieval-augmented generation by using
graphs to organize and supply knowledge to LLMs. It shows clear strengths in
representing and reasoning about connected data, making it highly relevant for
domains like supply chain management where relationships are paramount. Suc-
cessful early applications in various fields suggest that Graph RAG can improve
accuracy and interpretability of LLM-driven systems. At the same time, con-
structing and maintaining the graph knowledge base, as well as integrating it with
LLMs efficiently, remain active areas of research. As Graph RAG techniques ma-
ture, we expect them to play a significant role in enterprise AI systems, including
those aimed at analyzing and optimizing supply chain networks. The approach
naturally dovetails with graph database technology, which we explore next.
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2.5 Graph Databases: Concepts and Applica-

tions

Graph databases are specialized data management systems designed to store and
query data as a network of nodes and edges. Unlike traditional relational databases
that arrange data into tables, graph databases use a flexible schema-less structure:
entities are nodes, relationships between entities are edges, and both can have
properties (key-value pairs) describing them. This model—often called the labeled
property graph model—is intuitive for representing connected information. As
Robinson et al. (2013) famously note, with a graph database “what you sketch on
the whiteboard is typically what you store in the database” [12]. In other words,
the graph model allows data to be stored very closely to how we naturally think
about relationships, whether it’s social networks, transportation routes, or supply
chain linkages.

In a graph database, queries are usually expressed in terms of patterns to match
in the graph (for example, find a path of length 3 between Node A and Node B
with certain properties). This contrasts with SQL queries on relational databases,
which require multiple JOIN operations across tables to traverse relationships.
Graph query languages like Cypher (originally developed by Neo4j) or SPARQL
(for RDF graph stores) provide a high-level syntax to specify these patterns. For
instance, a Cypher query might look for all suppliers of a given company that are
located in a certain country by traversing ”SUPPLIES” relationships and filtering
on a location property. Under the hood, graph databases index these relation-
ships, making such multi-hop traversals efficient. Research and benchmarks have
shown that for highly interconnected data, graph databases can outperform rela-
tional databases by orders of magnitude on queries that involve traversing many
relationships [12]. A classic example is the “friends-of-friends” query in a social
network: finding friends-of-friends three levels deep can be extremely slow in SQL
if not carefully indexed, but graph databases handle it readily since they can ex-
plore the graph neighborhood in linear time with respect to the number of relevant
edges. Robinson et al. report that a 3-hop path query was over 10,000 times faster
on a native graph database compared to a relational system in certain scenarios
without specialized indexing [12]. Even with indexing in the RDBMS, graph sys-
tems tend to maintain an edge in such traversal-heavy queries.

Applications of Graph Databases. The strengths of graph databases make
them well-suited for a variety of applications.

• In knowledge graph management, graph databases are used to store large
knowledge bases (like DBpedia or enterprise knowledge graphs), supporting
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semantic queries and inference.

• In social networks and recommendation systems, graphs naturally model
users, their connections, and their interests; companies like Facebook and
LinkedIn have graph backends to compute things like “people you may know”
or to detect communities.

• In fraud detection, financial institutions use graph databases to uncover fraud
rings by seeing connections between accounts, transactions, and entities.

• Another pertinent application domain is supply chain and logistics. Sup-
ply chain data—encompassing suppliers, manufacturers, distribution centers,
shipments, etc.—forms a complex network that can be efficiently managed in
a graph database. Hong and Chen (2022) demonstrate a graph database so-
lution for automotive supply chain resilience: they created a labeled property
graph of their supply network and were able to run analytics like “time-to-
stockout” computation and multi-tier supplier queries with high efficiency
[13]. Their framework showed that recursive queries (e.g., finding all sup-
pliers up to n-th tier or calculating the impact radius of a disruption) were
handled elegantly by the graph model, which would have been cumbersome
with a relational approach [13]. Moreover, graph algorithms such as central-
ity measures can be applied directly to identify key suppliers (nodes with
high centrality) or vulnerable connections in the supply chain network.

Graph databases also play a critical role in retrieval-augmented pipelines as
discussed in previous sections. When implementing a RAG or Graph RAG system,
a graph database often serves as the underlying storage for the knowledge to
be retrieved. For example, if a company constructs a knowledge graph of its
supply chain (integrating data from procurement, logistics, and external sources),
a graph database like Neo4j or Amazon Neptune could store this graph. An LLM-
based assistant could then query the graph database (via Cypher or SPARQL
queries) to fetch relevant subgraphs or facts in response to a user’s question. This
integration allows the pipeline to exploit the performance and query power of graph
databases in retrieving relevant information, which is then fed into the language
model for generation. Such a setup combines the best of both worlds: the rigor
and connectivity of graph-stored knowledge with the fluent explanatory power of
LLMs.

While graph databases are powerful, they are not a silver bullet for all data
problems. One limitation is that they may not match the performance of rela-
tional databases for heavy analytical queries that involve scanning large portions
of the data (e.g., aggregating a numerical column across millions of rows) – tasks
where columnar SQL databases excel. Graph databases shine in traversal queries,
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but pure aggregation or extremely large graph analytics might require additional
tools or graph processing frameworks (like Apache Spark GraphX or Neo4j’s own
Graph Data Science library). Scalability can also be a concern: scaling a graph
database horizontally (across many servers) is a complex task due to the inter-
linked nature of the data. Recent advancements and distributed graph systems
(e.g., Neo4j Fabric, TigerGraph) have addressed this to some extent, but designing
sharding or partitioning strategies that preserve graph locality is non-trivial. An-
other challenge is the relative novelty of graph querying for many developers and
analysts — there is a learning curve to adopt a new query language and mental
model, as opposed to the long-established SQL for relational databases. However,
with growing interest in knowledge graphs and network analytics, graph databases
are becoming more mainstream, aided by an expanding ecosystem of tools and
standards (for instance, the ongoing development of GQL, a standardized graph
query language by the ISO).

