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Abstract

Within Ebury, the company in which this project is framed, the ‘Ebury Mass
Payments’ (EMP) business vertical is experiencing a significant revenue growth.
The main motivation behind this project is to support its growth and maximize
its potential. Specifically, the objective has been to integrate EMP into a robust
infrastructure that allows for more centralized and e!cient data management.

The solution has been developed within the company’s data warehouse using
Google Cloud’s BigQuery, a database optimized for handling large volumes of data
with a serverless, scalable and high-performance architecture. Data transforma-
tion was performed using SQL code through dbt tool, which greatly facilitated
the creation of data models, dependency control, and the execution of automated
tests to ensure the quality and consistency of the transformed data.

As such, the designed models aim to serve as the foundation for enhancing
Ebury’s ability to generate valuable insights from EMP data. Based on these
models, the data team will be able to create more sophisticated and domain-
specific models, leading to better decision-making by stakeholders.
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Chapter 1

Introduction

1.1 Business context

1.1.1 Ebury

Ebury, founded in 2009, is a fintech company specializing in international trans-
actions, particulary in foreign exchange, for small and medium-sized enterprises
(SMEs). Its value proposition lies in providing a single platform that allows the
SMEs to make all their international payments and collections with significantly
lower fees than traditional banks, enabling them to operate seamlessly in the global
marketplace. [1]

Ebury’s comprehensive suite of services also encompasses multi-currency ac-
counts, payment cards, and additional services such as currency insights, payment
gateways, and risk management tools. Nevertheless, Ebury’s core profit remains
in Foreign Exchange (FX), whose mechanism can be simplified as follows:

Figure 1.1: Ebury’s core profit mechanism
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CHAPTER 1. INTRODUCTION

For example, an European solar panel manufacturer (Client) needing to pur-
chase materials from a Chinese supplier (Beneficiary). Client pays Ebury the
required amount in EUR. Ebury then acts as an intermediary, converting these
euros into CNY (Chinese yuans) through its network of Liquidity Providers. By se-
curing a favorable exchange rate, Ebury obtains a profit margin on the conversion.
Finally, Ebury disburses the CNY equivalent to Beneficiary.

1.1.2 Ebury Mass Payments (EMP)

Frontierpay is a company that was bought by Ebury in 2019. It has been re-
named to Ebury Mass Payments (EMP), so both terms are used interchangeably
along this document and within the company.

EMP o”ers a payroll service, which simplifies and streamlines the process of
paying employees across borders, particularly for companies with sta” in multiple
countries. Through features like multi-currency payments, automated processing,
and robust compliance, EMP empowers businesses to streamline payroll, ensure
timely compensation, strengthen compliance, and confidently expand their global
reach.

EMP o”ers FX Trades and Outgoing Payments, products already o”ered by
Ebury Core (i.e. everything that is not Mass Payments within Ebury). However,
although the concept is the same, they are treated as di”erent products within the
company, in order to avoid reporting problems. Moreover, EMP o”ers less amount
of FX types than Ebury Core.

1.1.3 FX Trades

Foreign Exchange (FX) is a contract between two parties to deliver a set amount
of currency on a particular date. An exchange is made as one currency is used to
buy another one.

Types within EMP

• Spot Trades: These trades involve the immediate exchange of currencies at
the prevailing market rate. Clients typically book spot trades when they re-
quire immediate currency conversion, often for payroll disbursements within
a short timeframe (today, tomorrow, or the day after tomorrow).

• Forward Trades: Forward trades allow clients to lock in an exchange rate
for a future date (calle maturity date), o”ering protection against currency
fluctuations. EMP o”ers two types of forward trades:

2



1.1. Business context

– Fixed Forward (FF): Clients agree upon a fixed exchange rate to be
used on a predetermined future date. This option is ideal for situations
where a company knows the exact amount of foreign currency needed
at a specific future date for payroll purposes.

– Window Forward (WF): Similar to a fixed forward, a window for-
ward allows clients to secure a fixed exchange rate for a specific period.
However, unlike fixed forwards, window forwards o”er the flexibility
to withdraw funds (drawdowns) throughout the defined window. Each
drawdown a”ects the net profit of the trade. This option is well-suited
for companies with uncertain disbursement schedules within a specific
timeframe.

• Drawdowns: In the context of forward trades, a drawdown refers to the
withdrawal of funds by the client before the maturity date. A single for-
ward contract can accommodate multiple drawdowns. EMP also provides
fields like fwd reference and deal set to facilitate tracking and managing these
drawdowns e”ectively.

Sellbacks and Closeouts

Forward contracts lock in an exchange rate for a future date, o”ering protec-
tion against currency fluctuations. However, there might be situations where a
company enters into a forward contract but no longer needs it before the maturity
date. There are two main options for exiting a forward contract early:

• Sellbacks: If a client requires extending the settlement date of a forward
contract, a new contract is created with the adjusted terms and extended
maturity date. The original forward is then closed and ‘sold back’ to the
counterparty (the liquidity provider) at the current market price. The dif-
ference between the original forward prince and the new price paid for the
sellback reflects the cost of extending the contract.

• Closeouts: When a forward contract is no longer required, it can be com-
pletely closed out by settling at the current market price. This involves both
parties exchanging the di”erence between the agreed-upon forward price and
the prevailing market price:

– If the market price has moved favorably for the client compared to
the forward price (client receives more of the foreign currency), the
counterparty will compensate the client for the di”erence.

– If the market price has moved against the client (client receives less of
the foreign currency), the client will compensate the counterparty for
the di”erence.

3
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The flowchart below (see Figure 1.2) provides a visual representation of the
decision-making process for identifying sellbacks and closeouts. By following the
arrows and considering the questions at each step, it can be determined the ap-
propriate course of action for exiting an unwanted forward contract.

Figure 1.2: How to identify sellbacks and closeouts [2]

1.1.4 Outoing Payments

Through this product, Ebury’s customers send payments to beneficiaries and
Ebury charges them a fee per payment. This is the source of revenue from the
payments made. Payment fees will be charged automatically from the Client’s
balance, unless it is zero, in that case the fees will be charged once the Client has
added funds to their main currency account.

Liquidity Providers, in turn, charge Ebury for facilitating these payments,
known as Transfer Costs.

Types

• Independent: Payments made without the need of booking a trade.

• Dependent: Payments made through the booking of a trade such as Spot or
Drawdown (from the original Forward). A single FX trade can have multiple
Dependent Outgoing Payments associated.

4



1.2. Motivation of the project

Handling Dependent Payments in FX Trades

The BOS system, which handles trade booking, currently presents a double-
counting issue for FX trades. The Gross Profit and Net Profit values displayed for
FX trades include the revenues and costs associated with the corresponding Out-
going Payments. However, these Outgoing Payments themselves already account
for these revenues and costs, leading to an inflated representation of the trade’s
profitability.

To accurately reflect the true profitability of FX trades, it’s crucial to adjust the
profit calculation methodology. This involves subtracting the sum of all revenues
and the sum of all costs from all payments associated with the trade. This ensures
that the profits displayed represent the actual net gain from the FX transaction.

