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RESUMEN 
La creciente complejidad y demanda en los sistemas eléctricos modernos requieren 
herramientas avanzadas para garantizar su operación fiable y estable. Uno de los aspectos 
fundamentales en el análisis del sistema eléctrico es el estudio de la estabilidad dinámica, 
que se refiere a la capacidad del sistema para resistir y recuperarse de perturbaciones a lo 
largo del tiempo. Los métodos tradicionales de simulación dinámica, aunque son precisos, 
suelen requerir altos recursos computacionales y tiempos prolongados, lo que limita su 
aplicación en escenarios de tiempo real o de gran escala. 

En este contexto, Red Eléctrica de España, como empresa responsable de la operación y el 
transporte del sistema eléctrico, ha identificado desde su Departamento de Fiabilidad la 
necesidad de desarrollar nuevas metodologías que permitan mejorar el análisis y la 
optimización de diversos aspectos de la estabilidad del sistema. Para ello, se plantea la 
aplicación de Inteligencia Artificial (IA) en combinación con simulaciones dinámicas, con el 
objetivo de reducir los tiempos de cálculo y desarrollar modelos sustitutos generalizables 
que aproximen el comportamiento del sistema bajo distintas condiciones operativas. 

En este proyecto se desarrollan y se ponen en práctica estos modelos basados en IA, que 
tienen el potencial de proporcionar evaluaciones rápidas y fiables sobre la estabilidad del 
sistema, facilitando la toma de decisiones por parte de los operadores y planificadores de la 
red. En última instancia, esta metodología busca combinar la precisión de las simulaciones 
dinámicas con la eficiencia y adaptabilidad de la IA, contribuyendo a la construcción de un 
sistema eléctrico más resiliente e inteligente. 

Además, el marco metodológico propuesto está diseñado para identificar y evaluar 
contingencias críticas, es decir, aquellas perturbaciones que podrían generar los impactos 
más severos en la estabilidad del sistema. Gracias a la capacidad de la IA para reconocer 
patrones y priorizar escenarios, el sistema puede identificar de manera más eficiente los 
casos de mayor riesgo en comparación con las simulaciones tradicionales exhaustivas. 

Esta capacidad es esencial para el análisis preventivo, permitiendo a los operadores 
reforzar la robustez del sistema y preparar estrategias de mitigación adecuadas ante 
escenarios de alto riesgo. Con esta nueva metodología, Red Eléctrica de España avanza hacia 
una gestión más eficiente y proactiva de la estabilidad del sistema eléctrico, optimizando 
recursos y mejorando la seguridad operativa de la red. 
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ABSTRACT 
The increasing complexity and demand in modern power systems require advanced tools 
to ensure their reliable and stable operation. One of the fundamental aspects of power 
system analysis is the study of dynamic stability, which refers to the system's ability to 
withstand and recover from disturbances over time. Traditional dynamic simulation 
methods, while accurate, often require high computational resources and long processing 
times, limiting their applicability in real-time or large-scale scenarios. 

In this context, Red Eléctrica de España, as the company responsible for the operation and 
transmission of the power system, has identified the need within its Reliability Department 
to develop new methodologies that enhance the analysis and optimization of various 
aspects of system stability. To achieve this, the application of Artificial Intelligence (AI) in 
combination with dynamic simulations is proposed, with the goal of reducing computation 
times and developing generalizable surrogate models that approximate system behavior 
under different operating conditions. 

This project develops and implements these AI-based models, which have the potential to 
provide fast and reliable assessments of system stability, facilitating decision-making for 
grid operators and planners. Ultimately, this methodology seeks to combine the precision 
of dynamic simulations with the efficiency and adaptability of AI, contributing to the 
development of a more resilient and intelligent power grid. 

Additionally, the proposed framework is designed to identify and evaluate critical 
contingencies, meaning disturbances that could have the most severe impact on system 
stability. Thanks to AI’s ability to recognize patterns and prioritize scenarios, the system 
can more efficiently identify high-risk cases compared to traditional exhaustive simulations. 

This capability is essential for preventive analysis, allowing operators to reinforce system 
robustness and prepare appropriate mitigation strategies for high-risk scenarios. With this 
new methodology, Red Eléctrica de España moves toward a more efficient and proactive 
management of power system stability, optimizing resources and improving the 
operational security of the grid. 
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1. INTRODUCTION 

The electrical system is a fundamental infrastructure for the development of any country, 
as it ensures the supply of energy needed for daily life, industry, and services. Its operation 
is based on four main pillars: generation, transmission, distribution, and electricity 
consumption. 

Electricity generation can come from various sources, such as thermal, hydroelectric, 
nuclear power plants, and, increasingly, renewable sources like solar and wind energy. 
These plants convert different types of energy into electricity, which is then transmitted 
through high-voltage networks to consumption centers. The transmission of electricity 
requires a robust infrastructure of lines and transformation stations that allow for power 
reduction and adaptation to homes and businesses. 

The distribution process delivers electricity from substations to end consumers, ensuring 
efficient and safe delivery. This phase involves medium- and low-voltage networks and is 
complemented by intelligent systems that optimize energy flow and demand response. 

1.1 SPAIN'S POWER GRID 

In 2024, 56.8% of Spain’s electricity came from renewable sources, a 10.3% increase from 
2023. Hydroelectric generation grew 35.5%, and solar photovoltaic rose 18.9%, marking its 
sixth consecutive record year. Spain added 7.3 GW of new solar and wind capacity, with 
solar energy (25.1%) surpassing wind (24.9%) as the leading power source. These 
advancements reinforce Spain’s commitment to sustainability and reducing fossil fuel 
dependence. [1] 

However, the integration of renewables has increased the complexity of the electrical 
system. The variability of renewable generation, which depends on climatic factors, 
requires solutions such as energy storage and interconnection with other European 
countries to ensure supply stability. Additionally, the Renewable Energy Control Center 
(Cecre), managed by Red Eléctrica de España, plays a key role in the supervision and 
coordination of renewable generation. 

The modernization of the electricity grid has also been crucial in adapting to this new 
scenario. Various companies have announced significant investments to reinforce and 
digitalize Spain’s electricity network, implementing technologies such as remote metering, 
advanced sensor systems, and cybersecurity. Grid automation enables faster responses to 
failures and optimizes electricity distribution, improving operational efficiency. 

The operator of Spain’s electrical system is Red Eléctrica de España (REE), whose function 
is to ensure the balance between electricity supply and demand in real-time, guaranteeing 
the stability of the supply and the security of the system. REE not only manages the high-
voltage transmission network but also oversees the operation of the electrical system 
through its Electric Control Center (CECOEL). 

REE performs multiple essential functions for the proper functioning of Spain’s electrical 
system: 

• Ensuring electricity supply: Monitors electricity generation and consumption in 
real-time to prevent imbalances that could affect system stability. 
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• Management of the transmission network: Coordinates the operation of high-
voltage lines and electrical substations to ensure efficient energy distribution. 

• Integration of renewable energy: Through the Renewable Energy Control Center 
(Cecre), REE supervises renewable generation and facilitates its safe incorporation 
into the electrical system. 

• International exchanges: Manages interconnections with other European countries, 
enabling electricity exchange to improve supply security. 

• Planning and network development: Designs strategies for the expansion and 
modernization of electrical infrastructure to adapt to growing demand and the 
energy transition. 

The Electric Control Center is the operational hub of REE, where the Spanish electrical 
system is monitored and coordinated in real-time. From this center, more than 240,000 data 
points are received, analyzed, and processed per second, allowing for quick and efficient 
decision-making to maintain the balance between generation and consumption. 

The main functions of CECOEL include: 

• Real-time supervision: Monitors the status of the electricity network and the 
electrical parameters of generation and transmission. 

• Demand management: Coordinates electricity generation to continuously match 
consumption demands. 

• Incident control: Detects and manages potential network failures, ensuring a rapid 
response to minimize disruptions. 

• Production optimization: Issues operational instructions to ensure the correct 
scheduling of electricity generation and international exchanges. 

CECOEL operates 24 hours a day, 365 days a year, ensuring that electricity reaches supply 
points when needed. Additionally, REE has specific control centers for the electrical systems 
of the Balearic and Canary Islands, adapting management to the particularities of these 
territories. 

1.2 STABILITY IN POWER SYSTEMS  

Due to the strong interaction between Spain's electrical system and the rest of the European 
countries' electrical systems, it is important to emphasize the significance of electricity 
exchanges and the different characteristics of each for an in-depth study of power system 
stability. 

The European Network of Transmission System Operators for Electricity (ENTSO-E) 
manages an interconnected electrical system designed to ensure a high level of supply 
security throughout Europe. This interconnection framework allows collaboration among 
transmission system operators (TSOs), reducing risks associated with isolated failures. 
However, this connection also presents challenges, as disturbances can propagate through 
the grid, affecting adjacent areas or even the entire system. 

In recent decades, the ENTSO-E electrical system has undergone significant 
transformations, including the implementation of market rules, the increase in electricity 
generation from renewable sources, and the geographical expansion of the grid. These 
changes have led to systems operating closer to their safety margins, increasing the risk of 
contingencies that exceed design criteria. The growing complexity of the grid requires 
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coordinated planning and harmonized operational measures to prevent extreme 
contingencies that could lead to blackouts or instability in the network. 

Security measures within ENTSO-E are structured around the N-1 rule, which ensures that 
the loss of a single generation unit or transmission line does not cause severe consequences 
for the system. However, more severe events, such as simultaneous failures of multiple 
elements, can trigger emergency conditions requiring specific defense mechanisms. TSOs 
continuously update their defense plans, incorporating automatic responses designed to 
limit the spread of disturbances within the grid. 

The stability of electrical networks has been a key concern since the early 20th century, with 
historical blackouts demonstrating the risks of instability. Electrical system stability is 
fundamental to ensuring a secure and efficient electricity supply. According to CIGRE, 
system stability is defined as the ability of the system to recover its operational balance after 
a disturbance, maintaining its variables within acceptable limits to prevent system collapse. 

Modern electrical systems are designed to operate safely under common contingencies such 
as changes in load or generation. However, they may face more severe disturbances, such 
as short circuits or the loss of large generating units. To manage these risks, system 
operators must implement control strategies and automatic protection measures. 

The classification of stability problems helps to understand the underlying causes of 
instability and facilitates the design of protection schemes. Several factors are considered 
in stability assessments, including the physical nature of instability, the magnitude of the 
disturbance, the involved devices, and the methods for analyzing and predicting stability. 

Electrical system stability is a fundamental aspect of power grid operation, ensuring a 
consistent and secure electricity supply under both normal and disturbed conditions. It is 
essential for preventing widespread outages and maintaining system reliability. This 
stability is categorized into three key areas, each addressing different aspects of system 
behavior and response to disturbances. 

 

Figure 1: Power system stability diagram. Source: ENTSO-E (2018) 

The first is generator synchronization, which ensures that all synchronous machines remain 
coordinated in phase and frequency. Loss of synchronization can lead to cascading failures, 
making this stability crucial for the smooth operation of interconnected grids. 



11 
 

The second aspect is frequency control, which maintains a stable balance between 
electricity generation and demand. Unexpected fluctuations in frequency can trigger 
automatic disconnections of generators or loads, affecting overall system integrity. Effective 
frequency regulation mechanisms, including inertia and control responses, help mitigate 
these risks. 

Lastly, voltage stability ensures that all substations and transmission lines maintain 
adequate voltage levels to support electrical loads efficiently. Voltage collapse can occur 
when reactive power supply is insufficient, leading to blackouts and operational failures. 
Maintaining voltage stability requires proper system regulation and dynamic adjustments 
based on demand variations. 

Any disruption in these areas can severely impact system performance, potentially leading 
to instability, equipment damage, or large-scale outages. Understanding and managing 
these stability factors is essential for ensuring the reliability and resilience of modern 
electrical networks. [2] 

 

1.2.1 Types of Rotor Angle Stability 

Rotor stability is a critical aspect in the operation of power systems, as it determines the 
ability of synchronous generators to maintain synchronization with the electrical system 
after disturbances. It can be classified into two major categories based on the magnitude 
and nature of the disturbance: 

• Small-Signal Stability: This type of stability refers to the system’s ability to maintain 
synchronization in response to minor variations in power generation or 
consumption. It is closely related to the dynamic behavior of generators and their 
ability to dampen electromechanical oscillations. Small disturbances may arise from 
changes in electrical load, adjustments in generator operation, or slight fluctuations 
in system voltage. In this context, stability depends on factors such as the exciter 
gain, which influences the generator's response to voltage changes; system 
impedance, which affects the interaction between generators and the transmission 
network; and active power generation, as variations in this can modify 
electromagnetic torque and rotor oscillations. 