In conclusion, graph databases provide a robust platform for managing con-
nected data. Their data model aligns well with real-world networks, and their per-
formance advantages manifest in scenarios where relationships matter more than
individual data points. In the realm of supply chain systems, graph databases
enable the creation of a “digital twin” of the supply network, supporting advanced
analytics and AI-driven insights. As we turn to a specific graph database in the
next subsection, Neo4j, we will see how these concepts materialize in a concrete
system that has been widely adopted in both academia and industry.

2.5.1 Neo4j

Neo4j is one of the leading graph database management systems and a prominent
example of a property graph database. First released in the late 2000s, Neo4j
was a pioneer in the NoSQL movement, offering an ACID-compliant transactional
database entirely optimized for graph storage and traversal. In Neo4j’s data model,
nodes represent entities and can have one or more labels (types), while relationships
(edges) connect nodes and are directed and named (e.g., SUPPLIES, LOCATED IN).
Both nodes and relationships can hold properties in the form of key-value pairs,
allowing rich metadata to be stored directly in the graph structure. This flexible
schema-less design means data can evolve without the need for costly migrations,
new node types or relationship types can be added as needed, reflecting changes
in the domain model.

One of Neo4j’s most notable contributions is the development of the Cypher
query language, which has a SQL-like syntax tailored to graphs. Cypher uses pat-
tern matching with an ASCII-art style representation of nodes and relationships.
For example, a Cypher query to find suppliers in Germany that provide parts to
a company might look like:
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MATCH (supp:Company)-[:SUPPLIES]->(part:Part)<-[:BUYS]-(buyer:Company)

WHERE buyer.name = "ACME Corp" AND supp.country = "Germany"

RETURN supp.name, part.id;

This query traverses the graph pattern of a supplier supplying a part that the
buyer (ACME Corp) buys, filtering by supplier country. The readability of Cypher
and its expressive power (including support for variable-length path patterns, ag-
gregations, etc.) have made it a popular choice for graph querying. In fact, Cypher
influenced the design of GQL, the forthcoming standard graph query language.

Applications and Strengths: Neo4j has been widely adopted in industries
ranging from finance to telecommunications, and has also been used in numerous
academic projects. In the supply chain context, as mentioned earlier, Neo4j has
been employed to model supply networks. Its ability to quickly traverse multi-tier
relationships, thanks to the set of native Cypher functions and syntax, is invalu-
able for questions like “find all indirect suppliers of a given component” or “iden-
tify the shortest supply path between two locations of the network.”. Hong and
Chen (2022) implemented their supply chain resilience graph model on Neo4j and
reported significant performance gains: queries that involve exploring recursive
supplier relationships ran efficiently, and the graph schema allowed them to natu-
rally represent complex structures like alternative suppliers and bills-of-materials
[13]. In another example, Caterpillar’s maintenance and supply chain knowledge
graph was built on Neo4j to enable interactive question-answering; Neo4j’s fast
graph traversal meant that even complex queries through the equipment-failure-
service networks could be answered in near real-time [3]. These cases highlight
Neo4j’s strength in handling operational graph queries (many short transactions
of traversals) as well as serving as a backbone for knowledge-driven applications.

Neo4j also provides an ecosystem of tools that enhance its applicability. The
Neo4j Graph Data Science library offers algorithms for community detection, cen-
trality, similarity, and more, which can run natively on the graph. This is useful
for supply chain analytics—e.g., finding clusters of suppliers that are tightly inter-
connected, or key nodes whose removal would fragment the network (a measure
of vulnerability). Neo4j Bloom, a visualization tool, allows interactive exploration
of the graph, which can be helpful for analysts to inspect supply chain structures
or for presenting insights to stakeholders in an intuitive graph format. Moreover,
Neo4j supports integrations with various programming languages (via drivers) and
can be deployed in cluster configurations for high availability and scalability.

Limitations: While Neo4j is powerful for many use cases, it does have limita-
tions to be aware of. For extremely large graphs (billions of nodes/edges), Neo4j’s
performance can degrade if the hardware is insufficient, and sharding such a graph
across multiple servers can be complex. The enterprise edition of Neo4j introduces
features like fabric (for sharding) and causal clustering, but effectively partitioning
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a graph without breaking important relationships is a non-trivial task that often
requires domain-specific strategies. In addition, Neo4j (like most graph databases)
lacks the kind of ad-hoc analytical querying that SQL data warehouses excel at.
If one needs to perform heavy number-crunching on large tabular data extracted
from the graph (e.g., summing total trade volumes across all routes), it might be
more efficient to export or mirror some data to a relational or analytical store.
There is also the consideration of learning curve and tooling: while Neo4j’s com-
munity is strong and growing, many organizations still have deep expertise in SQL
and may find it challenging to adopt a new technology stack. However, Neo4j has
made strides in ease-of-use, and the emergence of standards (OpenCypher, GQL)
and interoperability (e.g., GraphQL integrations) is lowering the barrier.

In the context of retrieval-augmented generation systems and AI pipelines,
Neo4j serves well as the graph backend. Microsoft’s recent “Graph RAG” ini-
tiatives [14], for example, provide accelerators that connect LLMs (like Azure
OpenAI’s GPT models) with Neo4j graph data, enabling developers to build ap-
plications where an LLM answers questions by querying a Neo4j knowledge graph
in real-time. This kind of architecture exemplifies the practical convergence of the
topics discussed in this chapter: supply chain data (stored in a graph database
like Neo4j), large language models (to interpret queries and generate answers),
and retrieval-augmentation (using the graph as the source of truth for factual
information).

