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Abstract: Introduction: Metabolic age (MA) is the difference between an individual’s
actual age and the age of their body based on physiological and biological factors. It is an
indicator that reflects a person’s physical and biological state, regardless of chronological
age. Insulin resistance (IR) is a health disorder in which tissues exhibit a reduced response
to the circulating glucose uptake stimulated by insulin. Objective: The aim of this study
is to evaluate the association between MA, determined through bioelectrical impedance
analysis, and the risk of IR, assessed using validated scales, in a cohort of Spanish workers.
Methodology: A descriptive cross-sectional study was conducted on 8590 Spanish workers
to assess the association between MA and a set of sociodemographic variables, health
habits, and IR risk scales such as the Triglyceride–Glucose Index (TyG Index), Metabolic
Score for Insulin Resistance (METS-IR), and Single Point Insulin Sensitivity Estimator
(SPISE). Results: All analyzed variables were associated with MA values, with the strongest
associations observed for IR risk scale values (OR 4.88 [95% CI 4.12–5.65] for METS-IR,
4.42 [95% CI 3.70–5.15] for SPISE, and 3.42 [95% CI 2.97–3.87] for the TyG Index) and
physical activity. Conclusions: Metabolic age is influenced by sociodemographic variables
such as age, sex, and social class; health habits such as smoking, physical activity, and
adherence to the Mediterranean diet; and by IR risk scale values.

Keywords: metabolic age; insulin resistance; Mediterranean diet; physical activity;
sociodemographic variables; smoking

1. Introduction
Chronological age, which refers to the number of years elapsed since birth, has tradi-

tionally been the primary measure for estimating an individual’s health and life expectancy.
However, chronological age does not accurately reflect a person’s true health status, as
some individuals may exhibit excellent health despite an advanced chronological age,
while others, despite being younger, may suffer from various conditions associated with
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premature aging [1]. This leads to patients with advanced chronological age sometimes
undergoing unnecessary treatment. In contrast, young people with multiple risk factors
do not receive treatment due to their chronological age. This highlights the need to find a
corrective parameter for age. Metabolic age (MA), which describes the body’s functional
status in relation to its metabolism, has emerged as a crucial indicator for assessing overall
health and well-being, particularly in relation to metabolic health, which is directly asso-
ciated with chronic diseases and comorbidities. This concept provides a more detailed
perspective on individual health, allowing for more personalized and effective interven-
tions. MA is a concept used to assess the body’s metabolic efficiency in comparison to a
population average across different ages [2]. Through various measurements, such as body
composition [3], basal metabolic rate (BMR) [4], and other physiological parameters [5], an
individual’s MA can be estimated.

BMR is the minimum energy required at rest to maintain vital functions and decreases
by approximately 1–2% every 10 years in adults. This decline occurs mainly due to the
reduction in muscle tissue, which is replaced by fat tissue. BMR is typically estimated using
chronological age, height, weight, and sex. However, weight alone does not distinguish
between fat mass and fat-free mass.

To improve BMR estimation, multiple studies have demonstrated the usefulness of
bioelectrical impedance analysis (BIA), which differentiates between fat-free mass and
skeletal muscle mass [6–9]. These measurements determine that fat mass only influences
a modification of between 2 and 3% of the BMR [10]. For its part, the company TANITA
demonstrated that BMR calculated by bioimpedance was more precise than if determined
by body weight or BMI [11]. In recent years, different authors have found that BIA provides
better information on body composition than anthropometry, and good agreement with
dual X-ray absorptiometry for determining fat mass [12–14]. More recently, Cretescu et al.
(2025) found that BIA has a strong correlation with body fat percentage [15].

MA was developed as a method to explain the relationship between an individual’s
BMR compared to that of others of the same chronological age. Elguezabal-Rodelo et al.
(2021) demonstrated that MA is a better risk marker than most patients can easily perceive.
Thus, if a person’s MA is higher than their chronological age, it indicates that their BMR is
diminished, reflecting a higher cardiovascular risk [16].

This indicator provides a more comprehensive perspective on metabolic health status
than simply considering chronological age [17,18]. According to some authors, a higher
MA is associated with increased risks of metabolic diseases [17], reduced quality of life [19],
and premature mortality [20].