1.2 Motivation of the project

Ebury Mass Payments, since its inception in 2019, has been treated somewhat
autonomously within the organisation. This separation has resulted in less in-
tegrated data management, with processes such as manual reporting in tools like
Google Sheets, which is limiting EMP’s ability to scale and optimise its operations.

The primary motivation for this project lies in the need to integrate EMP with
Ebury’s overall structure to maximise e!ciency and value. The recent success of
this vertical has highlighted the importance of having a robust data infrastructure
in place to enable the analytics and decision science team to apply advanced mod-
els, generate informative dashboards and extract meaningful value from the data.

In summary, this project is motivated by the need to incorporate EMP trans-
actions and payments into the data warehouse, given the growing importance of
the EMP business in the Group’s revenues and the requirement to track revenues
consistently across all relevant business lines.

1.3 Description of the technologies

Within the technological context of my project, several advanced tools and
platforms are used to extract, store, process and analyze all of Ebury’s business
data. The following diagram shows the data flow architecture assembled in the
company and at which point of the pipeline each technology used is framed:

5
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Figure 1.3: Ebury’s data flow architecture [2]

Data Extraction

The Data Infrastructure and Operations (DIO) team uses robust tools such as
Kafka and Hevo for data extraction from various sources such as Salesforce, Jira,
among others. These tools enable e!cient ingestion of raw data into the data
warehouse. [2]

Data Warehouse and Transformation

The data is stored in BigQuery, a cloud database fully managed by Google
Cloud Platform (GCP). BigQuery is known for its speed and scalability, allowing
the analysis of large volumes of data quickly and e!ciently.[2]

For data transformation and the creation of analytical models, dbt (data build
tool) is used. dbt is an open source SQL-based tool that facilitates the creation
of dimensional and factual tables, as well as the application of complex business
logic. This ensures consistency and quality of data at all stages of the analytical
process.

As can be seen in Figure 1.3, the Ebury warehouse is structured in 4 layers:

6
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• Raw-data layer: This is the crudest layer, where the raw data extracted
by DIO lands.

• Base layer: In this layer, the Analytics Engineers are in charge of processing
the data to store it in a consistent way in scd2 historical tables (scd2 was
chosen over scd4 because it is easier to read). This historical data may
include, for example, transaction history or customer data history.

• Core layer: This layer also belongs to the Analytics Engineers, and is where
they create the tables that contain only the current information, i.e. the
latest version of each transaction or client account (following the previous
examples), so that each primary key (e.g. transaction id, client id) only
appears once in its respective table. In this layer, the future application of
the data to the business is already taken into account, in order to create an
e!cient table structure based on it.

• Marts layer: This last layer is built by Data Analysts together with the
Decision Science team, who create specific tables for use cases defined by
each business vertical, such as Front O!ce, Credit Risk or Regulatory.

It is worth mentioning that the data flow is not exactly as described in Figure
1.3, as the marts layer can also draw directly from historical tables of the base layer,
if required. Therefore, the relationship between layers would be more correctly
represented as follows:

Figure 1.4: Layer communication [2]

Data Reporting

BigQuery integrates seamlessly with Looker Studio, Google’s data visualiza-
tion platform. Looker Studio enables the creation of interactive dashboards and
advanced data visualizations, facilitating interpretation and data-driven decision
making across the organization.
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Chapter 2

State of the art

In recent decades have witnessed an exponential surge in the volume of data
generated from a variety of sources: mobile phones, social networks and countless
Internet of Things (IoT) devices. Traditional methods have proven inadequate
to manage this huge influx of data, which has led to the emergence of the term
‘Big Data’. In response, cloud computing has emerged as a fundamental solution,
o”ering models capable of dealing with Big Data storage, particularly through
database-as-a-service (DBaaS).

DBaaS is a cloud service model that enables organizations to use database ser-
vices without the burden of managing underlying hardware, database software, and
maintenance operations. DBaaS providers handle all administrative tasks required
to run a database, including configuration, monitoring, backup, and recovery.

Key features that make DBaaS attractive for Big Data applications are:

• Virtualization: Physical resources are virtualized, allowing multiple users
to share access to a common pool of virtualized resources, optimizing infras-
tructure costs and maintenance.

• Ubiquity: Cloud services are always accessible via network, whether through
the Internet or a private local network.

• Pay-as-you-go: Users pay only for the resources consumed, eliminating the
need for initial infrastructure investment. Resources scale automatically to
match workload demands. [3]

In this context, BigQuery and dbt (data build tool), used in this project, stand
out. This chapter will explore their features and advantages, as well as the best
practices and recommended techniques for the optimization of a Data Warehousing
(DW) system aimed at Big Data applications.
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2.1 BigQuery

BigQuery is the DBaaS solution provided by Google Cloud. As a DBaaS, its
main advantage is its serverless architecture, decoupling computation and storage,
which allows automatic scaling, adjusting resources based on worload demands.
This approach o”ers immense flexibility and cost controls for customers, as they
do not need to keep their expensive computing resources running continuously. [4]

BigQuery leverages the query engine Dremel, designed by Google for execut-
ing SQL queries at high speed across petabytes of data. To achieve this, Dremel
translates SQL queries into execution trees. Leaf nodes, known as ‘slots’, handle
heavy lifting by reading data from storage and performing necessary computations.
Branches of the tree, known as ‘mixers’, perform aggregation. Slots are dynami-
cally allocated to queries as needed, ensuring fairness for concurrent queries from
multiple users. So, a single user can be allocated thousands of slots if needed.

Storage, on the other hand, utilizes Colossus, Google’s global storage system.
Data is stored in a columnar format, enhancing query performance by minimizing
the need to scan entire tables, as only the columns needed to answer queries are
accessed. Colossus also manages replication, recovery in case of disk failures, and
distributed administration to avoid single points of failure. [5]

2.2 dbt

dbt (data build tool) is a data transformation tool that facilitates the construc-
tion, management, and documentation of data infrastructure using SQL code. Its
main advantages are detailed below:

• SQL-Based transformation: dbt enables data transformation using SQL,
a very simple and easy-to-learn query language. This enables less technical
professionals, who may have more business expertise, to create their own
data models for specific analyses.

• Dependency management: dbt simplifies the management of dependen-
cies between di”erent data models. This ensures transformations are exe-
cuted in the correct order and that all models are up-to-date and consistent.

• Automated testing: dbt includes a framework for running automated tests
to verify the integrity and quality of transformed data. These tests are
essential for ensuring transformations yield consistent and expected results,
preventing errors in subsequent analyses.

10



2.3. Optimization techniques

• Documentation and Collaboration: dbt provides a collaborative de-
velopment environment where teams can jointly create and improve data
warehousing projects. This is achieved through version control and a robust
documentation system that updates automatically, allowing collaborators to
maintain complete control over the workflow. The documentation includes
detailed information about data models, such as their names and locations,
descriptions of transformation logic, ownership, employed data sources, and
required tests.