To conclude, Neo4j is a mature and feature-rich graph database that embodies
the benefits of graph data management. Its use of the property graph model
and Cypher query language has set a foundation that many other systems follow.
In supply chain analytics, Neo4j provides a way to bring together diverse data
(suppliers, locations, shipments, risks) into a connected structure that can be
efficiently queried and analyzed. When combined with large language models in
a retrieval-augmented framework, Neo4j helps ensure that the AI’s answers are
grounded in the reality of the data, leveraging the power of graphs to inform and
support advanced decision-making processes.
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Chapter 3

Proposed Solution

This chapter presents the solution proposed in this thesis, a system designed to
enhance decision-making processes in supply chain management through Graph
Retrieval-Augmented Generation. The primary functionality of this system in-
volves receiving a natural language query from the user, subsequently perform-
ing targeted queries against a specialized graph database representing the supply
chain, and finally generating coherent, contextually relevant natural language re-
sponses.

In the following sections, we will describe how supply chain data have been
structured and modeled into graph form to efficiently capture relationships and
dependencies among entities. We will then outline the overall architecture of the
proposed system, highlighting how various components interact to achieve accurate
graph retrieval and natural language generation. Lastly, we provide comprehensive
technical details regarding the implementation, covering the technologies utilized
to build this solution.
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3.1 Data Modeling for Supply Chains

3.1.1 Data Structure Design

In this project, the proposed solution has been developed within Accenture, which
already maintains a standardized model for supply chain data representation. This
data model primarily utilizes a graph structure consisting of nodes and lanes.
Specifically, nodes represent pairs of materials and locations, while lanes depict
the relationships or pathways connecting these nodes, classified into two main
categories: manufacturing lanes and transportation lanes.

Figure 3.1 provides a concrete example of the structure used in Accenture’s
supply chain network. The figure illustrates a simplified supply chain scenario,
showing both transportation and manufacturing lanes, as well as several material-
location nodes. This visual representation serves to clarify how the Accenture
standardized graph model represents different types of operational flows and ma-
terial transfers within the network.

Figure 3.1: Standardized graph model representing a simple supply chain of the fin-
ished good chair. Each node is named using the format <material>@<location>.

Each node in the graph carries a unique identifier (ID) along with various
descriptive fields. Material-related information includes details such as material
descriptions, names, brands, inventory levels, and prices. Additionally, location-
specific information comprises geographical coordinates and detailed descriptions.
All the fields used are described in Table 3.1.

Similarly, lanes are characterized by distinct identifiers and information fields.
Table 3.2 describes all the fields contained in this object.
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Field Description

material id Unique identifier of the material
location id Unique identifier of the location
node id Unique identifier for the node itself, composed of ma-

terial and location ids concatenated
material type Type of material (e.g., raw material, semifinished

good, finished good)
location type Type of location (e.g., warehouse, plant)
location desc Description of the location
location name Name of the location
address Physical address of the location
city City of the location
region Region of the location
country Country of the location
material desc Description of the material
base uom Unit of measure (e.g., kg, m²)
material unit price Unit price of the material
material group Material grouping for categorization
material hierarchy Hierarchy classification of the material
business Business unit or division
category Category of the material
brand Brand of the material
inventory qty Average inventory quantity
avg monthly purchased qty Average monthly quantity purchased
avg monthly purchased price Average monthly purchase price
avg monthly selling qty Average monthly selling quantity
avg monthly selling value Average monthly selling value
cogs Cost of goods sold
days of inventory Days of inventory available
imported Booelan indicator if material is imported

Table 3.1: Description of MatLoc Node Fields
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Field Description

lane id Unique identifier of the lane, composed by the two nodes IDs
connected by the lane

value Average monetary value associated with the lane
quantity Average quantity of materials moved through the lane
lead time Time required for transportation or manufacturing through the

lane
unit price Unit price for the transported or manufactured material
material from qty Quantity of material required on the source node to produce one

unit of the material of the destination node, field only used in
manufacturing lanes

Table 3.2: Description of Lane Fields

Accenture employs a proprietary Python library to aggregate these nodes and
lanes into a unified Network object, thus facilitating the application of special-
ized analytical algorithms and methods. Due to Accenture’s established use of
this nodes and lanes structure as an industry standard approach for supply chain
related projects, this thesis adopts the same model. Altering this established for-
mat would necessitate additional data processing and introduce unnecessary com-
plexity, thereby potentially hindering seamless integration with existing project
workflows and tools.

3.1.2 Data Ingestion into Neo4j

The data ingestion process into the Neo4j graph database leverages the Neo4j Data
Importer tool [15], which provides a highly visual and intuitive interface designed
to facilitate the rapid and efficient transfer of data into Neo4j. This tool supports
importing structured data sets, enabling users to visually map and align source
data files (typically CSV or JSON formats) directly to graph entities such as nodes
and relationships. In this case, nodes and lanes data is stored in CSV files.

Through Data Importer, it is possible to clearly specify how data from external
sources maps to the node and lane schemas previously described. This includes
setting IDs, labels, defining property mappings, and specifying the relationships
connecting nodes, thus simplifying data preparation tasks significantly. Figure 3.2
represents the scheme of the nodes and lanes.