The determination of MA is generally performed using bioimpedance devices that
assess body composition [21]. These devices calculate BMR, which represents the amount of
energy the body requires at rest to maintain vital functions [22]. This rate is then compared
with demographic data to estimate MA. The technology employed in these devices has
advanced significantly, enabling more accurate and accessible measurements for the general
population [23].

An MA greater than chronological age may indicate an unhealthy lifestyle, including
factors such as poor diet [24], lack of physical activity [25], or chronic stress [26]. These
factors contribute to the deterioration of metabolic health and may lead to conditions such
as obesity [27], type 2 diabetes (DM2) [28,29], and cardiovascular diseases [16,30]. Regular
evaluation of MA could serve as a preventative tool [29] and a motivator for adopting
healthier habits [4].

Insulin resistance (IR) is a condition in which the body’s cells do not respond ade-
quately to insulin, a hormone crucial for glucose metabolism. This resistance forces the
pancreas to produce more insulin to maintain normal blood glucose levels [31]. Over time,
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IR can lead to a range of metabolic disorders, including metabolic syndrome [32] and type
2 diabetes [33].

The development of IR is influenced by a combination of genetic [34] and socio-
environmental factors [35,36]. Obesity, particularly visceral fat accumulation, is one of the
primary risk factors [37,38]. Chronic inflammation [39] and oxidative stress [40] associated
with excess adipose tissue contribute to impaired insulin signaling in cells. Additionally, a
diet high in sugars and saturated fats [41] and a sedentary lifestyle [42] are critical factors
in the development of this condition.

The relationship between MA and IR is close and bidirectional. A higher MA is
often associated with a greater prevalence of IR. This is because many of the factors that
increase MA, such as obesity and physical inactivity, are also significant contributors to
IR. Studies have shown that individuals with an MA exceeding their chronological age
exhibit elevated levels of inflammatory markers and disruptions in glucose homeostasis,
indicating underlying IR [43].

The high prevalence of IR and elevated MA in the general population has a significant
impact on public health [44]. These conditions not only increase the risk of metabolic
diseases but also lead to higher healthcare costs and reduced quality of life for affected
individuals [45]. Public health policies promoting nutritional education, physical exercise,
and stress management are crucial to addressing these issues [46].

To reduce MA and improve insulin sensitivity, it is essential to implement intervention
strategies targeting modifiable factors. Regular exercise programs, particularly those
combining aerobic and resistance training, have been shown to effectively improve body
composition and metabolic function [47]. Furthermore, a balanced diet rich in fiber, lean
proteins, healthy fats, and low in refined sugars is fundamental for improving metabolic
health [48].

Stress management and sleep quality are also critical components in managing MA and
IR. Chronic stress [49] and sleep deprivation [50] are associated with metabolic dysfunction
and increased IR due to hormonal and autonomic nervous system disturbances. Stress
management techniques such as meditation [51], yoga [52], and cognitive-behavioral
therapy [53], alongside promoting healthy sleep habits [54], can significantly contribute to
improving metabolic health.

Research in the field of MA and IR is continuously evolving. New technologies and
analytical approaches, such as genomics and metabolomics, are providing deeper insights
into the molecular and genetic bases of these conditions [55]. Additionally, studies on the
gut microbiome are revealing its crucial role in regulating metabolism and IR, opening new
avenues for therapeutic interventions [56].

The objective of this study is to assess the association between MA, determined
through bioimpedance, and the risk of IR, assessed using validated scales, in a cohort of
Spanish workers.

2. Materials and Methods
2.1. Participants

This study employed a cross-sectional, descriptive design, encompassing a cohort of
8590 Spanish workers from the Balearic Islands. The participants were individuals who
underwent their annual occupational health check-up between January 2019 and December
2020, facilitated by an occupational health and risk prevention service. This service is
utilized by various companies across sectors such as healthcare, public administration,
hospitality, retail, transportation, education, industry, and cleaning.

Additional details are provided in the flowchart in Figure 1.
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Figure 1. PRISMA flowchart of participants in this study.

Inclusion Criteria:

• Individuals aged 18–69 years.
• Voluntary participation in the study.
• Consent to the use of personal data for epidemiological purposes.
• Employment within one of the participating companies, without being on temporary

disability leave during the study period.

Exclusion Criteria:

• Individuals below 18 or above 69 years of age.
• Non-employees of participating companies.
• Refusal to participate in the study.
• Declined consent for data usage in epidemiological studies.
• Missing parameters required for scale calculations.
• Patients diagnosed with diabetes mellitus.