• Integration with BigQuery: dbt integrates seamlessly with BigQuery,
enabling the direct execution of SQL models within the BigQuery environ-
ment. This integration simplifies the creation and maintenance of complex
data models, leveraging BigQuery’s power and scalability. Additionally, by
using dbt to transform data, partitioning and clustering can be directly ap-
plied in BigQuery, which optimizes data storage and access, leading to more
e!cient processing and reduced costs. [4]

2.3 Optimization techniques

2.3.1 Partitioning

Partitioning is a fundamental technique to optimize the performance of a data
warehouse. It consists of dividing a table into multiple segments, called partitions,
which are managed independently. As each partition can be read selectively, the
number of data scanned in each query is reduced, resulting in shorter processing
times and significant cost savings.

Moreover, partitioning can also benefit from cheaper long-term storage by cre-
ating partitions. If a partition is not changed for 90 consecutive days, the price of
storage is reduced by 50%. Furthermore, in dbt, partition expiration can be set at
the table or dataset level, so that if a partition is not used within a specified time
interval, its data is deleted.

BigQuery supports three types of partitioning:

1. Time-unit column: By any column whose data type is DATE, DATETIME
or TIMESTAMP. This is often used in marts models against which business
users can run queries).

2. Integer range: By using a range of values on an INTEGER column. This is
less common, as it can be tricky to configure the correct number of buckets.

11
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3. Ingestion time: By the ingestion time of the source data. BQ automatically
assigns rows to partitions based on the time they arrive, and the granularity
can be specified: hourly, daily, monthly or yearly.

It is worth warning that, to avoid partition skew and the resulting performance
overhead, it is very important not to partition by columns at risk of creating
unbalanced partition sizes as the data grows. [5]

2.3.2 Clustering

Clustering is another technique that can be used to enhance query performance.
Unlike partitioning, which divides data into physically distinct locations, clustering
just sorts the information so that similar values of specified columns are stored
together. This is particularly beneficial when:

• The table is larger than 1GB (actually, in smaller tables the benefits of
clustering are not really seen).

• Certain columns are frequently filtered or aggregated.

• It is required more granularity than partitioning allows. While partitioning
is limited to one column, clustering can be applied to up to four additional
columns, providing more detailed data organization [5]

2.3.3 Use of materialized views

A materialized view periodically caches the result of a query, automatically
updating itself when the underlying data changes, so that the results are always
up-to-date. Using a materialized view eliminates the need to recalculate the re-
sults each time the query is run, which is especially convenient for recurring or
computationally expensive queries.

Additionally, for small datasets, materialized views can significantly improve
performance because the access and retrieval time from cache is much less com-
pared to the cost of executing the entire query, allowing for almost instant re-
sponses. [6]

2.3.4 JOIN optimization

JOINS are very used in SQL queries, but they can be resource-intensive if not
used in an e!cient way. E!cient joins can be achieved by:

• Ensuring join keys are unique and distinct.

12



2.3. Optimization techniques

• Filtering data early in the query to minimize the amount of data that each
join operation has to process.

• Placing the CTE1 reading the largest table first, and the CTE reading the
smallest table next. When BigQuery joins two tables, it employs a broadcast
join strategy, where the smaller table is distributed to all slots to be combined
with the larger table. By placing its CTE first, the volume of data initially
distributed and processed is minimized.

• Utilizing partitioned or clustered tables where possible. Joins on such tables
can be significantly faster since BigQuery can leverage these structures to
process only relevant partitions or clusters.

2.3.5 SQL query optimization

SQL query optimization is essential to improve DW performance and e!ciency.
The goal is to write queries that minimize cost and execution time. Some recom-
mended practices include:

• Avoiding using ‘SELECT *’ and instead select only the necessary columns.
As BQ operates as a columnar database, this has a big impact on perfor-
mance, as only specified columns in the query are processed.

• Utilizing filtering clauses such as ‘WHERE’ and ‘LIMIT’ to reduce the num-
ber of processed rows.

• Avoiding nested subqueries by replacing them with common table expres-
sions (CTE). This not only improves the readability of the code, but also
optimizes the overall performance of the model by allowing the reuse of com-
plex query results, since CTEs are treated as temporary views.

– Example of optimized query, using CTEs:

WITH filtered_data AS (
SELECT column1, column2
FROM dataset.source_table
WHERE condition

)
SELECT column1, SUM(column2)
FROM filtered_data
GROUP BY column1
LIMIT 100;

1A Common Table Expression (CTE) is a named query that is defined once and can be used
as a temporary table within the same main query or in subsequent queries. [7]
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– Example of non-optimized query, using subqueries:

SELECT column1, SUM(column2)
FROM (

SELECT *
FROM dataset.source_table
WHERE condition

)
GROUP BY column1;

2.3.6 Denormalization

Denormalization involves combining data from multiple tables into a single ta-
ble to reduce the need for costly joins at query time. A common way to denormalize
a database is to join a fact table with one or more of its dimensions2. However,
querying a large denormalized table can be slower than joining two smaller tables
that together provide the same data as the large one, so denormalization is not
always recommended.

If denormalization is chosen, it is advisable to take advantage of BigQuery’s
native support for nested and repeated structures by using a combination of AR-
RAY and STRUCT data types to create the table schema. A series of tables with
fictitious data are shown below as an example to understand this:

order key cust key total price order date
1 73100 26602 2023-01-19
2 92861 17680 2023-02-03

Table 2.1: Dimensional table storing Order information [5]

order key line number quantity extended price ship date
1 1 3 4081 2023-01-29
1 2 18 22521 2023-01-23
2 1 41 7010 2023-02-05
2 2 27 3288 2023-02-05
2 3 42 7382 2023-02-09

Table 2.2: Fact table storing Line Item information [5]

2Fact tables store events or transactions, which are dynamic data, while Dimension tables
contain descriptive and qualitative attributes, which are more static.
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2.4. Conclusion

order key cust key total price order date quantity price ship date
1 73100 26602 2023-01-19 3 4081 2023-01-29
1 73100 26602 2023-01-19 18 22521 2023-01-23
2 92861 17680 2023-02-03 41 7010 2023-02-05
2 92861 17680 2023-02-03 27 3288 2023-02-05
2 92861 17680 2023-02-03 42 7382 2023-02-09

Table 2.3: Flatten Order-Items using Joins [5]

order key cust key total price order date quantity price ship date
1 73100 26602 2023-01-19 3 4081 2023-01-29
1 18 22521 2023-01-23
2 92861 17680 2023-02-03 41 7010 2023-02-05
2 27 3288 2023-02-05
2 42 7382 2023-02-09

Table 2.4: Flatten Order-Items using Nested and Repeated Fields [5]

As shown in the example, using nested and repeated fields helps avoid data
duplication, preserves the normalized structure of the original data, and enhances
performance. However, this structure is only meaningful if the downstream models
or applications can use it.

2.4 Conclusion

The combination of BigQuery and dbt provides a robust and e!cient solution
for developing DW systems. BigQuery delivers scalable, high-performance infras-
tructure, while dbt facilitates data transformation and management using SQL.

Furthermore, the employment of techniques such as partitioning or the use
of materialized views is key to achieve the highest possible performance in DW
systems. These tools and best practices in combination, form a solid foundation
for creating a modern and e!cient data warehouse optimized for large-scale data
processing and analysis.
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Chapter 3

Definition of the work

3.1 Objectives

As explained in Section 1.2, the main motivation behind this project is the need
to incorporate EMP into the data warehouse, as there is a need to have visibility
of all the Group’s revenues and how they are reflected in our financial statements
on a day-to-day basis.