Additionally, Neo4j’s Data Importer has the capability of generating corre-
sponding Cypher scripts of the ingestion process. These scripts precisely replicate
the import operation, providing an effective backup solution and significantly sim-
plifying re-ingestion tasks, should the data need to be updated or reloaded at any
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Figure 3.2: Neo4j data importer scheme representing the data model of nodes and
lanes.

later point. The availability of these scripts ensures reproducibility capabilities
through a simple command execution that triggers the stored script.

3.1.3 Dataset Description

The dataset used for this project has been provided by Accenture and consists of
anonymized supply chain data. To preserve confidentiality, no real products, mate-
rials, or locations are directly identifiable. Material identifiers follow a generic for-
mat such as material 23453, while location identifiers take a similar anonymized
form like location 353345. Although the locations are fictional, each is randomly
assigned to a real U.S. city and region to maintain a degree of geographic realism
useful for modeling purposes.

In total, the dataset is composed of 252 nodes and 197 lanes, representing a
moderately complex supply chain network structure. While this scale is sufficient
to test and demonstrate the system’s functionality, it is important to note that
realistic supply chain networks of large international clients may include up to one
million nodes, each representing a unique material-location pair. However, for the
development and debugging of the prototype system presented in this thesis, a
smaller and more manageable dataset is preferable. It allows for faster iteration
cycles, easier visualization, and more efficient identification and resolution of issues.

This network can be visually explored using Neo4j’s desktop application, specif-
ically the Neo4j Browser tool, which provides a graphical interface for inspecting
the graph. A full view of the graph is showed in Figure 3.3, and a closer view of
a subset of the graph is also included in Figure 3.4.
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Figure 3.3: Complete visualization of the supply chain graph in Neo4j Browser

Figure 3.4: Zoom in section of the graph. It illustrates the suppliers Firmenich and
Tastepoint, who deliver a material to a manufacturing plant identified as US PL
Jacksonville. At this location, a new product (leftmost node) is manufactured from
these two materials. Note that each node represents a unique material-location
pair, multiple nodes may share the same location while differing in the material
component, allowing for a more granular representation of production flows.
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3.2 System Architecture & Implementation

In this section, first we look into the general idea behind the project and then we
delve into the more technical details and the specific mechanisms that enhance the
system’s performance.

3.2.1 Architecture overview

The main technologies and their interactions are described in Figure 3.5. The
journey from user query to answer can be summarised in the following decisive
steps:

1. Question capture. A user submits a natural-language question about the
supply chain through the Streamlit interface.

2. Question enrichment. The question is embedded in a prompt where it is
combined with the supply chain context, the neo4j database schema and the
user’s chat history.

3. Query creation. The enriched question is sent to an OpenAI model, which
will generate a Cypher query.

4. Graph retrieval. The Cypher query is executed against Neo4j, returning
an array that contains the requested facts.

5. Answer generation. The query response is sent to a second OpenAI call
which converts the structured result into a clear, contextually appropriate
natural language answer that is returned to the Streamlit interface.

6. Display response. Streamlit renders the conversation and displays the final
answer returned for the user.

Figure 3.5: High-level flow of the Graph-RAG prototype.
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3.2.2 Detailed Workflow and Internal Logic

Figure 3.6 provides an expanded view of the backend of the pipeline, extending
the naive view of Figure 3.5 now it has been understood. Streamlit is simply the
frontend prototype, it is not included in this diagram as it has no importance to
the comprehension of the algorithm.

Figure 3.6: System backend detailed logic diagram.

This diagram expose the detailed logic of the algorithm and the mechanism of
query generation retries if the output of Neo4j is not valid or empty.

Cypher Generation

The prompt fed to the Cypher generation model is assembled from several distinct
components, a process represented as the ”Enrich Question” step in the diagram.
Initially, this prompt consists of: (i) the user’s original question, (ii) the database
schema, and (iii) a set of specific instructions that contextualize the supply chain
environment and clarify to the LLM the goal of producing a valid Cypher query
using the provided schema. Over time, this composition has been enhanced to
address common failure scenarios, such as generating invalid queries or receiving
empty results from Neo4j. In such cases, the prompt is enriched with additional
information, including (iv) the failed query, (v) a flag indicating that an alternative
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attempt should be made, and (vi) a description of the error encountered. This
allows the model to adjust its output, increasing the likelihood of producing a
syntactically correct and semantically relevant Cypher query.

Retry of Cypher Query Generation

The conditional node in the workflow diagram details the possible outcomes fol-
lowing a query to Neo4j. Three distinct branches are represented. First, if an error
occurs (such as a syntax error or other execution failure), the workflow loops back,
enriching the prompt with the error details and the query that caused it, enabling
the model to refine or correct its subsequent query. Second, if Neo4j returns empty
content, indicating that the query ran successfully but did not retrieve any relevant
information, the workflow also loops back. In this case, a specific flag is set in the
prompt instructing the model to attempt generating an alternative Cypher query,
with the aim of retrieving information through a different logical path. Third, if
Neo4j produces valid content, the workflow proceeds to the question answering
stage, where the retrieved information is integrated into the natural language re-
sponse for the user. However, to not get stuck in an infinite loop of generating
empty or wrong answers, the maximum times allowed to generate a new Cypher
query is three times.

Question Answering Generation

The prompt for the natural language answer generation model is constructed more
simply. It comprises the user’s original question, the output returned by Neo4j, and
the final Cypher query used for retrieval. These elements provide sufficient context
for the language model to generate a coherent and contextually appropriate answer
to the user’s query, reflecting both the specific data retrieved and the reasoning
behind its selection.

Chat Memory Management

To provide conversational continuity and enable the system to reference previous
exchanges, a memory mechanism has been incorporated through a chat history

variable in the prompt template. This variable stores all questions and responses
exchanged between the user and the system within the same session.