 
• Transient Stability: This type of stability refers to the electrical system's ability to 

recover from severe disturbances such as short circuits, sudden losses of 
generation, or failures in transmission lines. Unlike small disturbances, large 
disturbances can induce significant angular shifts in generator rotors, jeopardizing 
system stability. When a critical event occurs, the system must ensure that 
generators can maintain synchronization despite abrupt changes in 
electromagnetic torque. Transient stability may be influenced by the control 
system's response speed, the opening time of protective circuit breakers, or the level 
of distributed generation and interconnection with other networks. 

 

1.2.2 Frequency Stability 

Frequency stability refers to the ability of the electrical system to maintain a balance 
between energy generation and consumption after a significant disturbance. Sudden 
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frequency variations can trigger automatic disconnections of generators or loads, affecting 
system integrity. In interconnected networks, this issue becomes even more critical during 
events where the system splits into electrical islands, requiring efficient management to 
minimize unforeseen load losses. To stabilize frequency, the system has different response 
levels: 

1. System inertia: Inertia is the first line of defense against sudden frequency changes. 
It refers to the ability of synchronous generators to maintain the rotational speed 
equilibrium of their rotors thanks to the stored kinetic energy. When a disturbance 
occurs (such as the sudden disconnection of a power plant), the inertia of the 
generators helps slow down the frequency drop, allowing time for regulation 
mechanisms to act. However, with the increasing integration of renewable sources 
like solar and wind, which do not have direct mechanical inertia, electrical systems 
have begun implementing solutions such as battery storage and fast-response 
controllers to compensate for this function 

 
2. Primary regulation: This mechanism activates immediately after the inertial 

response, within seconds. Primary regulation is carried out by generators equipped 
with speed governors, which detect frequency variations and automatically adjust 
the delivered power. If the frequency drops due to a generation deficit, the 
governors increase energy injections to compensate for the difference. This control 
is decentralized, as each generator responds locally without external coordination. 
It is crucial for stabilizing frequency in the initial moments after a disturbance and 
preventing uncontrolled fluctuations. 

 
3. Secondary regulation: Secondary regulation comes into play after primary 

regulation, acting within seconds to minutes. Its goal is to restore the system’s 
nominal frequency (e.g., 50 Hz in Europe) and correct potential imbalances in 
energy generation and consumption. This adjustment is performed centrally 
through Automatic Generation Control (AGC) systems, which analyze the situation 
and modify energy production based on demand and system conditions. Secondary 
regulation also plays a key role in efficiently redistributing generation to reduce the 
strain on generators that participated in primary regulation. 

 
4. Tertiary regulation: Finally, tertiary regulation is the long-term adjustment 

mechanism, with response times ranging from minutes to tens of minutes. Its 
function is to optimize the operation of the electrical system after a disturbance, 
ensuring that the generation dispatch is carried out as efficiently as possible. This 
regulation involves electrical system operators, who decide which generating units 
should modify their output to maintain grid stability and ensure energy supply at 
the lowest possible cost. It is also used to manage demand fluctuations throughout 
the day and integrate renewable energy into the system. Additionally, one of its key 
roles is to restore the secondary reserve that may have been used during the initial 
response to the disturbance, ensuring that the system remains prepared for future 
imbalances. 

 

1.2.3 Voltage Stability 

Voltage stability refers to the ability of the electrical system to maintain adequate voltage 
levels across all substations. A severe disturbance can trigger a progressive voltage drop at 
certain nodes, potentially causing blackouts or cascading disconnections of network 
elements. Voltage stability depends on system regulation and the ability of energy sources 
to supply both active and reactive power demand. In extreme situations, voltage collapse 
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can occur when the electrical load exceeds the capacity of generators and transmission 
lines. 

Voltage stability relies on several factors within the electrical system, including generation 
capacity and reactive power supply, which are essential for maintaining proper voltage 
levels across the grid, as well as load variability, which results from fluctuating demand 
between industries, households, and transportation systems. [3] 

In recent years, due to the increasing presence of artificial intelligence and the use of 
machine learning models, electrical system operators worldwide, along with multiple 
companies in the sector, have progressively begun implementing these techniques. The 
objective of deepening stability studies and often obtaining faster solutions than 
conventional methods has driven greater participation and integration of these approaches. 
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2. DYNAMIC ANALYSIS OF POWER SYSTEM STABILITY 

In power system analysis, system stability is one of the most critical areas for ensuring 
reliable and continuous operation. There are two main approaches to studying this stability: 
static analysis and dynamic analysis. Both aim to understand system behavior under 
disturbances, but they differ significantly in nature, objectives, and complexity. 

Static analysis focuses on equilibrium conditions within the system, particularly in power 
flow studies, short circuits, and contingency analysis. This type of analysis does not consider 
the system’s temporal evolution; instead, it relies on solving nonlinear algebraic equations 
to determine the system’s stable states (voltages, active and reactive power, etc.). It is useful 
for evaluating system operation at a given moment, but it does not assess transients or 
oscillations that may follow events such as faults or disconnections. 

Conversely, dynamic stability analysis, which is the focus of this project, examines how the 
system evolves over time after a disturbance, modeling in detail the dynamic behavior of 
generators, exciters, governors, loads, and control systems. This type of analysis employs 
Differential-Algebraic Equations (DAE) to simulate transient responses. It is essential for 
evaluating transient stability, electromechanical oscillations between synchronous 
machines, automatic control behavior, and the interaction with renewable energy sources, 
which exhibit distinct dynamics. 

Dynamic simulations are significantly more demanding than static ones due to the greater 
number of equations (both differential and algebraic), their increased complexity, the small 
time-step size required for numerical stability (milliseconds), and the detailed modeling of 
elements such as generators, relays, and regulators. Processing power and memory 
requirements are substantial, particularly when simulating large networks or multiple 
contingencies. Therefore, specialized tools such as PSS®E, DIgSILENT PowerFactory, 
PSCAD, or EMT-type simulators are required due to the complexity and nonlinear nature of 
these systems. 

These programs allow precise modeling of real electrical components and simulate how 
they respond to various disturbances. Thanks to their ability to solve differential-algebraic 
equations within milliseconds, they facilitate these procedures, making them viable and 
significantly more accurate than manual methods or generic tools. 

In recent years, artificial intelligence (AI) has gradually integrated into dynamic simulation 
studies of power systems, revolutionizing both the speed and depth of analysis. With 
increased computational capacity and automation using languages such as Python, it is now 
possible to run thousands of dynamic simulations across different scenarios and 
contingencies, generating a data volume previously unimaginable. Organizations such as 
CIGRE recognize the increasing use of Artificial Intelligence and Machine Learning (ML) 
models in power system operation, highlighting their vast potential and impact in 
enhancing stability, efficiency, and decision-making in electrical networks. [4] 

This large-scale data environment enables the application of advanced statistical 
techniques and AI to detect instability patterns, estimate system responses in real time, 
reduce simulation time and iterations, or even train surrogate models that accurately 
replicate the system's dynamic behavior within a fraction of the time required by traditional 
simulators like PSS®E. Thus, AI serves not only as an analytical tool but also as an 
accelerator for operational decision-making and power system planning. 
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2.1 STATE OF THE ART 

In recent years, numerous projects and studies have begun to explore the synergy between 
detailed dynamic simulations and AI-based models, with applications ranging from real-
time system stability prediction to the creation of surrogate models that replicate system 
behavior with high precision but significantly lower computational time. This section 
gathers the most relevant developments in this field, covering recent research, hybrid tools, 
and real-world use cases that integrate AI to improve transient stability studies in modern 
power grids. 

For the development, training, and deployment of an AI model, a database is required to 
train the model and enable it to generalize across different scenarios. These databases can 
be used in a tabular format, meaning they do not consider any underlying structure. In this 
context, the study by Zhang et al. (2021) proposes a method to evaluate transient stability 
in electrical systems using active learning, which allows for the intelligent selection of the 
most representative data to train accurate models with fewer examples. This project 
develops a machine learning model utilizing deep neural networks to predict the Transient 
Stability Index (TSI) of a power system after a disturbance. The model's input data consists 
of system characteristics such as active and reactive power, node voltages, and generation 
settings, while the output is a binary classification indicating whether the system is stable 
or unstable. The validation is conducted on the IEEE 39-bus system, a standard in electrical 
stability research. [5] 

Databases obtained from dynamic simulations can be used for AI model applications while 
considering the structure and topology of the network. This enriches input data while also 
increasing the complexity of the models used, typically referred to as Graph Neural 
Networks (GNNs). In this regard, the study by Nauck et al. (2023) presents a GNN-based 
approach to analyze the dynamic stability of sustainable electrical grids with high 
penetration of renewable energy sources. The proposed model takes as input a graph 
representation of the electrical grid, where nodes correspond to system buses and edges to 
transmission lines, incorporating dynamic variables such as active power, frequency, and 
rate of change. The model's output is a stability prediction after a disturbance. The approach 
is applied to the Texas Interconnection, one of the largest and most isolated power grids in 
the world, allowing researchers to assess the effectiveness of the method under real-world 
conditions. [6] 

 

 
Figure 2: Procedure for deploying a graph neural network model. Source: C. Nauck (2023) 

 

There are multiple differential equations that determine the behavior of the power system 
being studied. In recent years, neural networks have been developed that combine 
databases with the governing differential equations of the system in their learning process. 
These networks are called Physics-Informed Neural Networks (PINNs), which start with 
more information than standard neural networks but come with increased complexity and 
computational cost. 
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The study by Stiasny et al. (2024) presents PINNSim, a simulator designed to predict the 
dynamics of electrical systems based on PINN-based models. The model is applied to a 9-
node test grid, where the inputs include system parameters such as voltages and power, 
along with the differential equations that define dynamic behavior. The simulator's output 
is the temporal evolution of system state variables, including frequency and generator 
angles. [7] 

2.2 AIDA 

Based on the advances presented in the state of the art, Red Eléctrica introduces AIDA 
(Artificial Intelligent Dynamics Assessment), a tool that combines dynamic simulations with 
artificial intelligence techniques for the study of transient stability in electrical systems. 

AIDA emerges in response to the increasing complexity of power grids, driven by the strong 
presence of renewable energy due to the ecological transition, as well as factors like the 
growth of data centers, which introduce new challenges and limitations. These elements 
require a different analytical approach than traditional methods, and AI plays a crucial role 
in addressing them. 

Due to the significant increase in dynamic simulations, this new methodology is multi-
scenario, enabling much more precise regulation of specific aspects of the grid to enhance 
efficiency and accuracy. 

2.2.1 Introduction 

AIDA is a multi-purpose program centered on data from the control center of Red Eléctrica 
de España. Through dynamic simulations, statistical analysis, and artificial intelligence, it 
optimizes and examines various aspects of transient stability. 

The goal is to leverage databases generated from detailed dynamic simulations to train AI 
models capable of accurately replicating system behavior but with a significantly lower 
computational cost. The implemented models utilize data in a tabular format, meaning no 
specific structure is introduced into the model input. 

To generate the necessary dynamic simulations, AIDA employs PSS®E (Power System 
Simulator for Engineering), developed by Siemens PTI, one of the world's most renowned 
tools for power system stability and operational analysis. PSS®E is widely used by grid 
operators, electric companies, research centers, and universities due to its ability to model 
complex systems and conduct precise dynamic studies. 

As part of the AIDA project, PSS®E is integrated via its Python scripting interface, allowing 
automation of simulation execution, results extraction, and post-processing to feed AI 
models. This integration facilitates a seamless workflow between traditional simulation and 
predictive model training, maintaining the accuracy of electrical system analysis while 
optimizing development time. 
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Figure 3: Types of scenarios for dynamic simulation. 

The scenarios used for dynamic simulations can be synthetic scenarios, meaning they are 
generated for evaluation and experimentation without following any real-world structure 
or scheme. They can also be real-time scenarios received by CECOEL, next-day constraint 
scenarios, or even future scenarios designed for 2030 horizon planning. 

To create a dynamic scenario, the intervention of various programs and databases is 
required. Starting with a real-time scenario database, to which more specific details can be 
added, a series of transformations is applied to shift from a static scenario to a dynamic 
scenario. Using a program that adapts the scenario to dynamic mode—which incorporates 
both transformations and dynamic models associated with each generator, whether generic 
or manufacturer-specific, the final dynamic case is generated. 

 
Figure 4: Representation of the shift from steady-state to dynamic. 