2.2. Variable Determination

Data collection for this study was undertaken by healthcare personnel affiliated with
the occupational health services of the participating companies. The following methodolo-
gies were used:

Anamnesis:

A comprehensive clinical history was obtained, including sociodemographic details
such as age, gender, social class, smoking habits, physical activity levels, and adherence to
the Mediterranean diet.

Anthropometric and Clinical Measurements:

Measurements included height, weight, waist circumference, hip circumference, and
systolic and diastolic blood pressure.

Laboratory Analyses:

Blood samples were analyzed for lipid profiles and blood glucose levels.
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2.2.1. Anthropometric Measurements

To reduce potential biases, all measurement protocols were standardized. Height
and weight were recorded using a SECA 700 scale (SECA, Chino, CA, USA) and SECA
220 stadiometer (SECA, Chino, CA, USA), with participants in light clothing and barefoot,
following ISAK guidelines for anthropometric assessments [57]. Measurements were
documented in centimeters and kilograms.

Waist circumference was measured with a SECA tape (SECA, Chino, CA, USA), placed
midway between the last rib and the iliac crest, parallel to the floor, with participants
standing relaxed. Hip circumference was measured similarly, using the widest point of
the hips.

2.2.2. Clinical Measurements

Blood pressure was assessed using an OMRON-M3 monitor (OMRON, Osaka, Japan).
Participants were seated with their back supported, arm resting at heart level, and legs
uncrossed, following a minimum rest period of 10 min. To ensure accuracy, participants
were instructed to abstain from food, alcohol, caffeine, smoking, or tea consumption for
at least one hour before measurement. The cuff was fitted 2–3 cm above the elbow crease,
with various sizes available for individual needs. Three consecutive readings were taken at
one-minute intervals, and the final blood pressure value was determined as the average of
the three.

2.2.3. Laboratory Analyses

Blood samples were collected via venipuncture after a 12 h fasting period. The
samples were refrigerated and processed within 48–72 h to maintain integrity. Lipid
profiles (triglycerides, total cholesterol, HDL cholesterol) and blood glucose levels were
determined using enzymatic methods. LDL cholesterol was calculated using the Friedewald
formula [58] unless triglycerides exceeded 400 mg/dL, in which case direct measurement
was performed. All laboratory results are expressed in mg/dL.

2.2.4. Risk Scales

Adherence to the Mediterranean Diet:
The 14-item PREDIMED questionnaire was utilized, scoring each item as 0 or 1.

Scores ≥ 9 indicated strong adherence to the Mediterranean diet [59].
Physical Activity Assessment:
Physical activity levels were evaluated using the International Physical Activity Ques-

tionnaire (IPAQ), which assesses activity during the previous seven days [60].
Smoking Status:
Participants were classified as smokers if they had consumed at least one cigarette

daily (or its equivalent) in the past 30 days or had quit smoking within the preceding
12 months. Non-smokers included individuals who had abstained for more than a year or
had never smoked.

Socioeconomic Classification:
Socioeconomic status was determined following the Spanish Society of Epidemiol-

ogy’s 2011 guidelines. Class I included managers, directors, and university-educated
professionals; Class II encompassed intermediate professionals and self-employed workers;
and Class III consisted of manual laborers [61].

Metabolic Age and Avoidable Lost Life Years (ALLYs):
Metabolic age was assessed using a TANITA MC-780 S MA bioimpedancemeter

(TANITA Corporation, Tokyo, Japan). ALLYs were calculated by subtracting chronological
age from metabolic age. A difference of ≥12 years is associated with reduced cardio-
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vascular risk. ALLYs were categorized as low (<3 years), normal (3–11 years), or high
(≥12 years) [62].

Bioimpedance measurement, like all other measurements and assessments, was per-
formed on the same day as the blood samples were taken. Therefore, all subjects were
fasting for 12 h.

The insulin resistance risk scales that have been calculated, as well as their cut-off
points, are presented in Table 1.

Table 1. Formulas and cut-off of different insulin resistance risk scales.

Formula Cut-Off

TyG Index [51] LN (triglycerides × glycaemia/2) >8.5
METS-IR [52] LN (2× Glycaemia + triglycerides) × BMI/LN(HDL-c) >50

SPISE [53] (=600×HDL 0.185/Triglycerides 0.2 ×BMI 1.338) 6.14
TyG: Triglyceride–Glucose Index. METS-IR: Metabolic Score for Insulin Resistance. SPISE: Single Point Insulin
Sensitivity Estimator.