The most suitable long-term solution to this cannot yet be done, as it requires
prior work by the DIO team to create new source tables from Kafka1, as the cur-
rent available sources are still based on legacy ETL processes. Kafka is the tool
used to create the sources in Ebury Core and is preferred for its ability to process
data with much higher frequency, scalability and low latency.

However, before performing this ETL to Kafka migration, it is extremely im-
portant to save the entire BOS EMP history, and that is what this project aims
to do, to establish a comprehensive data structure for BOS EMP data coming via
ETL within the warehouse, specifically the Base and Core layers.

For this purpose, the following objectives have been set for each layer:

• Base layer: As mentioned above, BOS EMP will eventually be phased out,
so it is extremely important to save all the history, which for the moment can
only be obtained through ETLs. Thus, the first target is storing the entire
history of BOS EMP in two scd2 tables, one for FX Trades and another for
Outgoing Payments.

1Apache Kafka is an open-source distributed streaming platform that enables fast and durable
publishing, consumption and processing of large volumes of data. [8]
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• Core layer: From the base tables, build two fact tables, one for FX Trades
and another for Outgoing Payments, which will hold only the latest ver-
sion of each transaction based on the unique identifiers: transaction receipt
or payment id. There Core tables will serve as the bases for creating new
domain-specific models within their respective Marts folder, thus facilitating
in-depth analysis of EMP data.

3.2 Methodology

1. Business understanding

(a) Thoroughly grasped the concept of EMP, its purpose and the role it
plays within Ebury’s operations.

(b) Delved into the specifics of EMP’s product o”erings: FX Trades and
Outgoing Payments, to fully understand their particularities and data
requirements.

(c) Collaborated closely with business stakeholders and analysts to gather
their expectations, pain points, and data needs related to EMP.

2. Tool and method familiarization

(a) Gained proficiency in the data modeling and transformation tools uti-
lized in the company, including DBT, Big Query and Looker Studio.

(b) Conducted ad-hoc data analysis tasks related to Ebury Core to gain
hands-on experience with the business and the existing data landscape.

(c) Learned the validation process that all models must go through be-
fore going into production. This mainly consists of the creation of a
PR2 on GitHub, that requires the approval of several analysts in or-
der to merge the changes from the own branch into the staging (pre-
production) branch.

3. Source identification and evaluation

(a) Identified and documented all potential data sources for EMP informa-
tion, including internal systems (e.g. BOS EMP, Kafka) and external
sources (e.g. Salesforce, BOB).

2PR is the short for ‘Pull Request’, a mechanism used in software development to request
the review and integration of changes made in a particular branch of a code repository into the
main branch. It functions as a communication channel between developers collaborating in the
same project.
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(b) Critically assessed each data source in terms of its reliability, always
prioritising those with the best data quality.

4. Data modeling and validation

(a) Designed two scd2 tables in the base layer to store the historical data
coming from BOS through ETL, and enriched with status information
received via Kafka, to enhance their value for analysis. Di”erent trans-
formation techniques were applied in order to ensure data consistency
and adherence to business rules.

(b) Designed two fact tables in the core layer, including only the latest
version of each transaction from the base layer tables, and excluding the
information that can be found in a more reliable way in another tables
that are already in production, such as dimaccount or dimemployee.

(c) Created YAML files to specify source definitions (only for newly used
data sources in the warehouse), dbt test to be applied to each data
model, as well as detailed field definitions for the final tables.

(d) Validated the final tables against the business records to identify and
rectify any discrepancies or inconsistencies, specially in critical values,
such as the number of distinct Transaction Receipts or Payment Ids, or
the total sum of GBP Volume and GBP Gross Profit.

5. Deployment to production

(a) Developed the PR where all the validation process is exposed in order
to be able to merge the own branch into staging.

(b) Deployed the new models or tables to the production environment, mak-
ing the EMP data accessible to analysts for reporting and analysis.

6. Post-deployment support and fixes

(a) Provided ongoing support to analysts in utilizing the new models and
addressing any issues or concerns that arose.

(b) Implemented post-deployment fixes, such as the addition of a field that
had not been included in the first instance, but is actually really useful
for analysts; or the change of logic when calculating a specific revenue
type for FX trades.
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3.3 Economic impact estimation

3.3.1 Breakdown of estimated annual benefits

Time saving and cost reduction

Currently, about 20 sta” members in the operations team spend about 20
minutes a day manually monitoring customer accounts. Monitoring involves down-
loading reports with transactional information from BOS, analyzing them in Excel,
verifying the status of the account associated with each transaction and, in case
of anomalies, investigating the SWIFT MT9503. This manual process consumes
time and resources, limiting e!ciency and scalability.

The developed modeling integrates transactions and customers together in the
warehouse, so that all information is available and reconciled in a single source,
thus avoiding the need for manual downloads from di”erent platforms. This will
enable much faster real-time analysis. It has been estimated a saving of 140 hours
per month per team, which, considering a working day of 40 hours per week, would
be equivalent to approximately 1 FTE (Full Time Equivalent):

140 h
month

40 h
week → 4 week

month

= 0.875 FTE ↑ 1 FTE released

Considering an average annual salary of 25.000 - 30.000 EUR per FTE, it is esti-
mated that the project will generate annual savings of approximately 27.000 EUR
in salary costs.

27.000 EUR→ 1 FTE = 27.000 EUR saved

Performance monitoring and better decision making

On the other hand, manual data reconciliation generates a lag in EMP per-
formance information. The lack of access to real-time data limits the ability to
identify deviations from sest targets and, therefore, to take preventive or corrective
measures.

The integration of data in the warehouse will allow constant monitoring of dif-
ferent KPIs (Key Performance Indicators) in real time, which will enable EMP’s

3A SWIFT MT950 is a financial statement message sent by an account servicing institution
to an account owner. It is used to transmit detailed information about all entries booked to the
account, whether caused by a SWIFT message or not. [9]
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commercial team to take action faster and thus have better control over their num-
bers. The information they used to know at the end of the month (lag indicator)
will now be available to them on a daily basis, allowing them to respond to mar-
ket fluctuations as quickly as possible: launching marketing campaigns in specific
geographies, promotions to particular types of customers, etc.

For the current fiscal year 2024/25, this business vertical has a target of 40 mil-
lion euros in revenue. Considering a potential impact of 2%, the revenue increase
due to the optimization of commercial strategies would be around 800.000 EUR.

40.000.000 EUR→ 0.02 = 800.000 EUR extra

Identification of cross-selling opportunities

Furthermore, the project is expected to have a strong positive impact on the
identification of cross-selling opportunities. Cross-selling is a strategy of marketing
and sales that consists of o”ering customers additional products or services that
complement their original purchase. The fact of having all the information related
to client accounts and their operations in the warehouse facilitates the subsequent
detection of behavioral patterns and the segmentation of customers for personal-
ized campaigns.