Processing, storage, and memory resources are fundamental in dynamic simulation projects 
due to their computational cost. The server specifications are essential for comparing 
performance with other experiments and for drawing conclusions based on the results 
obtained. To deploy AIDA and run various simulations, five servers are available, each 
equipped with 14 physical cores, 20 virtual cores, 3 TB of disk storage, and 16 GB of RAM. 
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2.2.2 Modules 

This program is divided into multiple AI application modules based on their objectives. 
While they are generally interconnected, it is essential to list them individually and explain 
their purpose and characteristics in detail. AIDA is a general-purpose program with many 
functions within dynamic power system studies. Below are its most important functions: 

• Selection of representative scenarios: One of the most crucial modules, applicable 
to all others. The objective is to obtain the smallest number of representative cases, 
allowing a trained model to accurately generalize the remaining dataset. This can be 
applied to any AI model, as the goal is always to reduce the number of simulations 
and, consequently, simulation time. 

• Maximum Generation and Maximum Demand Calculation: Results from dynamic 
simulations and AI-driven iterations help analyze whether the maximum generation 
and demand limits, which can be lost at any given moment without critically 
affecting the system, are correct or need adjustments. The applicable region is 
influential, differing between island systems and the mainland. This is closely 
related to dynamic capacity calculations. 

• Disconnected Power Calculation: Given a contingency and a scenario, accurately 
determining the disconnected power is vital for evaluating worst-case 
contingencies or assessing dynamic capacity relative to current limits. 

• Dynamic Capacity Calculation: This module builds upon previously mentioned ones. 
Using a set of representative scenarios, a trained model can predict disconnected 
power given a fault for the remaining sample. Additionally, maximum generation 
disconnection is calculated for each scenario. Finally, by combining both values, the 
system's capacity at any given moment is determined, and through statistical 
analysis of all scenarios, a future capacity benchmark can be selected. 

• Worst Contingency Selection: The control center faces resource limitations that 
prevent simulating all possible failures in the grid within a given timeframe. This 
module was developed to address this limitation, aiming to identify and prioritize 
the worst contingencies for simulation. This allows for greater flexibility compared 
to simulating predefined failures, providing better oversight of the most critical 
faults. 

 

 

Figure 5: Diagram of AIDA modules 



19 
 

2.2.3 Databases 

To implement all the modules presented in the previous chapter, it is necessary to conduct 
dynamic simulations across multiple scenarios and different contingencies. This process 
involves transforming the static model into a dynamic one, simulating each scenario, and 
post-processing the results to create databases used for training various artificial 
intelligence models. 

Since each module serves a different function and objective, not all of them operate within 
the same analysis space, resulting in distinct databases depending on the application 
performed. In this project, three separate databases have been utilized, all containing 
tabular data without considering any network-specific structure. 

Although the databases differ, as some focus on the peninsular system while others analyze 
island systems, the input variables for the models follow a similar structure. In all databases, 
each scenario includes electric demand, exchanges with bordering countries, or 
interconnection with the mainland in the case of island systems. Additionally, general 
characteristics by technology are recorded, such as gross production, the number of 
connected generators, and inertia in the case of synchronous technology. Furthermore, 
geographic metrics are collected, 18 zones for the mainland, while in the Balearic Islands, 
data is separated between Mallorca and Menorca. 

The output variables from the dynamic simulation include whether the simulation has 
completed, the simulated time, binary indicators for static or dynamic inadmissibility, 
amount of generation disconnected under the given scenario and contingency, and the 
electrical substation where the fault occurs, among others. 

The databases created in this project are as follows: 

1. Database 14:  

This database has been created and processed based on dynamic simulations conducted on 
14 electrical substations across the Iberian Peninsula, where a three-phase fault lasting 100 
milliseconds was introduced. These 14 pilot nodes serve to analyze the performance of AI 
models that predict the amount of generation disconnected in the event of such a failure 
occurring in any given scenario. 

The Database 14 (BD14) contains hourly records from October 2023 to October 2024, 
totaling approximately 7,000 cases for each substation where a fault is applied. In total, this 
results in nearly 100,000 simulations, each spanning 5 seconds. 

For each substation, detailed statistical studies have been conducted to analyze behavior 
patterns in the recorded historical data. This preliminary analysis has helped identify 
trends, seasonal variations, correlations between variables, and potential anomalies that 
could influence generation disconnection. These studies are essential for extracting 
valuable insights from the data and ensuring a deep understanding of the system before 
applying artificial intelligence techniques. By doing so, the predictive models are built on 
refined and relevant information, enhancing their accuracy and robustness in anticipating 
critical events in electricity generation. 

The first graph presents an analysis of generation disconnection by hour of the day for a 
given substation, represented by a bar chart displaying the maximum, average, and 
minimum values recorded for each time slot. This visualization allows for a clear 
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identification of the hours when the system experiences greater variability or intensity in 
generation disconnection events. 

 
Figure 6: Histogram of disconnected generation by time interval. 

It has been observed that certain time slots, seemingly related to sunlight incidence, 
concentrate in both maximum and average values, suggesting possible patterns linked to 
external factors such as weather conditions, demand behavior, or substation operations. 

The same statistical analysis has been conducted considering monthly variation, evaluating 
maximum, average, and minimum values of generation disconnected throughout the year. 
The results reflect a similar pattern to that observed in the hourly analysis, showing a 
distinct concentration of higher values in specific periods. Notably, during the hottest 
months, the highest levels of generation disconnection are recorded. 

 

 
Figure 7: Histogram of disconnected generation by month. 

Additionally, a chart has been created for BD14, displaying a monotonically decreasing 
curve that represents generation disconnection for a specific substation following a 100-
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millisecond fault. This graph has been produced for all 14 substations, providing a 
comprehensive overview of the system's behavior under such contingencies. 

Consequently, statistical measures can be applied to assess risks in relation to established 
limits or to identify irregular variations in specific substations. 

 

 
Figure 8: Monotonic curve of disconnected generation. 

2. Database 107:  

Database 107 (BD107) has been designed as a key strategic resource to advance the 
application of artificial intelligence models in power system operations. This database was 
built from a series of detailed dynamic simulations, conducted on a set of 107 electrical 
contingencies, representing potential faults or relevant incidents that could impact the 
electrical grid. 

These contingencies include sudden disconnection of transmission lines, generation units, 
or substations, where three-phase faults to ground lasting 100 milliseconds were 
introduced. What makes this database unique is that these simulations were performed for 
every hour of the year, generating one scenario per hour, totaling approximately 7,000 
scenarios. Each scenario reflects the specific generation, demand conditions, and other 
operational variables explained earlier in this section. 

The primary goal of this database is to serve as a training and validation set for an AI-based 
predictive model capable of identifying, for each hourly scenario, which of the 107 
contingencies pose the greatest risk to system stability. In other words, the objective is for 
the model to learn to recognize the most critical contingencies based on the system's 
operational context, enabling prioritized classification of faults to be considered. 

A preliminary analysis has also been conducted on this dataset to identify which 
contingencies frequently violate static and dynamic admissibility conditions or have 
simulation times below a defined threshold, among other aspects. Additionally, generation 
disconnection distributions by contingency have been evaluated, applying preliminary 
filtering to eliminate outliers. 
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Figure 9: Boxplot of disconnected generation for each contingency. 

This chart provides valuable insights prior to model training, allowing verification of 
whether the classification of worst contingencies aligns with previously analyzed data. 
While each scenario may vary significantly, in general, the results should correspond to the 
identified patterns. 

 

3. Database Baleares: 

The Baleares Database has been developed based on an extensive set of dynamic 
simulations conducted specifically on the electrical system of the Balearic Islands. These 
simulations involve the systematic application of three-phase faults to ground lasting 100 
milliseconds across 82 substations distributed throughout the archipelago. 

Each of these contingencies has been evaluated for every hour of the year, generating 
approximately 7,000 scenarios, similar to the other databases, to realistically represent the 
operational conditions of the system over time. The primary objective of this database is to 
characterize system behavior during critical events, iterating parameters associated with 
disconnected power until reaching the threshold linked to load shedding, a sudden and 
significant loss of demand due to a fault. 

This phenomenon is closely related to the nadir frequency value, defined as the lowest 
frequency level reached after a disturbance. Nadir serves as a key indicator of event severity 
and the system's ability to withstand disturbances without compromising stability. Using 
this database enables precise evaluation of operational limits and explores alternative 
approaches to adjust dynamic generation capacity more realistically for the island system. 

As with BD14 and BD107, various statistical studies have been conducted to extract 
essential insights for interpreting results from AI models that will later be trained. 
Regarding dynamic capacity calculations in the Balearic Islands, leveraging the multi-
scenario nature of the dynamic simulations, monotonically decreasing generation 
disconnection graphs have been obtained for each substation, allowing for percentile-based 
risk assessment and the application of a new methodology. 
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Figure 10: Monotonic curve of disconnected generation for substation in the Balearic Islands. 
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3. APPLICATIONS 
The AIDA project leverages advanced artificial intelligence methodologies to optimize 
dynamic power system studies by applying predictive modeling across multiple datasets. 
Building on the datasets presented in the previous chapter, AIDA applies artificial 
intelligence to optimize scenario selection, contingency analysis, and dynamic capacity 
calculation while minimizing simulation time. 

With Database 14 (BD14), the primary goal is to predict generation disconnection in 
response to three-phase faults at critical substations across the Iberian Peninsula. To 
enhance efficiency, representative scenario selection is applied, reducing the number of 
simulations while maintaining predictive accuracy. This allows AI models to anticipate 
system behavior, considering seasonal fluctuations and daily variability. 

For Database 107 (BD107), the focus shifts to worst-case contingency identification for each 
scenario. AI models trained on this dataset analyze system conditions at an hourly 
resolution, classifying and prioritizing faults based on severity and probability. This ensures 
contingency planning is more targeted and effective, aiding decision-makers in mitigating 
risks proactively. 

Finally, Database Baleares is primarily utilized for dynamic capacity calculation over future 
planning horizons, providing insights into system resilience under different contingencies. 
Given the complexity of island grids and their interconnections with Mallorca, Menorca, and 
the Iberian Peninsula, representative scenario selection is employed to refine predictions 
while optimizing computational efficiency. 

Together, these databases form a powerful analytical framework, streamlining decision-
making in power system management. By strategically applying AI-driven methodologies 
across BD14, BD107, and the Database Baleares, the project enhances predictive accuracy, 
optimizes resource allocation, and strengthens the resilience of electrical networks in both 
mainland and island environments. 

3.1 ESTIMATION OF DISCONNECTED POWER IN THE IBERIAN PENINSULA 

The rapid integration of renewable energy sources has introduced significant complexities 
in the stability and predictability of the Iberian Peninsula’s electrical grid. Unlike traditional 
generation, renewables such as wind and solar are highly variable, making it increasingly 
difficult to anticipate system behavior in the event of a fault. This growing uncertainty 
highlights the need for precise estimation of disconnected generation in each scenario, 
allowing operators to enhance contingency planning and improve overall system reliability. 

Understanding how generation loss propagates across the grid has multiple practical 
applications. One key implementation is fault monitoring, which identifies disturbances that 
result in large-scale generation disconnection. This data can be integrated into CECRE, 
where a gradient map visually represents how generator losses spread throughout the 
network, enabling better real-time decision-making. Additionally, by studying fault impact 
propagation, system operators can refine mitigation strategies and improve response 
protocols. 
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Figure 11: Simulation of the propagation of disconnected generation following a fault.

 Another crucial application involves the construction of monotonically decreasing 
generation disconnection curves for each substation. Unlike traditional capacity assessment 
methods that evaluate only a single scenario, this approach provides a more dynamic and 
comprehensive understanding of grid resilience. By recalculating capacity with an 
expanded dataset, operators gain a clearer picture of system limitations and fault 
tolerances, leading to more accurate long-term planning strategies. 

To achieve these objectives, an AI model will be trained to generalize the system’s behavior 
and the differential equations that govern it. Given the high computational cost of dynamic 
simulations, one of the primary challenges is identifying the smallest possible set of 
representative scenarios from which the model can extrapolate system-wide dynamics. By 
optimizing the selection of scenarios, the project ensures efficient computation while 
maintaining robust predictive capabilities. 

For this purpose, Database 14 (BD14) will be utilized, providing historical records of 
generation disconnection across multiple substations in the Iberian Peninsula. By applying 
representative scenario selection techniques to BD14, the AI model will be trained on a 
refined subset of cases, ensuring that key patterns and system dynamics are accurately 
captured while significantly reducing the need for exhaustive simulations. This approach 
enhances both the efficiency and reliability of the predictive model, allowing for robust 
contingency planning and grid stability assessments. 