2.3. Statistical Analysis

Categorical variables were analyzed descriptively by computing their frequencies and
distributions. For quantitative variables following a normal distribution, the mean and
standard deviation were reported. Mean comparisons were performed using Student’s
t-test, while proportion differences were assessed using the chi-square test.

In the multinomial logistic regression analysis, the dependent variable was defined as
elevated values across the three insulin resistance risk scales. Independent variables were
selected based on their biological relevance and statistical significance as identified in the
existing literature. A multinomial logistic regression model was applied, with odds ratios
calculated and model fit assessed using the Hosmer–Lemeshow test.

Stratified analyses conducted to control for potential confounding factors did not
reveal significant effects. All statistical analyses were performed using SPSS software
version 29.0, with a significance threshold set at 0.05.

3. Results
The anthropometric and clinical characteristics of the participants are summarized in

Table 2. A total of 8590 individuals participated in the study, comprising 4104 men (47.8%)
and 4486 women (52.2%). The mean age of the sample was slightly above 41 years, with
the majority of participants falling within the 30–49 age range.

Table 2. Characteristics of participants.

Men n = 4104 Women n = 4486

Mean (SD) Mean (SD) p-Value

Age (years) 41.6 (10.6) 41.5 (10.5) 0.492
Height (cm) 175.8 (7.2) 162.5 (6.1) <0.001
Weight (kg) 81.2 (14.8) 63.9 (13.6) <0.001

Waist circumference (cm) 89.8 (12.5) 77.0 (12.0) <0.001
Hip circumference (cm) 101.8 (8.7) 99.6 (10.9) <0.001

Systolic blood pressure (mmHg) 128.6 (13.3) 117.2 (14.1) <0.001
Diastolic blood pressure (mmHg) 79.9 (10.2) 74.9 (9.9) <0.001

Glycaemia (mg/dL) 93.4 (17.8) 88.9 (12.6) <0.001
Total cholesterol (mg/dL) 191.8 (36.0) 189.0 (34.8) <0.001

HDL-c (mg/dL) 49.2 (11.3) 59.5 (12.8) <0.001
LDL-c (mg/dL) 124.0 (54.6) 113.8 (30.7) <0.001

Triglycerides (mg/dL) 107.8 (69.4) 81.5 (46.3) <0.001
GGT (UI) 31.5 (30.0) 18.5 (15.9) <0.001
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Table 2. Cont.

Men n = 4104 Women n = 4486

Mean (SD) Mean (SD) p-Value

AST (UI) 24.4 (17.3) 18.2 (7.7) <0.001
ALT (UI) 29.3 (34.9) 17.3 (13.4) <0.001

% % p-value

18–29 years 15.5 16.8 0.005
30–39 years 27.8 25.1
40–49 years 32.7 34.4
50–59 years 19.0 19.7
60–69 years 5.0 4.0
Social class I 57.1 50.8 <0.001
Social class II 20.2 23.8
Social class III 22.7 25.4
Non-smokers 84.5 84.2 0.348

Smokers 15.5 15.8
Non-physical activity 25.9 35.1 <0.001

Physical activity 1–3 days/week 27.0 26.5
Physical activity more

3 days/week 47.1 38.4

Non-Mediterranean diet 44.5 41.6 <0.001
Mediterranean diet 55.5 58.4

SD: standard deviation. HDL-c: high-density lipoprotein. LDL-c: low-density lipoprotein. GGT: gamma-glutamyl
transferase. AST: aspartate aminotransferase. ALT: alanine aminotransferase.

A comparative analysis of anthropometric, clinical, and biochemical variables revealed
that females consistently exhibited lower values across all assessed parameters. The
majority of the participants were classified within social class I.

Regarding smoking habits, approximately 15% of participants in both sexes were
identified as current smokers. Physical inactivity was observed in 25.9% of men and
35.1% of women, indicating a higher prevalence of sedentary behavior among females.
Notably, more than half of the participants of both sexes reported adherence to the
Mediterranean diet.