Last year, a specific model was designed for creating a dashboard in Looker
Studio that served to identify cross-selling opportunities in Ebury Core. With this
dashboard, it was achieved to increase incomes by 2.7% in that vertical, which
resulted in 4.3 million extra profit for the company. If the same success rate is
attained for EMP, currently valued at 40 million euros, it would then generate an
additional 1 million euros in revenue.

40.000.000 EUR→ 0.025 = 1.000.000 EUR extra

3.3.2 Total estimated annual benefit

Based on the above, it is concluded that the integration and modeling of EMP
data in Ebury’s warehouse will generate significant impact for the company, in-
cluding:

• Reduced costs due to the elimination of FTEs: 27.000 EUR/year

• Increased revenues due to better control of KPIs: 800.000 EUR/year

• Increased revenues due to the identification of cross-selling opportunities:
1.000.000 EUR/year

21



CHAPTER 3. DEFINITION OF THE WORK

↓ Total estimated profit: 1.827.000 EUR/year

As a whole, it is estimated that the project will generate an annual economic
benefit of 1.827.000 EUR, which represents a highly profitable investment for the
company. Especially, taking into account that the project has been developed by
an employee working part-time (20h/week) for 3 months. Knowing that her gross
salary was 600 EUR/month, the total investment amounts to only 1.800 EUR.

600
EUR

month
→ 3 months = 1.800 EUR invested
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Developed solution

4.1 Description of the final solution

Figure 4.1 represents the pipeline that makes up the final solution, in which, in
order to reach the final tables (represented in blue), several intermediate models
have been created. These models serve as stages to progressively integrate the
di”erent sources and apply di”erent transformations. This modular approach is
recommended by the o!cial dbt documentation [7], as it o”ers several significant
advantages:

• First, it improves the readability of the SQL code, allowing for better data
management and debugging, as well as the execution of more specific tests
on particular parts of the model. This results in greater data integrity and
reliability throughout the entire process.

• Another reason is performance optimization. BigQuery, being a data ware-
housing platform based on MPP (Massively Parallel Processing), benefits
from the pre-computation of intermediate steps, as it avoids the repetition
of costly calculations by reusing intermediate results. This reduces the com-
plexity of the final queries, thereby optimizing both execution time and re-
source usage.

Besides, it is important to note that the models that build the final tables
are actually intermediate models, but named with the prefix ‘build ’ instead of
‘int ’. As such, the final models are simply a SELECT * from their corresponding
‘build ’ model, along with any relevant dbt settings, as may be the partitioning
configuration (see Section 4.3). This way, if any dbt test fails, it will fail on the
‘build ’ models and not on the final tables, allowing issues to be identified and
resolved before reaching the final tables.
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Figure 4.1: Diagram representing the final solution
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4.1. Description of the final solution

4.1.1 Sources

As outlined in Section 1.3, this project falls under the purview of the AE team,
utilizing data sources provided by the DIO team. This team is responsible for
landing the data into the warehouse in a structured format, with each row repre-
senting a new record and each column representing a field of interest.

Despite this reliance on DIO, the AE team maintains the responsibility for
assessing data quality and provenance in the sources employed. It is also very
important to know how often they are received, i.e. their data refresh frequency,
in order to determine the appropriate modeling approach (refer to Section ??).

The data sources used for constructing the new EMP models are summarized
in the following table:

Source name Extracted from Received at
Frontierpay Transaction Details 01 BOS MP ETL Every day at 18 UK time.
Frontierpay Transaction Details 02 BOS MP ETL Every day at 18 UK time.
base emp status history Kafka Every day at every hour.
Frontierpay Payment Details 01 BOS MP ETL Every day at 18 UK time.
Frontierpay Payment Details 02 BOS MP ETL Every day at 18 UK time.

Table 4.1: Sources employed

4.1.2 Assets in Base layer

In the Base layer, two historical SCD2 tables have been created, one for each
product. In this way, when the time comes to migrate to Kafka, the entire history
of EMP transactions will be available in a clean and easily debuggable form.

SCD2, or Slowly Changing Dimension Type 2, is a method of tracking histor-
ical data changes by creating a new record for each change. This approach was
chosen over others because it provides a complete and clear view of the evolution
of the data over time.

Another method that was strongly considered was SCD4, which involves main-
taining a separate historical table, thereby achieving high storage e!ciency as a
result of reducing the load on the main table. However, this option was discarded
because it was considered that the management of two tables for a single entity
could complicate the queries and the maintenance of the history.
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Model Schema Description
int 1 base etl emp fx trades 01 intermediate base Transformation and renaming of fields

in Frontierpay Transaction Details 01.
int 2 base etl emp fx trades 02 intermediate base Transformation and renaming of fields

in Frontierpay Transaction Details 02.
int 3 base etl emp fx trades intermediate base Join of int 1 base etl emp fx trades 01

and int 2 base etl emp fx trades 02.
build base etl emp fx trades scd2 intermediate base int 3 base etl emp fx trades enriched

with the status of transactions coming
from Kafka.

base etl emp fx trades scd2 base bos etl Final SCD2 table storing BOS EMP
FX trades history coming from ETL.

int base etl emp payments 01 intermediate base Transformation and renaming of fields
in Frontierpay Payment Details 01.

build base etl emp payments scd2 intermediate base int base etl emp payments 01 enriched
with the status of payments coming
from Frontierpay Payment Status 01.

base etl emp payments scd2 base bos etl Final SCD2 table storing BOS EMP
Outgoing Payments history coming
from ETL.

Table 4.2: Assets built in Base layer

The table above shows all the models created up to the two final tables of the
Base layer, highlighted in grey. For each model, it also specifies the schema or
dataset in which they are grouped, and a brief description of what they do.

Regarding the modelling developed, it is particularly noteworthy is the creation
of the fields date from and date to in order to manage the control of the di”erent
versions of the same transaction. The date from field indicates the date on which
the version is read from the BOS EMP, and is calculated by simply equating it to
the extraction date field. The date to field marks the end of the version, which is
the date of extraction of the next version or, in its absence, a distant date never
to be reached: 2222-12-31.

The following table illustrates a fictitious payment transaction that is intended
to serve as a simple example to understand these fields:

payment id extraction date date from date to payment status is last version
PI12345 2023-10-04 2023-10-04 2023-10-07 Pending False
PI12345 2023-10-07 2023-10-07 2023-10-18 Approved False
PI12345 2023-10-18 2023-10-18 2222-12-31 Completed True

Table 4.3: Example to illustrate the version change in a SCD2 table
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In order to be able to quickly identify the most current information, the Boolean
field is last version has been created, which indicates whether the record corre-
sponds to the latest version of the transaction. It has been obtained by grouping
by transaction ID and identifying the record with the most recent date in the
record created date field, among the records with the highest value of date from,
among the records with the highest value of last modified date.

4.1.3 Assets in Core layer

For EMP, due to the much smaller amount of data compared to Ebury Core,
it has been thought to simply build two fact tables in the Core layer, one for each
product. Each fact table reads from its corresponding SCD2, collecting only the
records whose is last version is True, so making the transaction IDs fields unique.