 

3.1.1 Selection of Representative Scenarios 

In the context of power system analysis, particularly when applying machine learning 

models, the selection of representative scenarios is a critical step to ensure model 

performance and generalization. From the original dataset, which contains approximately 

6,100 scenarios collected over the course of a year, not all cases contribute equally to the 

training process. Many of these scenarios may be highly similar to each other or contain 

limited information value, offering little benefit to the learning process. 
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On the other hand, certain data points reflect significantly different operating conditions. 

These diverse scenarios are especially valuable, as they enable the model to learn richer 

relationships between variables and to capture key system behaviors. This diversity 

ultimately enhances the model’s ability to generalize and accurately predict the target 

output variable under a wide range of conditions.  

The scenario selection process under varying power system operating conditions was based 

on the methodology proposed by Aththanayake et al., where deep neural networks are 

employed to analyze system behavior under different operating states. [8] 

A total of four different methods have been employed for the selection of representative 

scenarios, each with distinct characteristics and levels of sophistication. The first method, 

known as the chronological or equally spaced method, consists of selecting one scenario 

every n time steps from the full chronological ordered dataset. This approach is simple and 

computationally efficient, but it does not consider the structure of the data in the input 

feature space. As a result, it may include redundant or similar scenarios while ignoring rare 

but informative ones. Its main drawback is that it assumes uniform relevance across all 

scenarios, which is rarely the case in complex system behavior.  

The second method is referred to as the sliding window method. In this approach the 

dataset is divided into consecutive, non-overlapping windows of n chronologically ordered 

scenarios. For each window, a clustering process is applied using a simple distance-based 

metric and the scenario closest to the resulting cluster centroid is selected as the 

representative. This method introduces a notion of local diversity and helps retain temporal 

structure while still reducing redundancy within short time frames. However, it may still 

miss globally distinct behaviors if they occur in different windows.  

The third method is the well-known K-Means clustering algorithm, which partitions the 

dataset into k cluster by minimizing the sum of squared Euclidian distances between data 

points and their corresponding cluster centroids. This method is well suited for identifying 

structure in well-distributed dataset. Importantly, the representative scenarios selected 

using K-Means are not the centroids themselves, which may not correspond to real data 

points. The representative scenarios are the actual scenarios from the dataset that are 

closest to each centroid. This ensures that all selected scenarios are realistic and consistent 

with the physical constraints of the original data. K-Means is effective when clusters are 

compact and similarly sized, but it may struggle with datasets containing clusters of varying 

densities or non-spherical shapes.  

The fourth and final method is DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise). This algorithm groups together points that lie in high-density regions while 

identifying low-density points as outliers. Unlike K-Means, DBSCAN does not require 

specifying the number of clusters in advance and can identify clusters of arbitrary shape. As 

with K-Means, the representative scenarios are selected as the real data points closest to 

the high-density core of each identified cluster, ensuring that the selected samples are 

physically plausible. DBSCAN is particularly powerful in heterogeneous datasets where 

clusters differ significantly in density or structure. It also helps to filter out noisy or non-

informative scenarios, potentially improving model training by focusing on meaningful 

patterns.  

Each of these four methods provides a unique lens through which to reduce and structure 

the dataset, aiming to retain the most diverse and informative scenarios for subsequent 
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modeling. In this section, a comparison between the different methods is presented, 

focusing on their ability to generalize a monotonically decreasing curve of disconnected 

generation for one of the fourteen substations.  

 

Figure 12: Comparison of Chronological and K-means clustering. 

The figure above illustrates how the four clustering methods perform when tasked with 
generalizing a monotonically decreasing curve of disconnected generation for one of the 

substations. As observed, some methods are clearly more effective than others in capturing 

the overall shape and variability of the curve. Among them, the K-Means and Chronological 

methods demonstrate superior performance in approximating the general trend, 

particularly in the more challenging region where disconnected generation levels are high. 

These scenarios are likely rare or atypical, making them harder to capture without a method 

that ensures adequate representation across the entire feature space. 

 

Figure 13: Comparison of Sliding Window and DBSCAN clustering. 

In contrast, both the Sliding Window and DBSCAN methods show greater difficulty in 

identifying representative scenarios in these high-disconnection zones. The Window 
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methods, by focusing on local windows, may fail to detect globally rare but critical events, 

while DBSCAN’s density-based nature tends to underrepresent low-density regions where 

these edge cases typically lie.  

The number of selected representative scenarios varies by method: both the Chronological 

and Window methods use a step or window size of 20, resulting in approximately 305 

representative scenarios each. K-Means clustering was configured with k = 175, providing 

a balance between coverage and resolution. DBSCAN was applied with epsilon = 19 and 

minimum number of samples min_samples = 1, specifically chosen to allow detection of 

outlier points that are distant from dense clusters. However, due to DBSCAN’s assumption 

that low-density areas are noise, it fails to include the most extreme cases, those with very 

high lost power, which are precisely the most critical to capture for robust generalization.  

These differences highlight the importance of scenario selection strategy, particularly when 

modeling rare but high-impact situations. Methods that ensure a global view of data 

distribution, such as K-Means or chronological sampling, may be better suited for 

preserving edge-case behavior in models that aim to generalize across the full operational 

range. 

The next step is to evaluate how well an artificial intelligence model generalizes when 

trained on the complete dataset of approximately 6,100 scenarios. This initial assessment 

provides a reference point for the model’s ability to learn the relationships between input 

variables and accurately reproduce the target output across the full range of operating 

conditions. Once this baseline performance is established, the scenario selection methods 

are applied in order to determine whether a reduced set of representative scenarios can 

achieve comparable results. This process aims to assess the trade-off between 

computational efficiency and model accuracy, and to verify whether the same key insights, 

such as the reconstruction of monotonically decreasing curves of disconnected generation, 

can be obtained with significantly fewer dynamic simulations.  

 

3.1.2 Estimation of Disconnected Power 

This section presents a model capable of predicting the amount of disconnected generation 

using a set of input variables. The output variable, disconnected power, is derived from 

dynamic simulations carried out under a wide range of system disturbance scenarios. By 

learning the relationships between the input conditions and the resulting power 

disconnections, the model provides an efficient alternative to computationally expensive 

dynamic simulations, enabling faster and more scalable analysis of system behavior.  

The model selected for this project is LightGBM (LGBM), a highly efficient and scalable 

gradient boosting framework that builds upon decision tree algorithms. LGBM is 

particularly well-suited for handling large-scale datasets and complex predictive tasks due 

to its innovative leaf-wise tree growth strategy. Unlike traditional level-wise approaches, 

LGBM grows trees by expanding the leaf with the highest potential to reduce loss, which 

often results in faster convergence and improved predictive accuracy. This method allows 

the model to focus computational resources on the most informative splits, making it both 

powerful and resource efficient. Furthermore, LGBM supports a wide range of advanced 

features, including native handling of categorical variables, built-in regularization 
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techniques to prevent overfitting, and parallel and GPU learning capabilities, all of which 

contribute to its robustness and adaptability in real-world applications. 

To ensure the model’s reliability and its ability to generalize well to unseen data, the training 

pipeline began with a carefully designed validation strategy using TimeSeriesSplit with four 

splits. This technique is specifically tailored for time series data, where preserving the 

temporal order of observations is essential. Unlike standard cross-validation methods that 

randomly shuffle data, TimeSeriesSplit maintains the chronological sequence, ensuring that 

each training set precedes its corresponding test set in time. This approach not only 

prevents data leakage but also simulates real-world forecasting scenarios, where future 

data must be predicted based on past information. Each split incrementally increases the 

training window while shifting the test window forward, allowing the model to be evaluated 

across multiple temporal segments. This setup was instrumental not only for assessing 

model performance but also for guiding the hyperparameter tuning process, ensuring that 

the selected parameters are robust across different time-based partitions of the data. As a 

result, the model is better equipped to handle the dynamic nature of time series forecasting 

tasks. 

 

 

Figure 14: Representation of Time Series Split with 4 splits. 

The hyperparameters tested through temporal cross-validation for the LightGBM (LGBM) 

model are as follows: 

• n_estimators: [200, 500, 1000] – This parameter defines the number of boosting 

iterations, meaning the number of trees that will be built in the ensemble. A higher 

number of estimators can improve model performance by allowing it to learn more 

complex patterns, but it also increases computational cost and the risk of overfitting. 

• learning_rate: [0.01, 0.05, 0.1, 0.5] – The learning rate controls the step size at which 

the model updates weights during training. A lower learning rate (e.g., 0.01) ensures 

more gradual learning, reducing the risk of overfitting but requiring more iterations. 
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A higher learning rate (e.g., 0.5) speeds up convergence but may lead to suboptimal 

solutions if too aggressive. 

• num_leaves: [10, 15, 20, 40] – This parameter determines the maximum number of 

leaves per tree, influencing the model’s complexity. A higher number of leaves 

allows the model to capture more intricate relationships in the data, but it also 

increases the risk of overfitting. A lower number of leaves results in a simpler model 

that may generalize better but could miss important patterns. 

These hyperparameters were systematically evaluated using temporal cross-validation, 

ensuring that the model is optimized for sequential data while maintaining robustness 

against overfitting. By testing different configurations, the goal is to find the best balance 

between predictive accuracy and generalization, particularly in time-dependent datasets 

where past observations influence future predictions. 

Below is a table presenting the five best hyperparameter combinations out of the 48 

possible configurations tested. The selection is based on their mean test score, Root Mean 

Squared Error (RMSE), and ranking. These metrics provide insight into the model's 

performance, with the mean test score reflecting overall predictive accuracy, RMSE 

indicating the error magnitude, and the ranking helping identify the most effective 

parameter settings. This evaluation ensures that the LightGBM model is optimized for 

temporal data while maintaining a balance between accuracy and generalization. 

 

As shown, the best results were consistently achieved using a learning_rate of 0.1 or 0.05. 

Lower values, such as 0.01, likely caused underfitting due to slower convergence, while 

higher values like 0.5 may have led to overfitting or unstable behavior. Regarding the 

number of estimators, configurations with 500 or 1000 trees performed better, particularly 

when paired with smaller learning rates, which require more boosting rounds to reach 

optimal performance.  

A particularly striking result was that all top-performing models used num_leaves = 10. 

None of the configurations using 15, 20, or 40 leaves appeared among the best results, 

suggesting that simpler, shallower trees work better with this dataset. These smaller tree 

structures likely help the model generalize more effectively and avoid overfitting.  

The best configuration overall combined learning_rate = 0.1, n_estimators = 500, and 

num_leaves = 10, resulting in the lowest RMSE of 80.6871. Considering this, future tuning 

efforts should focus on refining the learning rate and number of estimators within these 

Rank learning_rate n_estimators num_leaves mean_test_score RMSE 

1 0.1 500 10 -6,510.4171 80.6871 

2 0.1 1000 10 -6,520.9205 80.7522 

3 0.05 1000 10 -6,561.4393 81.0027 

4 0.1 200 10 -6,588.4422 81.1692 

5 0.05 500 10 -6,609.3052 81.2976 

Table 1: Comparison of different hyperparameter configurations. 



31 
 

promising ranges, while keeping the number of leaves fixed at 10 to preserve model 

simplicity and robustness.  

Now that the best hyperparameter configuration has been identified, the model is trained 

using 80% of the data and tested on the remaining 20%. This corresponds approximately 

to training on scenarios from October 2023 to August 2024 and testing from August 2024 

to October 2024. 

To ensure a proper separation between training and testing data and avoid potential 

correlation, a gap of 12 records is applied between the two sets. This gap acts as a buffer, 

preventing data leakage and ensuring that the model does not inadvertently learn patterns 

that directly influence the test set. By introducing this separation, the model is evaluated on 

truly unseen data, improving its ability to generalize to future scenarios. 

This approach is particularly important in time-series modeling, where consecutive 

observations are often highly correlated. Without a gap, the model might benefit from short-

term dependencies that do not reflect real-world forecasting challenges. By enforcing this 

separation, the evaluation process becomes more realistic, ensuring that the model’s 

performance is assessed under conditions similar to actual deployment. 

A separate model is trained for each substation, ensuring that the predictions are tailored 

to the specific characteristics and patterns of each location. However, to keep the 

presentation concise and avoid excessive data, the results shown will focus on one specific 

substation. This allows for a detailed analysis of the model's performance while maintaining 

clarity and readability in the report. The insights gained from this substation can be 

extrapolated to the others, as the same methodology has been applied across all models. 