The accumulation of excessive conversation history could lead to inefficiencies
and increased prompt size. To prevent this, a cap has been imposed on the number
of stored messages. Specifically, the chat memory retains up to 30 messages (com-
prising both user queries and system responses). Once this limit is reached, the
oldest entries are discarded as new interactions occur. This sliding window strat-
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egy ensures that the model benefits from relevant recent context while avoiding
issues related to unbounded memory growth.

3.2.3 Development and Supporting Technologies

The development of this system has been facilitated by several complementary
technologies, each contributing to a specific aspect of the project workflow.

For traceability and observability, LangSmith has been an essential tool. By
integrating LangSmith tracing into the pipeline, it was possible to visualize the
end-to-end execution flow of each request, which significantly aided in identify-
ing and resolving bugs. Additionally, LangSmith provides detailed breakdowns of
token usage for each model call and precise timing metrics, enabling both perfor-
mance monitoring and cost estimation.

For rapid prototyping and user interaction, the Streamlit framework was em-
ployed to build the frontend interface. It was developed based on the official
Streamlit guide for building chat applications [16], which provided a solid foun-
dation for implementing conversational features and best practices. A screenshot
can be seen in Figure 4.1. Streamlit enabled the creation of an interactive and
visually accessible prototype with minimal overhead, allowing for efficient testing
and demonstration of the system’s capabilities in a real-world usage scenario.

The entire project has been implemented in Python, leveraging its rich ecosys-
tem of libraries, such as langgraph for the agent framework, evaluate to measure
the natural language metrics and pandas for the initial stage of data exploration,
as well as Neo4j and OpenAI integrations. Python’s flexibility and readability have
been critical in enabling iterative development and quick adaptation to evolving
requirements.

Lastly, the use of the Visual Studio Code integrated development environ-
ment (IDE) has streamlined the development process. Its powerful debugging
tools, integrated terminal, and extension ecosystem have been instrumental in
identifying issues and ensuring code quality throughout the implementation phase.
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Chapter 4

Evaluation and Results

This chapter presents the comprehensive assessment of the proposed Graph RAG
system in the supply chain domain. We begin by describing the evaluation method-
ology and quantitative metrics used to measure system performance. Next, we in-
troduce representative use cases that contextualize our experiments and illustrate
realistic scenarios. Finally, we report detailed results, including example queries
with generated answers, and analyze system strengths and limitations.
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4.1 Evaluation Methodology and Metrics

4.1.1 Methodology

To construct a robust foundation for performance assessment, a domain-specific
evaluation dataset is manually assembled through the following steps:

1. Question Formulation: Crafting a diverse set of queries that reflect com-
mon and complex supply chain information needs.

2. System Execution: Submitting each query to the Graph RAG system
under consistent runtime conditions, capturing both the generated textual
answer and the underlying graph retrieval evidence.

3. Response Pairing: Pairing each system-generated response with its corre-
sponding expert-validated answer to prepare for metric-based comparison.

This protocol guarantees that the evaluation dataset accurately represents real-
world scenarios and supports rigorous, repeatable analysis.

4.1.2 Metrics

A combination of automated similarity measures, a manual verification and a novel
LLM-as-Judge approach are employed to capture both lexical overlap and semantic
correctness:

• ROUGE [17]: Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
quantifies n-gram overlap between generated and reference texts. We cal-
culate ROUGE-L (longest common subsequence) precision, recall, and F1
scores. These measures reveal the extent to which the system reproduces
the reference wording.

• BERTScore [18]: Using contextual embeddings from a pre-trained BERT
model, BERTScore computes a token-level cosine similarity matrix between
generated and reference sentences. We extract precision (average maximum
similarity from generated to reference tokens), recall (reference to generated),
and F1. This metric captures semantic equivalence beyond exact string
matches, effectively recognizing paraphrases and concept preservation.

• LLM-as-Judge Correctness: A language model is prompted with each
generated-answer/reference pair to produce a binary correctness label (cor-
rect” or incorrect”). The model evaluates factual accuracy and completeness
with respect to the gold-standard response.
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• LLM-as-Judge Coherence: A separate LLM judge assesses each gener-
ated answer’s coherence relative to the original query, independent of any
reference. This evaluation ensures that the response logically addresses the
question, maintains contextual relevance, and follows a clear structure.

• Manual Evaluation: The responses are assesed by a human who determine
correctness and contextual appropriateness, capturing nuanced errors that
automated metrics may overlook.

These complementary metrics provide a holistic view of system performance,
balancing quantitative rigor with qualitative insight into the Graph RAG system’s
strengths and areas for improvement.
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4.2 Use Cases

To assess the practical value of the proposed system, we defined a representative
set of use cases based on common information needs in supply chain manage-
ment. These use cases were designed to evaluate the model’s ability to reason
over heterogeneous graph-structured data and generate accurate responses. The
following categories summarize the types of questions the system is expected to
handle effectively:

• Bill of Materials (BoM) Exploration: The system is able to identify and
list the raw materials required to manufacture a given product, supporting
engineers and planners in understanding product composition and upstream
dependencies.

• Supplier Risk Identification: Focus on determining whether materials
are single or multi-sourced, which is critical for assessing supply vulnerabil-
ity. The system can also quantify sourcing distribution percentages across
suppliers for multi-sourced materials.

• Sourcing Strategy Insights: The system can identify whether a material
is only purchased, only manufactured, or eligible for both, enabling better
decisions on procurement and production flexibility.

• Geographical Manufacturing Footprint: It can determine in which re-
gions a product is partially manufactured, allowing users to understand the
regional distribution of production and its potential implications on lead
times or regional risks.