The fields that provide specific information about the account which booked
each transaction have also been excluded. The reason is that their values are more
static, as they change more eventually, so it is not appropriate to store them in a
fact table but in a dimensional instead. Actually, this table already exists and is
called ‘dimaccount’. Fact tables, on the other hand, are intended to store dynamic
information, in this particular case related to transactional movements.

It is likely that in the future it will be decided to create an obt (One Big Ta-
ble) for EMP, which brings together transactional and customer, in order to avoid
the need for recurring joins in downstream models. In that case, the fact tables
created would be enriched with customer data from ‘dimaccount’.

Model Schema Description
build fct fx trades emp intermediate core dimensional Last version of each transaction,

excluding the specific data of the
account that made the trans-
action (leaving the basics: ac-
count number, etc.).

fct fx trades emp core dimensional Final fact table storing the cur-
rent EMP FX trades.

build fct payments emp intermediate core dimensional Last version of each payment, ex-
cluding the specific data of the
account that made the payment
(leaving the most basic).

fct outgoing payments emp core dimensional Final fact table storing the cur-
rent EMP Outgoing Payments.

Table 4.4: Assets built in Core layer
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In terms of the transformations made, it is worth mentioning the adjustment
of revenues in the FX fact table. As explained in Subsection 1.1.4, the revenue
that appears in BOS EMP for FX trades includes the revenues of all their associ-
ated Dependent Payments. Since these revenues are already accounted for in the
Payments fact table, it is necessary to discount them.

To do this, the Payments fact table (created beforehand) is read, payments
are grouped by fwd reference, and the group’s total revenue is calculated. Then,
by mapping each FX trade’s transaction receipt to the groups’ fwd reference, the
group’s revenue is subtracted from the corresponding FX trade’s revenue.

In addition, new fields have been included in the FX fact table. Named with
the format ‘original [field]’ (e.g. original transaction type, original order date),
they just take the field value from the FX trade whose transaction receipt matches
selling back. If this field is null, another new field named sub transaction type

will take the same value as transaction type; otherwise, it will be ‘Sellback’ if the
liquidity provider is internal, or ‘Closeout’ if it is not (see Subsection 1.1.3).

4.1.4 YAML files

In this project, four YAML files have been created, one for each set of models
and sources used directly in the construction of the four final tables:

YAML File Models and Sources
base etl emp fx trades scd2.yml Frontierpay Transaction Details 01,

Frontierpay Transaction Details 02,
base emp status history,
int 1 base etl emp fx trades 01,
int 2 base etl emp fx trades 02,
int 3 base etl emp fx trade,
build base etl emp fx trades scd2,
base etl emp fx trades scd2

base etl emp payments scd2.yml Frontierpay Payment Details 01,
Frontierpay Payment Details 02,
int base etl emp payments 01,
build base etl emp payments scd2,
base etl emp payments scd2

fct fx trades emp.yml build fct fx trades emp,
fct fx trades emp

fct outgoing payments emp.yml build fct payments emp,
fct outgoing payments emp

Table 4.5: List of models and sources specified in each YAML file
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Figure 4.5 shows the sources and models specified in each YAML. Note that,
despite the fact that the source base emp status history is also used to build both
SCD2s, it only appears in base etl emp fx trades scd2.yml. This is because in dbt,
both sources and models can only be defined once, to avoid redundancies and pos-
sible conflicts in documentation and version control. Yet, they can be referenced
many times in multiple models.

For each source used, the name, owner and criticality are specified. For each
model developed, the name, a brief description of its purpose and the tests it has
to pass to ensure data integrity (see Subsection 5.1.3 for more information). In the
case of the final models, in addition, the name and description of all the resulting
fields are also detailed.

Besides this, in order to integrate the newly created models into the dbt work-
flow, some entries had to be added to the ‘models’ section of the dbt project.yml
file. This is the central configuration file of any dbt project, as it is crucial to pro-
vide dbt with information about the project structure, the location of the data
models and how to interact with the data warehouse (BigQuery).

The added entries specify, for each directory created or used to locate the
developed models, the schemas on which the intermediate models, on the one
hand, and the final models, on the other hand, must be materialized (these are
those specified in Figures 4.2 and 4.4). Also additional metadata, such as the
criticality of each model (see Section 5.2).

4.2 Problems encountered

Low quality of status coming from ETL

The field indicating the status of transactions provided by the ETL process was
of low quality, as it often contained missing values and inconsistencies in format-
ting. This made it di!cult to reliably determine the actual status of transactions,
which could lead to downstream processing errors and incorrect final analyses.

To address this problem, it was decided to enrich the ETL data with the status
field coming from Kafka. Although this tool is already the main way of creating
sources in Ebury Core, it is still in the process of being implemented for EMP.
However, there did exist base emp status history, a source built using Kafka that
fetched the continuous stream of status updates directly from BOS EMP, which
ensured the information from this field was more accurate and up to date.
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Thus, it was decided to replace ETL status with Kafka status in the final tables.
Although it is generally not good practice to mix data sources, data quality should
always be prioritized, and in this particular case, the timeliness and accuracy of
the Kafka status data outweighed the potential drawbacks.

It is important to mention that, in order to join both source types, the table
‘base status history scd2’, had to be filtered so that the last accepted update is
before 20 o’clock of the previous day. This is because ETL sources are updated
every day at 18 o’clock UK time, while Kafka sources are updated every hour.

Account number mismatch with Salesforce

The account numbers stored in BOS EMP did not directly match the unique
identifiers used within the table ‘dimaccount’. These IDs in ‘dimaccount’ are the
ones considered to be correct, as they are the ones coming from Salesforce1, the
platform where all customer-related information is stored.

This mismatch has been resolved using the ‘clients client’ table, which was built
specifically as a quick fix for this problem. This table acts as a bridge between the
two systems, mapping the BOS EMP account numbers to the corresponding Sales-
force account IDs. Then, finding these IDs in ‘dimaccount’, the correct account
numbers and names are extracted. Therefore, two left join are required:

SELECT
da.account_number,
da.account_name,
dt.account_number as bos_account_number,
dt.account_name as bos_account_name

FROM ‘ebi-dev-260310.Frontierpay.Frontierpay_Transaction_Details_01’ AS dt
LEFT JOIN ‘ebi-dev-260310.EMP_Kafka_Hermes.clients_client’ AS clients

ON dt.Account_Number = SAFE_CAST(clients.ebury_account_id AS STRING)
LEFT JOIN ‘ebi-dev-260310.core_dimensional.dimaccount’ AS da

ON clients.client_crm_id = da.Account_ID

Also note that the original account number and account name from BOS EMP
have been preserved in the final tables under the names bos account number and
bos account name for potential future reference or reconciliation processes.

1Salesforce is a cloud-base customer relationship management (CRM) platform that provides
tools to help companies manage and analyze customer interactions and data.[10]
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4.3 Partitioning the SCD2 tables

As discussed in the subsection 2.3.1, partitioning is a crucial technique for op-
timising query performance in BigQuery and most large-scale databases. But for
it to be e”ective, it is important to choose wisely which fields a table should be
partitioned by, based on what queries will be run most frequently against it.