For this specific substation, the model achieves the following performance metrics: RMSE 

Train: 18.39, R² Train: 0.99, RMSE Test: 66.29, and R² Test: 0.92. While there is some degree 

of overfitting, as indicated by the lower error in the training set compared to the test set, 

the model still demonstrates a strong ability to generalize. The high R² Test score of 0.92 

suggests that the model effectively captures the underlying patterns in the data and 

maintains reliable predictive performance, even when applied to unseen scenarios. 

In the following graph, the model's predictions for the test set are displayed, allowing for a 

visual assessment of its performance. The predicted values closely follow the actual data, 

demonstrating that the model can generalize correctly to unseen scenarios. 

This aligns with the previously discussed performance metrics, where the R² Test score of 

0.92 indicates a strong correlation between predictions and actual values, and the RMSE 

Test value of 66.29 reflects a reasonable level of error. While some degree of overfitting was 

observed, given the lower RMSE in the training set, the model still effectively captures the 

underlying patterns in the data. 
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Figure 15: Prediction of the LGBM model on the test set. 

The graph serves as further validation of the model’s ability to adapt to new data while 

maintaining predictive accuracy. The consistency between the visual representation and 

the numerical metrics confirms that the model is well-calibrated, making it a reliable tool 

for forecasting within this specific substation. 

Having observed the performance of a model with such strong metrics, it is important to 

further analyze how different factors influence its effectiveness. To gain deeper insights, a 

study will be conducted to examine the impact of training set size and the gap between 

training and test data on the model’s evaluation metrics. 

The size of the training set plays a crucial role in model performance, as larger datasets 

typically allow the model to learn more complex patterns, but they may also introduce noise 

or outdated trends. Conversely, smaller training sets might lead to underfitting, limiting the 

model’s ability to generalize. 

Similarly, the gap between training and test data is essential in preventing data leakage and 
ensuring realistic evaluation. A larger gap reduces correlation between the two sets, making 

the test results more representative of real-world forecasting challenges. However, an 

excessively large gap might lead to a loss of valuable temporal dependencies. 

By systematically varying these parameters and analyzing their effect on RMSE, R², and 

other evaluation metrics, this study aims to determine the optimal balance between training 

data size and separation gap, ensuring the best possible generalization and predictive 

accuracy for future implementations. 

Using optimized hyperparameters, the model is first trained to evaluate the impact of 

training set size on performance, aiming to determine the minimum amount of data 

required while still achieving satisfactory metrics. To do this, the training set size has been 

systematically varied across different time spans, ranging from long periods such as nine 

months and six months to shorter durations like three months, one month, two weeks, and 

one week. Additionally, even smaller training windows have been tested, including five 

days, three days, and two days, to assess how the model performs with extremely limited 

historical data. 
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By analyzing the results across these different training durations, the goal is to identify the 

point at which the model maintains high predictive accuracy while minimizing unnecessary 

data usage. A larger training set generally allows the model to learn more complex patterns, 

but it may also introduce outdated trends or noise. On the other hand, a smaller training set 

might limit the model’s ability to generalize, potentially leading to underfitting. 

The following graph presents the R² values for each training set size, providing insight into 

how the amount of training data influences the model’s ability to generalize effectively. 

 

 

Figure 16: Comparison of model performance by training set size. 

From the graph, it is observed that the model's R² value remains stable between two weeks 

and one month, indicating that within this range, the model maintains its predictive 

accuracy without significant deterioration. Based on this evaluation, a training set size of 

400 data points or representative scenarios, approximately three weeks, has been selected 

as the optimal amount necessary for the model to generalize effectively and extrapolate the 
rest of the dataset. 

With this determined training size, the next step is to analyze how the gap size between 

training and test data affects the evaluation metrics. By varying the gap, the goal is to 

understand its influence on model performance, ensuring that the separation is sufficient to 

prevent data leakage while still allowing the model to capture relevant temporal patterns. 

In the following graph, the variation of R² is observed as the gap size between training and 

test data is adjusted, ranging from 12 records to 2500 records. This analysis helps evaluate 

how the separation between the two datasets impacts the model’s ability to generalize. 
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Figure 17: Comparison of model performance by gap size. 

From the graph, it can be observed that, in general, the R² value remains stable across 

different gap sizes, except for the case of 1000 records, where a noticeable drop occurs. This 

decline suggests that the model may struggle to generalize effectively when this specific gap 

size is applied. 

One possible explanation for this behavior is that the model benefits from having access to 

data from different stations, which might provide essential variability and context for 

learning. When a gap of 1000 records is introduced, it could be removing crucial 

information, making it harder for the model to capture broader patterns. This indicates that 

incorporating diverse station records is important for maintaining predictive accuracy, as 

excluding them might limit the model’s ability to generalize effectively. 

Now that all the necessary steps have been completed to apply the selection of 

representative scenarios, the optimal training set size has been determined, ensuring that 

the model can generalize effectively. With this foundation, the next section integrates the 

findings from the previous analyses, combining the insights on training size and gap 

selection to build a refined model. 

This model will estimate the disconnected power for the entire dataset using a training set 

composed of representative scenarios, rather than relying on a continuous time window. 

The objective is to construct the monotonically decreasing curve of disconnected generation 

for this specific substation, providing a comprehensive view of how power disconnection 

evolves under different conditions. 

 

3.1.3 Modeling the Disconnected Generation Curve 

Now that the optimal hyperparameters have been determined, learning rate = 0.1, 
num_leaves = 10, and n_estimators = 500, the model is applied to a carefully selected 
sample of 400 data points. These points are chosen using the K-Means clustering method, 
as previously explained, ensuring that the most representative scenarios are used for 
training. Specifically, the actual data points closest to the 400 centroids identified by K-
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Means are selected, providing a diverse and compact training set that captures the essential 
variability of the dataset. 

The selection of these representative points is a crucial step in the process, as it allows the 
model to learn from a balanced and well-distributed subset of the data rather than relying 
on a continuous time window. This ensures that the training set includes a wide range of 
possible scenarios, improving the model’s ability to generalize across different conditions. 
By focusing on a condensed and highly informative dataset, the model is expected to 
maintain strong predictive accuracy while reducing computational complexity. 

Once the model has been trained using this optimized subset, it is then applied to estimate 
the disconnected power across the remaining scenarios in the dataset. This step extends the 
model’s predictions beyond the initial training set, allowing it to provide estimates for 
situations it has not directly seen before. The ability to extrapolate effectively is a key 
indicator of the model’s robustness, demonstrating that it can capture the underlying 
patterns in the data rather than simply memorizing specific instances. 

Following this estimation process, various evaluation metrics are computed to assess the 
model’s performance. The results show that the model achieves an RMSE of 73.0792 and an 
R² of 0.92, indicating a high level of accuracy and reliability. These strong metrics validate 
the effectiveness of the approach, demonstrating that the combination of representative 
scenario selection and optimal hyperparameter tuning has significantly improved the 
model’s ability to generalize. The careful selection of training data has ensured that the 
model learns from the most relevant patterns, while the hyperparameter optimization has 
fine-tuned its predictive capabilities. 

With these predictions in place, the next step is to construct a monotonically decreasing 
curve of disconnected generation, which will be compared against the actual observed 
curve. The primary objective of this comparison is to determine whether the model can 
replicate the real curve using fewer steps, effectively capturing the essential trends in power 
disconnection while minimizing unnecessary complexity. If successful, this approach would 
allow for a more efficient representation of the disconnection process, reducing the number 
of required scenarios while still maintaining an accurate depiction of the system’s behavior. 

This methodology not only enhances the efficiency of the estimation process but also 
provides valuable insights into how representative scenarios can be leveraged to streamline 
forecasting. By reducing the number of required steps while maintaining accuracy, the 
approach ensures that the model remains both robust and scalable, making it a practical 
tool for future applications in power system analysis. Additionally, this strategy could be 
extended to other substations or similar datasets, demonstrating its versatility and 
potential for broader implementation in predictive modeling tasks. 

Next, the graph will be presented, showing both the actual monotonically decreasing curve 
and the predicted curve for a specific substation. This comparison will allow for a visual 
assessment of how well the model replicates the real trend of disconnected generation, 
highlighting its ability to generalize and accurately estimate power disconnection using a 
reduced set of representative scenarios. 
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Figure 18: Prediction of the monotonic disconnected generation curve from the model trained with 
representative scenarios. 

From the visual representation, it is evident that the predicted monotonically decreasing 
curve closely follows the actual curve, demonstrating the model’s strong ability to replicate 
the real trend of disconnected generation. The two curves are practically overlapping, 
indicating that the model successfully captures the overall behavior across all segments, 
even in the areas where the disconnection values fluctuate more significantly. This suggests 
that the methodology used, combining representative scenario selection with optimized 
hyperparameters, has been highly effective in ensuring accurate predictions while 
maintaining computational efficiency. 

One of the most notable aspects of this result is the model’s ability to preserve the trend 
across all sections of the curve, even in the regions where the disconnection values exhibit 
more pronounced variations. This means that the model is not only capable of estimating 
average behavior but also of adapting to more extreme fluctuations, which is crucial for real-
world applications where power disconnection does not always follow a perfectly smooth 
pattern. 

This high level of accuracy allows for valuable applications in dynamic capacity evaluation 
for future horizons. By reliably estimating the trend, the model enables the calculation of 
percentiles, which can be used to assess potential risks and determine the likelihood of 
extreme scenarios. Additionally, this approach provides a structured way to evaluate the 
percentage of scenarios that could pose operational challenges, ensuring that power system 
planning accounts for possible disconnection events effectively. 

Furthermore, the ability to construct a monotonically decreasing curve with fewer steps 
while maintaining precision offers significant advantages in terms of forecasting efficiency. 
Instead of requiring many individual simulations, this methodology allows for a more 
streamlined approach, reducing computational demands while still providing a highly 
accurate representation of disconnected generation behavior. This makes it a valuable tool 
for decision-making processes, enabling operators to anticipate potential risks and optimize 
system performance with greater confidence. 
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3.2 SELECTION OF THE WORST CONTINGENCIES 

Due to resource limitations and the vast number of possible failures that can occur within 
the system, it is not feasible to dynamically calculate and simulate all contingencies within 
a short time window. The complexity and computational demands of evaluating every 
potential fault make it necessary to prioritize the most critical scenarios. In large-scale 
power systems, thousands of possible contingencies can arise, each with varying degrees of 
impact on grid stability, reliability, and operational efficiency. Attempting to analyze all of 
them in real time would require an immense amount of computational power and time, 
making it impractical for immediate decision-making. 

This chapter focuses on how AI-driven models can be applied to select the worst 
contingencies, ensuring that the most impactful failures are identified efficiently. By 
leveraging machine learning techniques, the goal is to provide decision support to the 
control center, helping operators determine which faults should be simulated at any given 
moment. Instead of relying on exhaustive simulations, AI models can intelligently filter, and 
rank contingencies based on their potential severity, allowing operators to focus on the 
most critical cases that could pose a significant risk to system stability. 

The ability to automate the selection process is crucial for enhancing situational awareness 
in real-time operations. AI models can analyze historical data, system topology, and real-
time measurements to predict which contingencies are most likely to lead to severe 
disruptions. This enables a proactive approach to contingency analysis, where the control 
center can anticipate and prepare for high-risk scenarios before they escalate into major 
failures. 

Furthermore, by integrating AI-based contingency selection into the decision-making 
workflow, operators can optimize the allocation of computational resources, ensuring that 
simulations are conducted on the most relevant cases rather than wasting time on low-
impact failures. This improves the overall efficiency of contingency analysis, allowing for 
faster response times and more effective mitigation strategies. 

For the selection of the worst contingencies, Database 107 (BD107) is used, as previously 
explained. This data set serves as the foundation for training a neural network model built 
using PyTorch, designed to estimate the disconnected generation for each possible failure 
scenario. The neural network is structured so that its output layer contains as many neurons 
as there are contingencies, meaning that for each input scenario, the model will produce an 
estimate of the disconnected generation for every possible failure. 

The objective of this approach is to introduce a set of input variables into the neural network 
and allow it to learn the complex relationships between these variables and the resulting 
disconnected generation. By doing so, the model can efficiently determine which 
contingencies lead to the most severe disconnections, enabling the identification of the 
worst-case scenarios for each given set of conditions. Instead of manually simulating every 
possible failure, the AI-driven model provides a prioritized ranking, allowing operators to 
focus on the most critical cases. 