• Financial Impact Analysis: The system supports the extraction of rev-
enue figures associated with specific materials, both individually and in re-
lation to their sourcing strategy. This provides supply chain managers with
insights into financial exposure due to supplier concentration.

• Supplier Spend Assessment: Another set of use cases involves identifying
the supplier or supplier location with the highest financial impact in the
supply network of a given product, which can inform negotiation strategies
or risk mitigation planning.

• Logistics and Distribution Routing: The system is capable of retrieving
the recommended shipping routes from manufacturing plants to distribution
centers, accounting for regional constraints and target destinations.
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These use cases reflect a broad spectrum of decision-making scenarios in supply
chain operations, including procurement, risk management, production planning,
and logistics. The ability of the system to address them accurately is key to
demonstrating its value in real-world industrial contexts.
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4.3 Results and Analysis

Experiments were performed using multiple OpenAI models to determine the most
efficient configuration in terms of inference latency, answer precision, and cost per
token. For each model, the metrics explained in subsection 4.1.2 were recorded, as
well as the response time.

Results are displayed in Table 4.1.

Model Manual Correct. Coher. BERT ROUGE Time Cost

gpt-4.1 0.90 0.90 0.89 0.92 0.59 4.49 $2.00
gpt-4.1-mini 0.50 0.40 0.77 0.90 0.47 7.43 $0.40
gpt-4.1-nano 0.10 0.10 0.63 0.88 0.40 3.73 $0.10
gpt-4o 0.00 0.10 0.60 0.87 0.35 4.95 $2.50
o3 0.90 0.90 0.87 0.95 0.69 37.26 $2.00
o4-mini 0.60 0.60 0.90 0.93 0.59 13.86 $1.10

Table 4.1: Performance of different OpenAI models on the question answering
dataset. All columns except Time and Cost are normalized between 0 and 1. Cost
is measured for 1M input tokens and Time in seconds.
Manual: Manual validation score. Correct.: Correctness. Coher.: Coherence.
BERT: BERTScore. ROUGE: ROUGE-L. Time: Response time in seconds. Cost:
input cost in USD per million tokens.

4.3.1 Interpretation of Results

• Manual validation emerges as the most critical metric for evaluating system
performance. While the LLM-based correctness score is useful, it does not
always align with the manual assessment. In some cases, the correctness
metric marked answers as incorrect when the model provided information
using the description or name fields rather than exact material or location
ids, or due to the addition of extra information.

• The best-performing models are o3 and gpt-4.1, both achieving the highest
accuracy scores. However, there is a substantial difference in response time:
o3 has an average latency of 37 seconds, while gpt-4.1 responds in 4.5 seconds
on average. This latency difference is an important factor when selecting a
model for deployment in practical, interactive systems.

• Although the price per token for the most advanced models is comparatively
high (2$ per 1M tokens), overall cost efficiency depends on the total number
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of tokens processed per query. Notably, models that rely on explicit chain-of-
thought reasoning, such as o3, tend to consume more tokens per query than
models like gpt-4.1, as they generate longer intermediate reasoning steps and
verbose explanations before arriving at the final Cypher query. In the evalu-
ation, it has been observed that o3 can consume approximately 2 times more
tokens per query compared to gpt-4.1 in the same tasks. Considering an av-
erage of 1,500 tokens per query for gpt-4.1 and 3,000 tokens per query for o3.
Even under these conditions, and according to official OpenAI pricing, the
cost per query remain below one cent (USD 0.01) for both models. There-
fore, despite higher token consumption, the overall cost per query remains
manageable in practical settings, with the primary trade-offs remaining in
latency and accuracy rather than in financial feasibility.

• The gpt-4.1 model failed in only one out of ten test cases, specifically with
the query regarding the number of echelons or layers in the supply chain. In
this case, the model only considered the echelons where the specific material
was present, rather than the complete supply chain, including upstream raw
materials. However, with an additional clarifying user prompt, the system
was able to produce the correct response (Figure 4.1). This highlights both
the limitations of automated assessment and the potential for improvement
through interactive clarification.

• Regarding performance, gpt-4.1-mini exhibited significantly longer response
times. This is attributable to the model entering repeated execution loops
after encountering Neo4j query errors, stemming from less accurate Cypher
query generation. As a result, overall latency increased compared to other
models.

• It is also evident that the lighter models, such as gpt-4.1-nano, lack the
capability to generate the complex Cypher queries necessary for advanced
supply chain reasoning. This underlines the need for large, high-capacity
models in tasks requiring structured graph query generation and domain
reasoning.

• The limitations of BERTScore and ROUGE are evident in this context. For
example, given the question ”What is the revenue associated with material
47412?”, an incorrect answer such as ”I’m unable to provide the revenue
associated with material 47412” can still yield a BERTScore of 0.91 and
ROUGE of 0.6, simply due to overlapping words. Therefore, these metrics
are not suitable for tasks requiring precise, fact-based evaluation, and are
more appropriate in scenarios where exactness of key information is less
critical.
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• Overall, the evaluation shows that while several automated metrics provide
partial insights, only manual or advanced LLM-based assessments reliably
reflect the actual utility of the generated responses for supply chain question
answering.

4.3.2 Example of System Performance

To exemplify the system performance differences given different LLM models, Ta-
ble 4.2 shows the practical impact and how the final chosen model is capable of
answering a question of the dataset, while another lighter model is not able to find
the correct Cypher query.

Question What raw materials are required to manufacture mate-
rial 123136?