Student’s t-test for means and chi square test were used for prevalence.
Tables 3 and 4 present the mean values and the prevalence of elevated metabolic

age (MA) based on various sociodemographic variables (age and social class), health
habits (smoking, adherence to the Mediterranean diet, and physical activity), and insulin
resistance (IR) risk scales. Both the mean values and the prevalence of elevated MA increase
progressively with advancing age, decreasing socioeconomic status, and poor health habits
(smokers, sedentary individuals, and those with low adherence to the Mediterranean diet).
Higher MA values were also observed in individuals with elevated scores on the IR risk
scales. In all cases, the mean values and prevalence of elevated MA were significantly
higher in men. All observed differences were statistically significant (p < 0.001).

Table 5 displays the results of the multinomial logistic regression analysis. All the
independent variables analyzed were associated with elevated MA values. Among these,
the variables most strongly associated with higher odds ratios (ORs) were the IR scales,
physical activity, and adherence to the Mediterranean diet. In every case, the observed
differences were statistically significant (p < 0.001).

Figure 2 and Table 6 illustrate the results of the ROC curves. The areas under the
curve (AUC) were notably high, particularly for METS-IR and SPISE, with values close to
or exceeding 0.900. In all cases, the AUC values were higher among women.
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Table 3. Mean values of metabolic age according to values of sociodemographic variables, healthy
habits and insulin resistance risk scales by sex.

Men Women

Metabolic Age n Mean (SD) p-Value n Mean (SD) p-Value

18–29 years 636 −4.7 (10.1) <0.001 754 −6.0 (10.7) <0.001
30–39 years 1140 −4.3 (11.0) 1126 −5.2 (9.8)
40–49 years 1344 −4.1 (11.0) 1544 −4.8 (11.4)
50–59 years 780 −2.3 (11.3) 882 −4.7 (11.5)
60–69 years 204 −1.5 (11.4) 180 −4.3 (10.2)
Social class I 2346 −5.5 (10.4) <0.001 2278 −7.5 (9.6) <0.001
Social class II 828 −2.3 (10.6) 1068 −3.0 (11.9)
Social class III 930 −0.8 (12.0) 1140 −2.7 (11.8)
Non-smokers 3468 −4.1 (10.9) <0.001 3776 −5.3 (10.9) <0.001

Smokers 636 −1.7 (11.3) 710 −4.8 (11.4)
Non-physical activity 1062 3.1 (10.9) <0.001 1574 −0.7 (11.9) <0.001

Physical activity 1–3 days/week 1110 −3.4 (10.1) 1187 −5.9 (10.0)
Physical activity more 3 days/week 1932 −7.8 (9.5) 1725 −8.7 (9.2)

Non-Mediterranean diet 1827 0.1 (11.9) 1866 −3.3 (11.8)
Mediterranean diet 2277 −6.8 (9.1) 2620 −6.5 (10.2)
TyG Index normal 3318 −5.2 (10.5) <0.001 4140 −6.0 (10.6) <0.001

TyG Index high 786 2.1 (11.2) 346 4.1 (11.1)
METS-IR normal 3650 −5.7 (9.8) <0.001 4250 −6.2 (10.3) <0.001

METS-IR high 454 11.4 (7.7) 236 13.7 (4.2)
SPISE normal 3540 −6.1 (9.5) <0.001 4202 −6.4 (10.2) <0.001

SPISE high 564 10.8 (8.1) 284 13.3 (4.8)
TyG: Triglyceride–Glucose Index. METS-IR: Metabolic Score for Insulin Resistance. SPISE: Single Point Insulin
Sensitivity Estimator. SD: standard deviation.

Table 4. Prevalence of high values of metabolic age according to values of sociodemographic variables,
healthy habits and insulin resistance risk scales by sex.

MA High Men MA High Women

Metabolic Age n % p-Value n % p-Value

18–29 years 636 18.9 <0.001 754 19.6 <0.001
30–39 years 1140 24.7 1126 19.7
40–49 years 1344 27.7 1544 23.3
50–59 years 780 28.5 882 23.6
60–69 years 204 31.0 180 25.4
Social class I 2346 19.9 <0.001 2278 14.7 <0.001
Social class II 828 26.1 1068 30.3
Social class III 930 39.4 1140 32.6
Non-smokers 3468 24.7 <0.001 3776 22.6 <0.001

Smokers 636 30.2 710 25.1
Non-physical activity 1062 49.2 <0.001 1574 38.4 <0.001