The contingencies analyzed in this study consist of three-phase faults to ground lasting 100 
milliseconds, occurring on substations, generation units, and transmission lines. These 
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faults represent severe disturbances that can significantly impact system stability and 
operational reliability. 

The input data fed into the neural network includes a wide range of variables that 
characterize the state of the power system at any given moment. These variables encompass 
both global system conditions and regional factors, ensuring that the model captures the 
full complexity of contingency behavior. Among the key inputs are: 

• Total demand: which reflects the overall electricity consumption at the time of 
analysis. 

• Interconnection flows: with France, Portugal, and Morocco, representing the 
exchange of power between Spain and neighboring countries. These values are 
crucial for understanding cross-border dependencies and their impact on system 
stability. 

• Tabular values by technology: which provide detailed information on the 
contribution of different generation sources, such as nuclear, hydro, wind, solar, and 
thermal power plants. 

• Regional data for 18 zones across the Iberian Peninsula: ensuring that the model 
accounts for localized variations in generation and demand. 

By incorporating this diverse set of inputs, the neural network is trained to recognize 
patterns and relationships that determine the severity of each contingency. Once trained, 
the model can process new scenarios and estimate the disconnected generation for every 
possible failure, effectively ranking them based on their impact. This allows for a data-
driven selection of the worst contingencies, ensuring that control center operators can focus 
their simulations on the most critical cases. 

The ability to automate this selection process significantly enhances operational efficiency, 
reducing the computational burden associated with exhaustive contingency analysis. 
Instead of manually evaluating thousands of potential failures, the AI model provides a 
targeted approach, identifying the most severe cases in real time. This methodology not only 
improves decision-making but also strengthens grid resilience, ensuring that the system 
remains prepared for the most impactful disruptions. 

The first step before constructing the final model that predicts the disconnected power for 
each failure in every scenario is to determine the optimal neural network architecture. 
Selecting the right structure is crucial to ensuring that the model effectively learns the 
complex relationships between input variables and contingency outcomes while 
maintaining computational efficiency. 

This process involves evaluating different configurations, including the number of layers, 
neurons per layer, activation functions, and regularization techniques, to find the best 
balance between accuracy and generalization. A well-structured network will allow the 
model to capture the underlying patterns in the data without overfitting or underfitting, 
ensuring reliable predictions across diverse operating conditions. 

3.2.1 Optimizing Neural Network Architecture and Hyperparameters 

To develop a robust predictive model for estimating disconnected power in different 
contingency scenarios, several neural network configurations have been designed and 
tested. These architectures progressively increase in complexity, incorporating additional 
layers, activation functions, dropout regularization, batch normalization, and residual 
connections to enhance learning stability and prevent overfitting. Each configuration brings 
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specific improvements aimed at optimizing predictive accuracy while maintaining 
computational efficiency. 

The first models, NeuralNet and NeuralNet2, represent basic feedforward networks with 
three to five hidden layers. They utilize ReLU activation functions, which help maintain non-
linearity and prevent vanishing gradients, along with dropout regularization to reduce 
overfitting. NeuralNet2 introduces an additional hidden layer with 86 neurons, refining 
feature extraction and allowing for a more nuanced representation of input data. 

Moving towards more advanced architectures, ComplexNeuralNet and ComplexNeuralNet2 
incorporate batch normalization, which stabilizes training and accelerates convergence by 
normalizing activations across mini-batches. These models also introduce LeakyReLU and 
ELU activation functions, which improve gradient propagation and prevent neurons from 
becoming inactive. Additionally, residual connections are implemented, allowing 
information to flow more effectively across layers, ensuring that deeper networks retain 
meaningful features from earlier layers. 

The most sophisticated configurations, ComplexNeuralNet3, ComplexNeuralNet4, and 
ComplexNeuralNet5, expand the architecture to six hidden layers, significantly increasing 
model capacity. These models integrate SELU activation functions, which maintain self-
normalizing properties, improving gradient flow and ensuring stable training. They also 
include dropout layers to enhance generalization and prevent overfitting, while residual 
connections further optimize learning efficiency by preserving information flow across 
layers. 

Each of these architectures is designed to progressively refine the neural network’s ability 
to predict disconnected power for different contingencies, ensuring a balance between 
accuracy, generalization, and computational efficiency. By leveraging these configurations, 
the model can effectively capture complex relationships within the dataset, providing 
reliable estimations that support decision-making processes in contingency analysis. 

All neural network architectures are evaluated using 450 epochs, with the Adam optimizer 
set to a learning rate of 0.01. The chosen loss function is global RMSE (Root Mean Squared 
Error), meaning that the error is computed across all outputs collectively, rather than 
individually for each contingency. This approach provides a comprehensive measure of 
overall prediction accuracy, ensuring that the model effectively captures the general trend 
of disconnected power across multiple failure scenarios. 

This evaluation process aims to determine whether a more complex network or one with 
specific architectural features is necessary to improve performance. By analyzing the 
results across different models, we can assess how factors such as layer depth, activation 
functions, dropout regularization, and residual connections impact the model’s ability to 
generalize and accurately predict disconnected power for each contingency scenario. 

In the table below, the global RMSE and R² metrics are presented for both training and test 
datasets. These values provide a comprehensive evaluation of each model’s performance, 
allowing for a comparison of how well the different neural network architectures generalize 
and predict disconnected power across multiple contingencies. 
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From the results presented in the table, we can observe a clear trend in how model 

complexity affects performance. The simpler architectures, such as NeuralNet and 

NeuralNet2, exhibit higher RMSE values on the test set compared to the training set, 

indicating a tendency toward overfitting. These models achieve high R² scores on the 

training data but experience a noticeable drop in performance when evaluated on unseen 

test data. This suggests that while they learn well from the training set, they struggle to 

generalize effectively to new scenarios. 

On the other hand, the more complex architectures, such as ComplexNeuralNet, 

ComplexNeuralNet2, ComplexNeuralNet3, ComplexNeuralNet4, and ComplexNeuralNet5, 

show less overfitting. Their RMSE values for training and test sets are much closer, and their 

R² scores remain more stable, indicating better generalization. Among these, 

ComplexNeuralNet3 stands out as the best-performing model, achieving the lowest test 

RMSE (123.2473) and the highest test R² score (0.8466). 

The ComplexNeuralNet3 model is structured with six hidden layers, incorporating batch 

normalization, dropout regularization, and residual connections to enhance stability and 

learning efficiency. The first layer consists of 512 neurons, with batch normalization applied 

to stabilize activations and a LeakyReLU activation function to prevent dead neurons. The 

second layer has 256 neurons, also with batch normalization, and uses an ELU activation 

function, which helps maintain smooth gradients. Additionally, dropout (0.3) is applied to 

reduce overfitting. 

The third layer contains 128 neurons, again with batch normalization and ELU activation, 

along with dropout (0.3) to further improve generalization. The fourth layer introduces a 

residual connection, allowing information to flow more effectively across the network. This 

layer has 128 neurons, with batch normalization and a ReLU activation function to enhance 

learning stability. The fifth layer consists of 64 neurons, with batch normalization and a 

SELU activation function, which helps maintain self-normalizing properties. A dropout rate 

of 0.2 is applied to further prevent overfitting. Finally, the output layer is a fully connected 

linear layer, mapping to the number of outputs required for the prediction task. 

The ComplexNeuralNet3 model demonstrates the best balance between accuracy and 

generalization, making it the most suitable architecture for predicting disconnected power 

across different contingencies. Its combination of batch normalization, dropout 

regularization, and residual connections ensures stable training while minimizing 

overfitting, leading to more reliable predictions in real-world applications. 

It is important to highlight that the RMSE and R² values obtained in this evaluation are 

worse compared to the previous chapter, where the estimation of disconnected generation 

Model RMSE Train RMSE Test R² Train R² Test 

NeuralNet 93.2979 133.6252 0.9021 0.8196 

NeuralNet2 88.4303 128.6044 0.9121 0.8329 

ComplexNeuralNet 121.0629 127.3832 0.8352 0.8361 

ComplexNeuralNet2 130.0583 128.8292 0.8098 0.8324 

ComplexNeuralNet3 115.0281 123.2473 0.8512 0.8466 

ComplexNeuralNet4 115.9652 125.3527 0.8488 0.8413 

ComplexNeuralNet5 121.6135 126.5786 0.8337 0.8382 

Table 2: Comparison of model performance across different neural network architectures. 
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was performed. This difference is expected, as the current approach optimizes a single 

model to predict the output for all failures simultaneously, rather than using a separate 

model for each contingency. Given this broader scope, a slight decrease in accuracy is 

natural. However, despite this, the results remain strong, with an R² consistently above 0.8, 

indicating that the model still captures the underlying patterns effectively and provides 

valuable predictions for contingency analysis. 

 

3.2.2 Estimating the Worst Contingencies via Disconnected Generation 
Prediction 

Now that we have determined the optimal architecture and hyperparameters for the neural 
network, we can proceed with the training and evaluation phase. The model will be trained 
using 80% of the available data, allowing it to learn the complex relationships between 
system variables and the resulting disconnected generation for each contingency. Once the 
training is complete, the remaining 20% of the data will be used for testing, providing an 
independent evaluation of how the model operates in real scenarios and how it could be 
integrated into decision-making processes. 

This phase is essential for demonstrating how the model can support the control center by 
providing rapid estimations of disconnected generation for different contingencies. By 
analyzing its predictions, we can observe how it processes new data and identifies critical 
failures, offering valuable insights into system behavior under different conditions. The 
ability to quickly estimate the impact of contingencies allows operators to prioritize 
simulations, focusing on the most relevant cases without the need for exhaustive manual 
analysis. 

Additionally, this evaluation will highlight the practical benefits of using AI-driven 
contingency analysis in real-time operations. By integrating this model into the control 
center workflow, operators could gain a data-driven tool that enhances situational 
awareness and improves response strategies. The results obtained from the test set will 
provide a clear picture of how the model functions in practice, illustrating its potential to 
streamline contingency selection and optimize decision-making processes. 

The following visualization presents the estimated disconnected generation for 15 

contingencies, as predicted by the trained neural network, over a 10-scenario time window. 

This visualization provides insight into how the model responds to different contingencies 

across multiple scenarios, illustrating the variations in disconnected power over time. By 

analyzing these estimations, we can observe how the impact of each contingency evolves 

depending on the scenario, offering a valuable perspective for contingency assessment and 

decision-making in the control center. 
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Figure 19: Prediction of disconnected generation caused by 15 contingencies over time. 

In certain scenarios, specific contingencies rise to high-impact positions, meaning they 

cause significant generation disconnection and require immediate attention. However, in 

other scenarios, these same contingencies become less relevant, with minimal or almost no 

disconnected generation. This variability highlights the complex nature of contingency 

analysis, where the severity of failures is not fixed but rather depends on the operating 

conditions and interactions within the power system. 

This behavior underscores the importance of adaptive contingency assessment, where 

different failures must be prioritized based on the specific scenario rather than relying on a 

static ranking. Some contingencies may consistently pose a high risk, while others may only 

become critical under certain conditions. The ability to capture these fluctuations through 

a trained neural network provides valuable insights for control center operations, allowing 

operators to focus on the most relevant contingencies at any given moment. 

By leveraging this predictive capability, system operators can enhance decision-making, 

ensuring that resources and mitigation strategies are allocated efficiently. Instead of relying 

solely on predefined worst-case scenarios, this approach enables a data-driven evaluation, 

adapting to real-time conditions and improving overall system reliability. 

By utilizing all the visualizations like those above, which highlight the worst contingencies, 

it becomes possible to monitor the most critical failures in real time. This approach allows 

for a continuous assessment of how contingencies evolve under different scenarios, 

enabling operators to quickly identify and respond to the most severe cases. Real-time 
monitoring of these contingencies enhances situational awareness, improves decision-

making, and ensures a more proactive approach to system reliability and stability. 
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3.3 DYNAMIC CAPACITY CALCULATION IN THE BALEARIC ISLANDS 

The dynamic capacity calculation in the Balearic Islands is based on an iterative process 
over dynamic simulations, aimed at determining the necessary disconnected power to 
achieve a 10% load shedding of total demand. In practice, this load shedding is associated 
with a minimum frequency threshold reached after a contingency. Specifically, if the system 
frequency drops to approximately 48.8 Hz, a 10% load shedding is triggered to stabilize the 
grid. This value represents the maximum generation that can be tripped at any given 
moment, ensuring system stability under severe contingencies. Since this amount fluctuates 
over time, it becomes crucial to evaluate the capacity limits at each substation, allowing for 
a more precise assessment of system resilience. 