Expected Answer The raw materials required are: material 9087, ma-
terial 22070, material 61709, material 121994, ma-
terial 51074, material 89103, material 86307, mate-
rial 131685, material 133058, material 91050.

gpt-4.1 Answer The raw materials required to manufacture mate-
rial 123136 include the following: material 22070, mate-
rial 9087, material 51074, material 61709, material 89103,
material 86307, material 91050, material 131685, mate-
rial 133058, material 121994.

gpt-4.1-nano Answer I’m unable to determine the raw materials required for ma-
terial 123136 based on the available information.

Table 4.2: Comparison between a high-performing and a low-performing model
for a representative supply chain query of the evaluation dataset.

4.3.3 Cypher Query Examples for Dataset Questions

Some models have not been able to execute the task of generating the Cypher
queries successfully, as Table 4.1 and Table 4.2 have shown. To illustrate the com-
plexity inherent in the translation from natural language to Cypher queries in this
dataset, some representative examples are provided below. Each query demon-
strates the non-trivial reasoning, schema understanding, and logical chaining that
must be performed by a generative model in order to correctly retrieve or calculate
the required information.

• Bill of Materials (BoM) Exploration
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What raw materials are required to manufacture material 123136?

To answer that example question, the following cypher statement is gener-
ated.

MATCH (product:MatLoc {material_id: "material_123136"})

MATCH path = (raw:MatLoc)-[:Lane*1..]->(product)

WHERE raw.material_type = "raw_material"

RETURN DISTINCT

raw.material_id AS raw_material_id

Complexity: Requires expanding the supply chain nodes of the product to
trasverse the graph until it reaches suppliers, through multiple hops of the
network. It also requires filtering by a specific field that the model must
understand looking at the schema of the database.

• Supplier Risk Identification

Next question of the dataset.

Which of these materials are supplied by a single source?

MATCH (rm:MatLoc)

WHERE rm.material_id IN [’material_9087’, ’material_22070’,

’material_61709’, ’material_121994’, ’material_51074’,

’material_89103’,’material_86307’, ’material_131685’,

’material_133058’, ’material_91050’]

WITH rm

MATCH (supplier:MatLoc)-[:Lane]->(rm)

WHERE supplier.location_type IN [’supplier’, ’vendor’]

WITH rm.material_id AS material_id,

COLLECT(DISTINCT supplier.location_id) AS supplier_ids

WHERE SIZE(supplier_ids) = 1

RETURN material_id, supplier_ids[0] AS supplier_location_id

Complexity: It requires consulting its memory from the previous answer. It
must take into account the types of locations, in this case supplier and vendor
are the relevant ones. Then it must collect all the suppliers traversing the
graph for the list of materials and count the number of different suppliers.
Then it filters where there is just one supplier.

It is a long query that even a human could fail, but the system manages to
respond correctly.
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• Logistics and Distribution Routing

What shipping route do I have to follow to deliver product material 47412
from its plant to a distribution center in Georgia?

MATCH (plant:MatLoc {material_id: ’material_47412’,

location_type: ’production plant’})

MATCH (dc:MatLoc {material_id: ’material_47412’,

location_type: ’distribution center’, region: ’Georgia’})

MATCH path = shortestPath((plant)-[:Lane*]->(dc))

RETURN

[n IN nodes(path) | {material_id: n.material_id,

location_id: n.location_id, location_type: n.location_type,

region: n.region}] AS shipping_route

Complexity: Requires finding the origin, the possible destinies given the filter
of the question, and then, calculating the shortest path between the nodes,
which is a function available in the Cypher language.

These queries exemplify the advanced schema reasoning and multi-step chain-
ing necessary for correct graph retrieval, demonstrating the difficulty and impor-
tance of robust query generation from natural language, which constrain the choice
of the LLM to the most advanced ones: gpt-4.1 and o3.

4.3.4 Interactive prompting

Beyond standard evaluation, the system was also tested using an interactive, few-
shot prompting approach, leveraging a custom graphical interface developed with
Streamlit. In this setting, queries were issued one by one, and additional guiding
questions or clarifications were provided in cases where the initial model response
did not fully resolve the original query.

This interactive approach was particularly effective for complex or ambiguous
questions. For example, in the single failure case encountered by gpt-4.1—concerning
the calculation of echelons in the supply chain—an extra clarification prompt al-
lowed the model to adjust its interpretation and generate the correct Cypher query.
As a result, 100% accuracy was achieved after brief follow-up interactions.

This finding highlights two important points: first, that advanced language
models can benefit significantly from incremental guidance in domains with intri-
cate schemas or ambiguous requirements; and second, that real-world deployment
scenarios can leverage interactive systems to achieve robust accuracy, even when
initial responses are incomplete or imprecise.
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Figure 4.1: Graphical interface built with Streamlit. When initial responses are
ambiguous or incorrect, targeted follow-up questions help the system converge to
the correct answer. The example illustrates the scenario in which gpt-4.1 corrected
its output after additional clarification.
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Chapter 5

Conclusions and Future Work

This final chapter summarizes the main findings and contributions of the project,
reflecting on the results obtained and the implications for both research and prac-
tical applications. In addition, it outlines promising directions for future work
aimed at addressing current limitations and expanding the capabilities of the pro-
posed system. The chapter is structured into two sections: the first presents the
main conclusions derived from the development and evaluation of the system, and
the second proposes a set of future research and implementation lines.
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5.1 Conclusions

The results obtained in this work demonstrate the value and viability of applying
a Graph Retrieval-Augmented Generation approach to the supply chain domain.
The proposed system, built upon a modular and extensible architecture, leverages
structured knowledge graphs to provide context-aware, accurate, and timely re-
sponses to complex supply chain queries. Several key findings and contributions
can be highlighted:

• Feasibility and Impact: Integrating retrieval-augmented generation with
structured graph data has proven not only feasible but also beneficial, given
the inherently relational and interconnected nature of supply chain informa-
tion.