Given the fact that the final fact tables in the Core layer will have a very gen-
eral use and it is still soon to predict trends, it has been decided not to partition
them. On the contrary, it is known that the main use of the final historical tables
in the Base layer will be to feed the fact tables. This means that every day, a
query will be automatically launched to read the scd2 tables, filtering only the
records relating to the latest version of the transaction and applying a series of
transformations to them.

So, it has been decided to partition the two final scd2 tables of FX and Pay-
ments by the is last version column, aiming to store separately the records in
which this field is True. In this way, these records can be retrieved much more
quickly and, since they have to be retrieved on a daily basis, this will result in a
significant improvement in the overall performance of the system.

However, since it is not possible to partition by Boolean columns in BigQuery
(see Section 2.1), there is no way to partition directly by is last version. In order
to do so, an auxiliary column called is last version int has been created, which
is 1 when is last version is True and 0 otherwise. In this way, the dbt model
responsible for creating ‘base etl emp fx trades scd2’ is configured as follows:

{{ config(
materialized=’table’,
partition_by={

"field": "is_last_version_int",
"data_type": "int64",
"range": {

"start": 0,
"end": 1,
"interval": 1
}

}
) }}

select * from {{ ref(’build_base_etl_emp_fx_trades_scd2’) }}

For ‘base etl empayments scd2’, the code would be exactly the same, but call-
ing ‘build base etl empayments scd2’ instead. This dbt configuration instructs to:
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• Materialize the table as a physical table in the data warehouse.

• Partition the table by is last version int column.

• Define the partition range as 0 to 1 with an interval of 1. This essentially
creates two partitions: one for records where is last version int equals 1, and
another for those where it equals 0.
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Data Governance

5.1 Data Quality

5.1.1 Data Cleaning and Auditing

All fields coming from the sources have been audited one by one, to check
whether they added value or not in the new models. A thorough data quality
assessment led to the removal of certain fields due to inconsistencies, redundancies,
or irrelevance to EMP context. These reasons can be categorized as follows:

1. Erroneous Data: Fields with inaccurate or illogical values were removed
to ensure data integrity. For instance, years first trade was removed due to
inconsistencies with first trade values.

2. Redundant Information: Fields that provided redundant or overlapping
information with other fields were eliminated to streamline the data struc-
ture. For example, opening window was removed as it contained the same
information as fwd open.

3. Irrelevance to EMP Context: Fields that were not applicable to MP
transactions and were consistently null were removed to reduce data clut-
ter and focus on relevant information. This included fields like base ccy,
fixing source, and spot liquidity provider.

4. Unnecessary Fields: Fields that did not provide meaningful or action-
able information were removed to improve data e!ciency. For instance, the
client type field was deemed unnecessary for the analysis.

For a more detailed justification of the reasons for the removal of the above-
mentioned fields and some others, please refer to the Appendix A.
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Once the data cleaning wass done, the remaining fields and the new fields
calculated in the final models have been documented in a Google Sheet called
’Data Dictionary’. This consists of 4 sheets, one for each final table, in which the
names of the fields are listed, together with their type (String, Integer, Boolean,
etc.) and their business description. This sheet has been reviewed by the treasury
and finance stakeholders, who have ensured its alignment with business needs.

5.1.2 Data Consistency

To ensure consistency and facilitate analysis, all ‘flag’ fields have been converted
to the Boolean data type. This eliminates potential ambiguities arising from BOS,
where it can be found a disparity of options: Yes/No, Y/N, 1/0, True/False.

On the other hand, all field names have been standardized to lowercase and
separated by underscores for multi-word fields. In this way, fields coming from
BOS as ‘Account Number’ and ‘PI’ have been renamed ‘account number’ and
‘payment id’. This approach aims to facilitate the use of the tables in future models
that draw from it, and to improve the overall readability of the data structure.

5.1.3 Data Integrity and Reliability

To ensure data integrity and reliability, a series of dbt tests have been defined
throughout the di”erent stages of the transformation process. These tests leverage
SQL queries to validate data against specific criteria. When a test fails, it issues
an alert, triggering immediate investigation and corrective action.

Test Description Layer Field Action to take
Freshnesh All sources are updated. Sources date from Raise an indicent to DIO.
Mutually
exclusive
ranges

No overlap in date ranges
within a partition.

Base date from, date to Verify and potentially adjust
the logic in dbt to ensure
date ranges are mutually ex-
clusive for each transaction
ID. Raise an indicent to DIO
if necessary.

Unique
combi-
nation of
columns

The combination of spec-
ified pairs of columns is
unique

Base transaction receipt
with date from,
payment id with
date from)

Verify that the combinations
of these fields is unique.
Raise an incident to AE if
necessary.

Unique
field

Unique transactions and
payments

Base,
Core

transaction receipt,
payment id

Raise severity.

Table 5.1: Tests to ensure Data Quality

34



5.2. Data Classification

The tests applied are described in the table above, which also specifies in which
layer the test is applied, to which specific fields, and the action to take if the test
triggers and alert.

5.1.4 Data Validation

The last step to ensure data quality is validation, which is done once the mod-
els have been created, and before they go into production. In fact, the validation
process is so important that, at Ebury, all PRs (see Section 3.2) must have it
documented in detail in order to be approved.

The validation process for new models usually consists of comparing certain
values with those of existing models. These values can be, for example, the number
of unique Transaction Receipt or Payment Id; or the sum total of measures such
as Volume, Gross Profit, Payment Amount or Fee Amount.

Given that for EMP there is hardly anything set up in the warehouse, the
validation process could not be very comprehensive, as there was not much to
compare. There were, though, two tables that had been built as a temporary so-
lution to have EMP information available from BOS ETL: trades mass payments
for FX trades, and stg mp payments last for Outgoing Payments.

It is worth mentioning that these tables only collected the latest version of each
transaction, so it has not been possible to compare all the history collected in the
new tables in the base layer. However, it is assumed that if all the latest versions
match, the history is correct.

For a more detailed description of the validation process that was carried out
for the tables covered by this project, please refer to Appendix B.

5.2 Data Classification

According to their risk governance, the final models are classified as follows:

Model Owner Criticality Sensibility
base etl emp fx trades scd2 Analytics Engineers Medium Low
base etl emp payments scd2 Analytics Engineers Medium Low
fct fx trades emp Analytics Engineers Medium Low
fct outgoing payments emp Analytics Engineers Medium Low

Table 5.2: Classification of the final models

35



CHAPTER 5. DATA GOVERNANCE

• Owner: The team responsible for owning any issues related to the model.

• Criticality: High, medium, or low, measuring the impact on business oper-
ations in the event of a model failure.

• Sensibility: High, medium, or low, indicating the level of risk associated
with potential exposure or loss of the data used in the models.

5.3 Dependencies

In any data governance initiative, understanding dependencies—both upstream
and downstream—is crucial for ensuring correct data integration and reliability.
It helps in anticipating issues, ensuring data quality and the overall success of
data-driven projects. The current dependencies for this project are the following:

• Upstream Dependencies: The only upstream dependency lies with the
DIO team, as they are responsible for providing the raw data through their
ETL and Kafka tables. This ensures that our data pipelines are fed with
accurate and timely data from reliable sources.