Li et al. conducted a similar study in Frontiers in Energy Research, exploring data-driven 
approaches for predicting frequency nadir using power-frequency polynomial fitting and 
neural networks. These methodologies closely align with the iterative process in this 
chapter, reinforcing the role of AI-driven techniques in stability assessments and system 
optimization under contingencies. [9] 

 

Figure 20: Representation of the minimum frequency achieved following a fault. 

To obtain these values, two artificial nodes, one representing generation and the other 
demand, both with equal power, are introduced into the network to ensure that the system 
remains unaltered. A fault is then applied to one of these nodes, allowing for the evaluation 
of the disconnected power required to reach the expected nadir (minimum frequency). This 
approach ensures that the system response is accurately assessed without modifying the 
existing network structure. 

Once these power values are obtained, the next step is to develop an AI-based model, 
specifically a neural network for each substation, capable of extrapolating the maximum 
generation that could be tripped in any given scenario. This methodology enables a more 
efficient estimation process, reducing the need for extensive dynamic simulations while 
maintaining high accuracy in predicting system behavior under different conditions. 

By leveraging a reduced training dataset, these neural networks can predict the required 
disconnected power without the need for an extensive number of dynamic simulations, 
significantly reducing computational time and improving efficiency. This approach offers a 
new methodology for evaluating system capacity, differing from the traditional method, 
which selects a single scenario and applies the same criteria uniformly across all 
substations. The conventional approach tends to be overly cautious, assuming worst-case 
conditions across the board, whereas this AI-driven method allows for a more granular 
analysis, tailoring capacity assessments to each substation individually. 



44 
 

By adopting this methodology, it becomes possible to refine contingency planning, ensuring 
that substations with excessively conservative assumptions can have their capacity limits 
adjusted, while those facing higher risks receive the necessary attention. This data-driven 
approach enhances system reliability, optimizes operational decisions, and provides a more 
adaptive framework for managing dynamic capacity in the Balearic Islands. 

The first step in the process is to perform iterative simulations until the disconnected 
power, referred to as G10, associated with the minimum frequency threshold of 48.8 Hz is 
determined for each scenario. By systematically adjusting the disconnected power in each 
simulation, the exact G10 value for each scenario can be identified, providing a solid 
foundation for further analysis and model development. This G10 metric represents the 
maximum generation that can be tripped while ensuring system stability, making it a crucial 
parameter for evaluating dynamic capacity in the Balearic Islands. 

3.3.1 G10 Calculation Through Iterative Dynamic Simulations 

Since the G10 power associated with the minimum frequency threshold of 48.8 Hz is initially 
unknown, it is necessary to test with a couple of initial power values to establish a reference. 
The relationship between disconnected power and frequency is assumed to be linear, 
allowing for the application of linear regression techniques to estimate the required power 
level. However, this process requires multiple iterations, as different scenarios do not 
behave identically, and in some cases, the linearity is not perfectly maintained. 

Due to these variations, adjustments must be made iteratively to refine the estimation and 
ensure accuracy across all scenarios. The following representation illustrates the different 
points obtained through interpolation, showing the process of reaching the 48.8 Hz 
frequency threshold in five different scenarios. 

 

 

Figure 21: Relationship between disconnected power and minimum frequency for 5 scenarios. 

Once the iterative process has been completed and values have been obtained for each 

scenario that sufficiently approach the 48.8 Hz threshold, the necessary information and 

data are now available to train a model capable of generalizing the maximum generation 

that can be tripped. This model will allow for a significant reduction in the number of 
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required simulations, optimizing the process by providing reliable estimations without the 

need for exhaustive dynamic simulations for every new scenario. 

 

3.3.2 G10 Calculation Using Neural Networks 

In this section, a neural network-based approach is introduced to generalize the G10 value 
across different scenarios, leveraging previously computed data. The G10 represents the 
maximum amount of generation that can be disconnected, associated with a minimum 
frequency reached after a contingency, and linked to a 10% load shedding of the total 
demand. Since this concept has been explained earlier, it will not be reiterated here. 

The primary objective of training a neural network model is to significantly reduce the 
number of dynamic simulations required to obtain G10 for all possible scenarios. 
Traditionally, determining G10 for each scenario necessitated running extensive dynamic 
simulations, which is computationally expensive and time-consuming. However, by training 
the model with a carefully selected set of representative scenarios, it becomes possible to 
generalize the G10 estimation across the entire dataset. This approach ensures that the 
model learns the underlying patterns and dependencies between system parameters and 
contingency outcomes, allowing it to predict G10 values with high accuracy for scenarios 
beyond the training set. 

Once the trained model provides G10 estimations for each scenario, the next step involves 
calculating the dynamic capacity of each substation. This is achieved by subtracting the G10 
value for a given scenario from the power tripped at each substation due to a 100-
millisecond three-phase fault to ground. By performing this calculation across all scenarios, 
a comprehensive dataset of dynamic capacity values for each substation is obtained. 

With this dataset, a monotonic capacity analysis can be conducted for each substation, 
enabling the definition of a new dynamic capacity using percentile-based thresholds. This 
statistical approach ensures that the capacity assessment accounts for variations across 
multiple scenarios, providing a more refined and realistic evaluation of each substation’s 
ability to withstand disturbances. 

One of the key advantages of this methodology is its multi-scenario nature, which enhances 
precision compared to previous approaches. Traditional methods relied on a single 
scenario, adopting a more general and conservative perspective that, while ensuring system 
security, lacked the granularity needed for substation-specific risk assessment. In contrast, 
the neural network-based approach allows for a detailed evaluation of each substation’s 
dynamic capacity, facilitating a more tailored risk assessment aligned with operational 
strategies. 

This section presents a comparative analysis of two neural network models designed to 
estimate the G10 value across different scenarios. The first model serves as a baseline, 
trained without representative scenarios and using a reduced set of selected variables. The 
second model, in contrast, incorporates a carefully chosen set of representative scenarios 
to enhance generalization and reduce the number of required dynamic simulations. By 
comparing these two approaches, the impact of scenario selection on estimation accuracy 
and computational efficiency can be assessed. 

The baseline model is designed to provide a reference for evaluating the benefits of 
incorporating representative scenarios. It operates with a reduced set of selected variables, 



46 
 

making it easier to interpret the results and identify the most influential factors affecting 
G10 estimation. This simplification allows for a more transparent analysis of the model’s 
predictions, facilitating a better understanding of the relationships between input variables 
and contingency outcomes. 

Structurally, the model is a feedforward neural network composed of three fully connected 
layers. The first layer takes the input variables and maps them to 64 neurons, followed by a 
second layer with 32 neurons, and a final output layer that produces the G10 estimation. 
Each hidden layer applies a ReLU activation function to introduce non-linearity, allowing 
the model to capture complex relationships between the input features and the target 
variable. The architecture consists of an input layer that receives the selected variables 
relevant to G10 estimation, a first hidden layer with 64 neurons followed by ReLU 
activation, a second hidden layer with 32 neurons also followed by ReLU activation, and an 
output layer with a single neuron producing the estimated G10 value. The model is trained 
using the ADAM optimizer with a learning rate of 0.001 for 200 epochs and a batch size of 
16, ensuring stable convergence and efficient parameter updates throughout the training 
process. 

However, since this model does not leverage representative scenarios, it requires a 
significantly larger training set to achieve accurate generalization across different 
conditions. Each scenario is treated independently, meaning the model must learn from a 
broader dataset to capture the full range of possible variations. While this approach ensures 
reliable G10 estimations, it increases computational demands due to the need for a more 
extensive training process. 

The following graph illustrates how the prediction is performed for the baseline model. The 
model is trained using 80% of the available data, allowing it to learn the underlying patterns 
and relationships necessary for estimating G10. Once training is complete, the model is 
evaluated on the remaining 20% of the data, which is displayed in the graph. This evaluation 
phase provides insight into the model’s ability to generalize to unseen scenarios, 
demonstrating how well it can estimate G10 based on new inputs that were not part of the 
training process. 

 

Figure 22: Prediction of G10 using the model trained with the full dataset. 

The visualization above shows that the baseline model generally achieves strong 
generalization across the evaluated data. The predicted values closely follow the actual 
values, indicating that the model effectively captures the underlying patterns necessary for 
estimating G10. This is further supported by the obtained R² score of 0.88, which reflects a 
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high degree of correlation between predictions and real values. The model demonstrates 
reliable performance, confirming that despite using a larger training set, it successfully 
generalizes well to unseen scenarios. 

Now that the scope and performance of the model have been evaluated using 80% of the 
full dataset, the next step will be to train the same model again under different conditions. 
This time, instead of using a large portion of the dataset, the training will be conducted with 
a reduced training set carefully selected to include representative scenarios. The objective 
is to analyze how the model adapts to a more constrained dataset while maintaining its 
ability to generalize effectively across different cases. 

For the selection of representative cases, a subsample of the dataset is chosen, consisting of 
records with a step size of 12. Given that the data is chronologically ordered, this approach 
ensures a structured selection process. As a result, the training set will be composed of 
approximately 300 data points, allowing the model to learn from a diverse yet 
representative subset while maintaining temporal coherence. 

In the following visualization, the performance of the same model, maintaining the same 
structure as the previously trained baseline model, is presented. This version has been 
trained using the reduced dataset and evaluated on the test set, allowing for a direct 
comparison of its effectiveness under different training conditions. The objective is to assess 
how the reduction in training data impacts the model’s ability to generalize and maintain 
predictive accuracy. 

 

Figure 23: Prediction of G10 using the model trained with representative scenarios. 

The graph illustrates that the model maintains a strong ability to generalize the output, even 
when trained on a reduced dataset. This result confirms that representative scenarios can 
be effectively used to minimize both simulation time and the number of dynamic 
simulations required, without significantly compromising performance. The model 
achieves an R² of 0.77 on the test set, which, as expected, is lower than that of the previous 
model trained on the full dataset.  

However, despite having fewer data points to learn from, it still reaches a satisfactory 
evaluation metric. This demonstrates that a carefully selected subset of representative cases 
can provide enough variability and information for the model to make accurate predictions. 
By reducing the amount of training data while maintaining predictive quality, this approach 
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offers a practical solution for optimizing computational efficiency, making it possible to 
streamline the simulation process while preserving reliable results. 

While the model demonstrates a strong ability to generalize its predictions, it is important 
to recognize that neural networks are inherently complex and often lack intuitive 
interpretability. Unlike simpler models, where the influence of each variable can be directly 
observed through coefficients or feature weights, neural networks operate as black-box 
systems, making it difficult to understand how they process and prioritize information. This 
complexity arises from their layered structure, nonlinear interactions, and the way they 
learn patterns from data, which can make it challenging to determine the exact contribution 
of each input variable to the final prediction. 

To gain deeper insight into the model’s decision-making process, additional methodologies 
must be applied. One widely used approach for interpreting machine learning models is 
SHAP (Shapley Additive Explanations) values. SHAP values are based on cooperative game 
theory and provide a theoretically grounded measure of feature importance. They quantify 
how much each variable contributes to a model’s predictions by calculating the marginal 
impact of each feature across different combinations of inputs. This method ensures a 
consistent and fair attribution of importance, helping to reveal which variables play a 
crucial role in shaping the model’s output. 

By analyzing SHAP values, we can better understand the inner workings of the neural 
network and validate whether the model is relying on meaningful patterns rather than 
spurious correlations. This interpretability is particularly valuable in applications where 
understanding the reasoning behind predictions is essential for trust, transparency, and 
decision-making. 

Moreover, SHAP values not only provide a ranking of feature importance but also offer 
insights into the direction and magnitude of their impact on predictions. Unlike traditional 
feature importance methods that simply indicate whether a variable is influential, SHAP 
values show whether a feature positively or negatively affects the model’s output and by 
how much. This allows for a more detailed interpretation of the relationships between input 
variables and predictions, helping to identify potential biases, dependencies, or unexpected 
interactions within the data. By visualizing SHAP values, we can observe how different 
features contribute across various instances, enabling a more transparent and interpretable 
understanding of the model’s behavior. [10] 

The following graph presents the importance of the model’s input variables using SHAP 
values. Specifically, it highlights the 20 most influential variables out of the 30 used in 
training, providing a detailed view of how the model prioritizes different features. This 
visualization offers a clear representation of how various inputs affect the model’s 
predictions, helping to interpret its reasoning and assess the relevance of the selected data. 
By leveraging SHAP values, we can gain a more comprehensive understanding of the 
model’s behavior, ensuring that its predictions align with domain knowledge and expected 
patterns. Additionally, this analysis helps identify whether certain variables have an 
outsized impact, allowing for further refinement of the model and potential improvements 
in feature selection. 
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Figure 24: Plot of the top 20 most important features based on SHAP values.  