• Improved Efficiency and Usability: The developed system significantly
accelerates the process of information retrieval and synthesis compared to
manual analysis by human experts. Its user-friendly interface allows both
technical and non-technical users to access complex supply chain data, re-
ducing the reliance on specialized knowledge for querying and interpretation.

• Model Performance: Comparative evaluations of different large language
models indicate that state-of-the-art models (such as GPT-4.1 and O3)
achieve higher accuracy in Cypher query generation. These improvements
are particularly notable in handling complex, multi-hop queries that require
a deep understanding of both the schema and the business context.

• System Modularity and Extensibility: The architecture’s modular de-
sign facilitates the integration of custom knowledge graphs, retrieval strate-
gies, and prompt templates, making it adaptable to a wide range of supply
chain scenarios and supporting future expansions or adjustments with mini-
mal disruption.

• Economic Impact and Cost Efficiency: From an economic perspective,
the development of this solution represents a strategic investment for Accen-
ture. The total cost of the project, estimated at approximately 5000e over a
five-month internship period (including the intern’s involvement in other non
related tasks) has enabled the creation of a functional prototype with imme-
diate and long-term value. In the short term, the system can be leveraged
by analysts to efficiently interact with clients’ supply chain data, extracting
actionable insights in less time and with less manual effort. This not only
increases analyst productivity but also enhances the quality and speed of
client deliverables. In the longer term, the solution has the potential to be
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packaged and offered as an added-value product in future projects, enabling
clients themselves to query their supply chain data in natural language and
obtain reliable, interpretable answers. Moreover, the operational cost of the
system is extremely low, with each query incurring an expense of less than
one cent. This dual benefit positions the investment as highly cost-effective
and likely to generate substantial returns for the company.

While these advances represent a significant step forward, some limitations
remain, primarily related to the evolving nature of large-scale knowledge graphs
and the current capabilities of generative models. For instance, the system’s ef-
fectiveness depends on the quality, completeness, and stability of the underlying
schema; unforeseen changes or ambiguities in the data model may affect query
generation or interpretation. Although the system dynamically retrieves schema
information from the Neo4j database, certain types of errors, such as misinterpre-
tation of schema elements or rare query types, can still occur. Moreover, scaling
the solution to larger datasets or more demanding operational environments may
require further optimizations in resource management and error handling.

Overall, the thesis demonstrates that Graph-RAG approaches can deliver prac-
tical value in supply chain management, providing a flexible and scalable founda-
tion as a support tool for advanced decision. The insights gained highlight both the
strengths of this approach and the areas where future research and development
can further enhance its robustness and impact.
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5.2 Future Work

Building on the foundation established in this work, several promising directions
can be pursued to enhance the performance, robustness, and applicability of
Graph-RAG systems in supply chain and related domains:

• Hybrid Retrieval Strategies: Combining graph-based retrieval with vector-
based approaches could further improve both usability and retrieval perfor-
mance. In particular, vectorizing product and location names or descriptions
would enable users to refer to entities more intuitively, without needing to
know specific IDs. This enhancement would lower the barrier for formulat-
ing queries about specific entities, improve semantic matching, and support
more natural and flexible interactions, especially as data volumes and schema
complexity grow.

• Enhanced Error Detection and Handling: Developing more robust
mechanisms for detecting, explaining, and recovering from query errors, such
as ambiguous prompts, would increase system reliability and user trust. Ide-
ally, the system would identify ambiguities in user queries and would ask the
user what they are specifically referring to.

• Human-in-the-Loop Evaluation: Establishing evaluation pipelines that
include feedback from supply chain professionals or end users will provide
deeper insights into system utility and guide further refinements tailored to
practical requirements.

• Scalability and Deployment Optimization: Try a real large supply
chain dataset to check if the processing time scales properly. If not, in-
vestigating strategies for optimizing computational efficiency and managing
costs, such as model distillation, query batching, or edge deployment, will
be essential for scaling the solution to production environments.

• Improved Explainability and Transparency: Designing user-facing fea-
tures that enhance the interpretability of generated queries and responses will
facilitate adoption and debugging, supporting greater trust in automated
decision-support systems. For instance, displaying in real time the subgraph
from which the answer has been generated could simplify the verification of
the response’s veracity and provide users with a more intuitive, visual under-
standing of how the system is reasoning over the data. Leveraging Neo4j’s
graph visualization capabilities to present these subgraphs would help users
not only to audit results but also to grasp the relationships and data paths
involved in each answer, ultimately increasing transparency and trust in the
system.
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5.2. Future Work

• Integration of Tool Functions: Incorporating access to specialized tools
within the agent workflow. For example, to trigger stress test algorithms
or other domain-specific actions for which pre-existing code is available. It
would expand the system’s capabilities and facilitate the integration of pro-
prietary functionalities already developed by Accenture or other stakehold-
ers.

• Exploration of Alternative Language Models: Evaluating the perfor-
mance of non-OpenAI LLMs or applying fine-tuning techniques specifically
for Cypher query generation could yield further improvements in accuracy,
speed, and cost-effectiveness.

• Expansion of the Evaluation Dataset: Broadening the test dataset
to encompass a wider variety of supply chain scenarios and queries would
enhance the reliability and robustness of system evaluation, providing a
stronger empirical basis for assessing its real-world utility.

• User Interface Enhancement: Further development of the user interface
beyond the current prototype stage would improve overall user experience,
making the system more suitable for operational deployment and adoption
by non-technical users.
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