• Downstream Dependencies: Currently, there are no downstream depen-
dencies, as these are all new tables and no other tables draw from them.
However, this is a temporary state. As these tables start to be used to cre-
ate new models in core and marts layers, dependencies will inevitably arise.

As the project progresses, continuous management of dependencies will be
required, in order to ensure smooth integration of new models and to mitigate any
unforeseen issues that may arise.

36



Chapter 6

Conclusions and next steps

This project has been successful in exploiting the benefits of Ebury’s existing
data infrastructure to support the company’s growth and adaptability. The in-
tegration of the Ebury Mass Payments (EMP) business into the company’s data
warehouse will enable improved data-driven decision-making in this increasingly
relevant vertical. Moreover, the adoption of advanced technologies such as Big-
Query and dbt will represent a significant advance in terms of both operational
e!ciency and the capacity to manage and analyse large volumes of data.

Looking forward, it will be crucial to mantain the new models, by making
necessary fixes to ensure their accuracy and continuous operation. Additionally,
detailed documentation will be created to assist colleagues who are using the mod-
els for the first time, ensuring e”ective knowledge transfer and proper usage.

Another essential step will be the incorporation of new data sources coming
from Kafka, once the DIO team has built them. It will also be high priority to
explore and apply new techniques for optimising queries and data warehousing.
For example, a pending task is to test di”erent clustering ways, by di”erent fields,
and compare the results obtained in terms of processing and storage costs in the
long term.

Finally, more specific models will be developed within the marts layer. The
most urgent model is the one that serves to build a replica of the ’Revenue Per-
formance Dashboard’ of Ebury Core. It is very important because it shows the
commissions of each dealer and salesperson based on the revenue they generate for
the company. Originally, building this dashboard was also a goal of this project,
but it was postponed due to the need for preliminary work by the Salesforce team,
which has to integrate EMP-specific logic into the data warehouse to assign revenue
percentages based on the employee’s role within the sales team.
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Appendix A

Deleted fields

• It has been decided to eliminate the field length because it does not meet
its definition: Length in days of tenor (Maturity Date - Order Date). This
is shown in the following query:

SELECT
order_date,
maturity_date,
DATE_DIFF(maturity_date, order_date, DAY) AS length_calc,
length

FROM ‘ebi-dev-260310.Frontierpay.Frontierpay_Transaction_Details_01’
LIMIT 100

Figure A.1: Justification for the removal of the field length.

• The field years first trade has been deleted because it does not make sense
for it to be greater than 0 in transactions where first trade = ‘Yes’:
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SELECT
transaction_receipt,
first_trade,
years_first_trade

FROM ‘ebi-dev-260310.Frontierpay.Frontierpay_Transaction_Details_01’
WHERE first_trade = ‘Yes’
LIMIT 100

Figure A.2: Justification for the removal of the field years first trade.

• The field first month is supposed to be a binary variable indicating whether
it is the client’s first month of activity, but it does not match. Thus, it has
been deleted.

SELECT
da.Account_Number,
dt.transaction_receipt,
dt.order_date,
dt.first_trade,
da.FX_Became_Client,
dt.first_month

FROM ‘ebi-dev-260310.Frontierpay.Frontierpay_Transaction_Details_01’ AS dt
LEFT JOIN ‘ebi-dev-260310.EMP_Kafka_Hermes.clients_client’ AS clients

ON dt.Account_Number = SAFE_CAST(clients.ebury_account_id AS STRING)
LEFT JOIN ‘ebi-dev-260310.core_dimensional.dimaccount’ AS da

ON clients.client_crm_id = da.Account_ID
WHERE First_Month = ‘No’ AND First_Trade = ‘Yes’

AND order_date > ‘2020-01-01T00:00:00’
AND FORMAT_DATE(‘%Y-%m’ dt.order_date)

= FORMAT_DATE(‘%Y-%m’, da.FX_Became_Client)
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Figure A.3: Justification for the removal of the field first month.

• The field opening window is a double check for fwd open, both mean the
same. Thus, it has been used to fill the fwd open values in case they are
null, and has been deleted as a separate field.

• Others:

– The fields base ccy, fixing source, fixing date, fixing rate, set-
tlement amount, settlement cost, have been deleted because they
only apply to NDF contracts. Thus, in EMP they are always null.

– The fields spot liquidity provider and deliverable rate have been
deleted because they are always null.

– The field client type has been deleted because is not needed.
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Appendix B

Validations

FX trades

• The values of Volume and Gross Profit are exactly the same in the new table
and in trades mass payments, the table that is already in production.

WITH new_scd2 AS (
SELECT transaction_receipt, gbp_volume, gbp_gross_profit
FROM ‘ebi-dev-260310.dbt_marcos_base_bos_etl.base_etl_emp_fx_trades_scd2’
WHERE is_last_version

)
prod AS (

SELECT
transaction_receipt,
gbp_volume AS gbp_volume_prod,
gbp_gross_profit AS gbp_gross_profit_prod

FROM ‘ebi-dev-260310.intermediate_core_dimensional.trades_mass_payments’
)
SELECT *
FROM new_scd2
LEFT JOIN prod USING (transaction_receipt)
WHERE gbp_volume != gbp_volume_prod

OR gbp_gross_profit != gbp_gross_profit_prod

Figure B.1: Result of the first query used to validate FX trades.

• The number of unique transactions in the new table matches the number of
transactions in table trades mass payments.
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SELECT COUNT(transaction_receipt)
FROM ‘ebi-dev-260310.dbt_marcos_base_bos_etl.base_etl_emp_fx_trades_scd2’
WHERE is_last_version
UNION ALL
SELECT COUNT(transaction_receipt)
FROM ‘ebi-dev-260310.intermediate_core_dimensional.trades_mass_payments’

Figure B.2: Result of the first query used to validate FX trades.

Outgoing Payments

• The values of Payment Amount and Fee Amount are exactly the same in
the new table and in stg map payments last, the table that is already in
production.

WITH new_scd2 AS (
SELECT payment_id, gbp_payment_amount, gbp_fee_amount
FROM ‘ebi-dev-260310.dbt_marcos_base_bos_etl.base_etl_emp_payments_scd2’
WHERE is_last_version

)
prod AS (

SELECT
PI AS payment_id
GBP_PAYMENT_AMOUNT AS gbp_payment_amount_prod,
GBP_FEE_EQUIVALENT AS gbp_fee_amount_prod

FROM ‘ebi-dev-260310.base_mp_payments.stg__mp_payments_last’
)
SELECT *
FROM new_scd2
LEFT JOIN prod USING (payment_id)
WHERE gbp_payment_amount != gbp_payment_amount_prod

OR gbp_fee_amount != gbp_fee_amount_prod

Figure B.3: Result of the first query used to validate Outgoing Payments.
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• The number of unique payments in the new table matches the number of
payments in table stg map payments last.

SELECT COUNT(payment_id)
FROM ‘ebi-dev-260310.dbt_marcos_base_bos_etl.base_etl_emp_payments_scd2’
WHERE is_last_version
UNION ALL
SELECT COUNT(PI)
FROM ‘ebi-dev-260310.base_mp_payments.stg__mp_payments_last’

Figure B.4: Result of the second query used to validate Outgoing Payments.
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