The SHAP values graph provides valuable insights into how different input variables 
influence the model’s predictions. Notably, it reveals that certain features have a clear 
directional impact on the output variable, G10. For instance, when the inertia of 
synchronous groups increases, it leads to a corresponding rise in G10, suggesting a strong 
positive relationship between system inertia and the model’s output. Similarly, an increase 
in demand also results in a higher G10, reinforcing the idea that greater energy consumption 
contributes to this effect. 

On the other hand, the graph shows an inverse relationship between photovoltaic 
generation and G10. Specifically, when gross photovoltaic production increases, G10 tends 
to decrease. This indicates that higher levels of solar energy generation contribute to a 
reduction in the model’s output, likely due to the characteristics of renewable energy 
integration and its impact on system dynamics. 

These observations highlight the importance of key variables in shaping the model’s 
predictions and provide a deeper understanding of the underlying relationships within the 
dataset. By analyzing SHAP values, we can confirm that the model captures meaningful 
patterns, ensuring that its predictions align with expected physical and operational 
behaviors. 

 

3.3.3 Dynamic Capacity Calculation 

The urgency to accelerate the development of renewable energy investments has never 
been greater, as many projects remain stalled due to regulatory, technical, or economic 
constraints. The growing pressure to integrate clean energy sources into the grid is driven 
by ambitious decarbonization targets, increasing electricity demand, and the need for 
energy security. At the same time, investment trends are shifting toward large-scale 
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projects, such as data centers, which require substantial and stable power supplies, further 
intensifying the demand for efficient grid planning and capacity assessment. 

Given this evolving landscape, it is crucial to explore new methodologies for calculating 
system capacity that allow for a more dynamic and adaptive approach. Traditional methods 
often rely on conservative assumptions, potentially underutilizing available grid resources. 
By refining capacity assessment techniques, it may be possible to push system limits further 
while maintaining a controlled level of risk. This approach would enable decision-makers 
to optimize grid utilization, unlock additional capacity for renewable integration, and 
accelerate stalled projects without compromising system stability. 

Now that G10 can be calculated more efficiently by combining dynamic simulations and 

leveraging AI models to reduce the number of iterations required to reach the desired 

values, it is now possible to determine the dynamic capacity of each substation for every 

scenario in the dataset. This approach enhances computational efficiency while ensuring 

accurate assessments of system behavior under varying conditions. 

To calculate the dynamic capacity, the estimated G10 for each scenario must be adjusted by 

subtracting the power disconnected in that same scenario due to a 100ms three-phase fault 

to ground. This approach enables the identification of the additional generation that could 

be accommodated or connected to each substation while maintaining system stability. By 

applying this methodology across different scenarios, it becomes possible to construct 

capacity monotonic curves, offering a clearer understanding of the operational limits and 

potential expansion opportunities for each substation. 

The following visualization represents a dynamic capacity monotonic curve for a specific 

substation, ordered from highest to lowest capacity to facilitate statistical analysis and the 

determination of capacity values for substations. This approach allows for the use of 

multiple scenarios in selecting the appropriate capacity value, ensuring a more robust and 

data-driven decision-making process. 

 

Figure 25: Monotonic dynamic capacity curve for a substation in the Balearic Islands. 

By applying statistical analysis to the data, it is possible to select a specific percentile to 

define the dynamic capacity of the substation. In the graph, the 5th percentile is shown, but 

any desired percentile could be chosen depending on the level of risk that is considered 

acceptable. This approach ensures that a significant portion of the scenarios guarantee 
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having more than a specified amount of capacity, making it a reliable reference for 

determining the operational limits of the substation. By selecting an appropriate percentile, 

decision-makers can balance risk and system utilization, ensuring that the specified 

capacity reflects realistic and achievable conditions across multiple scenarios. 

 

3.3.4 Comparison Between Gmax and Dmax 

The study of maximum allowable disconnected generation (Gmax) and maximum allowable 
disconnected demand (Dmax) is essential for assessing the stability and resilience of the 
electrical system. These two parameters define the limits within which the system can 
operate without reaching a critical state. When generation is lost, the system frequency 
decreases due to an imbalance between supply and demand. Conversely, when demand is 
disconnected, the frequency increases as the available generation exceeds consumption. 

Traditionally, stability analyses have focused primarily on generation losses, as sudden 
drops in generation can lead to severe frequency deviations and potential system failures. 
However, with the growth in electricity demand and the ongoing energy transition, the grid 
has become more complex and vulnerable. The increasing integration of renewable energy 
sources, such as wind and solar, introduces variability and reduces system inertia, making 
frequency regulation more challenging. As a result, it is no longer sufficient to study only 
generation losses, demand disconnections must also be considered to ensure a 
comprehensive understanding of system behavior. 

A critical aspect of this analysis is determining whether a loss of generation and a loss of 
demand of the same magnitude result in the same maximum absolute deviation from 50 Hz. 
If the system response is symmetrical, meaning that both types of disturbances lead to 
identical maximum frequency deviations in absolute terms, then studying one of them is 
sufficient to define operational limits. In this case, analyzing either Gmax or Dmax would 
provide enough information to establish stability thresholds. 

However, if demand disconnections prove to be more restrictive, meaning that frequency 
deviations are larger or more difficult to control when demand is lost, then this factor must 
be carefully considered in capacity planning and risk assessment. A more restrictive 
demand response would imply that the system is less tolerant to sudden drops in 
consumption, requiring additional measures to mitigate risks. This could influence 
decisions related to reserve capacity, demand-side management strategies, and 
infrastructure investments aimed at improving system flexibility. 

By thoroughly analyzing the relationship between Gmax and Dmax, operators and planners 
can make more informed decisions about grid stability, capacity expansion, and risk 
mitigation strategies. Understanding these dynamics is essential for optimizing system 
operations and ensuring a reliable and resilient electrical network in the face of evolving 
energy demands and technological advancements. 

To perform the comparison, the first step was to leverage the iterations carried out for the 
calculation of G10. Once all G10 values were obtained, each associated with a frequency of 
48.8 Hz, the next step was to evaluate whether the same power value, but applied to demand 
disconnection, would result in a maximum frequency of 51.2 Hz, or if the system response 
is asymmetric. This analysis helps determine whether generation and demand losses of 
equal magnitude lead to identical absolute frequency deviations or if one has a more 
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restrictive impact on system stability. Understanding this asymmetry is crucial for refining 
capacity planning and ensuring a balanced approach to risk assessment in grid operations. 

The following graph presents a histogram representing the difference between the absolute 
frequency deviations caused by demand and generation disconnections. This visualization 
helps assess whether the system response is symmetric or if one type of disconnection has 
a greater impact on frequency stability. 

If the histogram is skewed to the right, it indicates that demand disconnections result in 
larger absolute frequency deviations, meaning that demand is more restrictive in terms of 
system stability. Conversely, if the histogram is skewed to the left, it suggests that 
generation losses lead to greater deviations, making generation the more restrictive factor. 
This analysis provides valuable insights for capacity planning and risk assessment, ensuring 
that the most critical constraints are properly accounted for in grid operations. 

 

Figure 26: Histogram of the distribution of Gmax versus Dmax. 

The graph appears to be centered, though slightly skewed to the right, indicating that 
demand disconnections may have a somewhat greater impact on frequency deviations 
compared to generation losses. While the difference is not extreme, this slight asymmetry 
suggests that demand could be more restrictive in certain scenarios. 

For future studies, it would be beneficial to test with a wider range of power values to 
confirm whether the system response remains balanced or if demand disconnections 
consistently result in larger deviations. If the trend persists, it may be necessary to prioritize 
demand constraints in capacity planning and risk assessments to ensure system stability is 
properly accounted for. 
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4. CONCLUSIONS 

The integration of artificial intelligence with dynamic simulations has significantly 
impacted the study of transient stability in power systems. One of the most notable 
advantages is the acceleration of analytical processes. Traditionally, obtaining accurate 
stability assessments require extensive simulations with large datasets. However, AI-driven 
approaches have enabled the training of models using representative scenarios, allowing 
researchers to achieve the desired results with a reduced amount of training data. This 
reduction in dataset size translates into fewer dynamic simulations needed to reach the 
same conclusions, optimizing computational resources and time. 

Furthermore, AI facilitates the use of surrogate simulators, which operate at a much faster 
pace than conventional methods. This capability is particularly valuable for control centers, 
as it enables real-time stability assessments, enhancing decision-making processes and 
system reliability. 

Beyond efficiency improvements, AI models also provide deeper insights into the 
relationships between input variables and the resulting system behavior. By analyzing these 
connections, researchers and operators can gain a better understanding of the underlying 
dynamics of the electrical grid, leading to more informed strategies for maintaining stability 
and optimizing performance. 

In summary, AI has revolutionized transient stability studies by streamlining simulations, 
enabling real-time assessments, and offering valuable insights into system behavior, 
ultimately contributing to a more resilient and efficient power grid. 

Artificial intelligence has played a crucial role in optimizing the simulation processes 
required for both estimation of disconnected power in the Iberian Peninsula and dynamic 
capacity calculation in the Balearic Islands. By leveraging AI-driven methodologies, these 
applications have significantly reduced the time needed to perform complex stability 
assessments and capacity calculations. 

Traditionally, these studies relied on extensive dynamic simulations, which required 
substantial computational resources and time. However, AI models have introduced a more 
efficient approach by training on representative scenarios, allowing for accurate 
estimations with a reduced dataset. This methodological shift has led to a considerable 
decrease in the number of simulations necessary to achieve reliable results. 

In the estimation of disconnected power in the Iberian Peninsula, artificial intelligence has 
significantly improved efficiency by drastically reducing the number of required 
simulations. The trained AI model estimates the monotonic curve of disconnected 
generation using only 400 points from the total sample of 6,100, achieving accurate results 
with over 10 times fewer data points than traditional methods. 

This reduction translates directly into a 10-fold decrease in the number of dynamic 
simulations needed to process the entire dataset. As a result, the methodology not only 
accelerates the estimation process but also minimizes computational costs associated with 
cloud-based simulations and high-performance hardware. 

A striking example of this efficiency gain is the time reduction in database generation. While 
the traditional approach required four months to generate the full dataset, the AI-driven 
methodology enables the estimation of the monotonic curve in just 10 days for all 14 
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substations in the database. This dramatic improvement underscores the transformative 
potential of AI in power system analysis, making large-scale stability assessments more 
feasible, cost-effective, and operationally efficient. 

In the dynamic capacity calculation in the Balearic Islands, artificial intelligence has 
similarly led to a significant reduction in computational effort. By training an AI model with 
only 300 points from the total dataset of 6100, the methodology enables highly accurate 
estimations of values close to G10 for each scenario throughout the year. 

This approach drastically minimizes the number of required dynamic simulation iterations, 
as the trained model can predict results with high precision without the need for exhaustive 
computations. It significantly reduces the number of simulations necessary to determine 
the value associated with minimum frequency, streamlining the entire process. The 
reduction is approximately 10 times fewer simulations, leading to substantial efficiency 
gains. 

The primary objective of this project was to analyze the potential of artificial intelligence 
models to assist dynamic simulations and to study and optimize various aspects of stability 
in the electrical system. Beyond simply assessing the feasibility of AI-driven methodologies, 
the project has demonstrated strong performance in evaluation metrics, with trained 
models using tabular data yielding highly accurate results. 

While significant progress has been made, there are several AI approaches that have not yet 
been applied but should be considered for future implementation. One key area for further 
exploration is the use of models that incorporate internal structural representations, which 
can enrich the information extracted from the data. A particularly promising technique is 
Graph Neural Networks (GNNs), where a graph serves as an equivalent representation of 
the electrical grid. By embedding network topology into neural models, GNNs can provide 
deeper insights into system behavior, capturing complex relationships between different 
components of the grid. 

Moreover, GNN-based simulators align closely with reinforcement learning (RL) 
methodologies, enabling the development of control policies that can actively ensure 
system stability, minimize overload occurrences, or maximize operational benefits. By 
combining GNNs with RL, AI models can learn optimal strategies for managing the electrical 
grid dynamically, adapting to real-time conditions and improving overall efficiency. 

Integrating such advanced AI methodologies could further enhance the accuracy and 
efficiency of stability assessments, making them even more valuable for real-time 
applications and operational decision-making. This project has laid a strong foundation for 
AI-assisted dynamic simulations, and future advancements in model architecture will 
continue to push the boundaries of what is possible in power system analysis. 
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