Physical activity 1–3 days/week 1110 23.2 1187 18.0
Physical activity more

3 days/week 1932 14.0 1725 12.4

Non-Mediterranean diet 1827 40.4 1866 29.7
Mediterranean diet 2277 13.7 2620 18.2
TyG Index normal 3318 21.0 <0.001 4140 20.4 <0.001

TyG Index high 786 45.0 346 53.8
METS-IR normal 3650 17.8 <0.001 4250 19.0 <0.001

METS-IR high 454 88.1 236 95.8
SPISE normal 3540 15.9 <0.001 4202 18.1 <0.001

SPISE high 564 86.2 284 95.1

MA: metabolic age. TyG: Triglyceride–Glucose Index. METS-IR: Metabolic Score for Insulin Resistance. SPISE:
Single Point Insulin Sensitivity Estimator.
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Table 5. Multinomial logistic regression.

MA High MA High MA High

OR (95% CI) OR (95% CI) OR (95% CI)

Women 1 1 1
Men 1.13 (1.10–1.17) 1.09 (1.06–1.12) 1.15 (1.10–1.21)

18–29 years 1 1 1
30–39 years 1.15 (1.12–1.18) 1.20 (1.16–1.24) 1.24 (1.19–1.30)
40–49 years 1.29 (1.24–1.35) 1.31 (1.26–1.37) 1.45 (1.38–1.52)
50–59 years 1.42 (1.34–1.50) 1.58 (1.49–1.68) 1.49 (1.40–1.59)
60–69 years 1.45 (1.37–1.53) 1.73 (1.62–1.84) 1.55 (1.45–1.66)
Social class I 1 1 1
Social class II 1.42 (1.33–1.51) 1.11 (0.07–1.16) 1.18 (1.12–1.25)
Social class III 2.58 (2.27–2.89) 2.45 (2.12–4.79) 2.38 (2.06–2.71)
Non-smokers 1 1 1

Smokers 1.07 (1.05–1.10) 1.08 (1.05–1.12) 1.07 (1.05–1.10)
Physical activity more 3 days/week 1 1 1

Physical activity 1–3 days/week 1.21 (1.17–1.26) 1.75 (1.60–1.91) 1.38 (1.30–1.47)
Non-physical activity 3.66 (3.21–4.12) 3.16 (2.90–3.43) 3.10 (2.61–3.60)

Mediterranean diet 1 1 1
Non-Mediterranean diet 2.12 (1.89–2.35) 2.33 (2.02–2.64) 2.22 (1.98–2.47)

TyG Index normal 1
TyG Index high 3.42 (2.97–3.87)

METS-IR normal 1
METS-IR high 4.88 (4.12–5.65)
SPISE normal 1

SPISE high 4.42 (3.70–5.15)
MA: metabolic age. TyG: Triglyceride–Glucose Index. METS-IR: Metabolic Score for Insulin Resistance. SPISE:
Single Point Insulin Sensitivity Estimator. OR: odds ratio.
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Table 6. ROC curves.

Men n = 4104 Women n = 4486

AUC (95% CI) AUC (95% CI)

TyG Index high 0.679 (0.658–0.701) 0.742 (0.715–0.769)
METS-IR high 0.888 (0.870–0.906) 0.936 (0.926–0.947)

SPISE high 0.886 (0.869–0.903) 0.935 (0.924–0.946)

Cut-off–sensitivity–
specificity–Youden

Cut-off–sensitivity–
specificity–Youden

TyG Index high -4.0-67.9-62.3-0.302 -1.0-71.0-70.2-0.412
METS-IR high 6.0-84.6-84.2-0.688 11.0-88.5-88.3-0.768

SPISE high 5.0-84.8-84.6-0.694 10.0-88.7-88.0-0.767
AUC: area under the curve. TyG: Triglyceride–Glucose Index. METS-IR: Metabolic Score for Insulin Resistance.
SPISE: Single Point Insulin Sensitivity Estimator.

4. Discussion
This study provides robust evidence on how various sociodemographic, behavioral,

and health-related variables are significantly associated with metabolic age (MA), an
emerging clinical marker that estimates biological aging relative to chronological aging.
The findings highlight that age, sex, socioeconomic status, smoking, adherence to the
Mediterranean diet (MD), physical activity, and insulin resistance (IR) risk scales are key
determinants in the variation in MA values.

As expected and consistent with existing literature, chronological age demonstrated
a direct and significant association with MA values, serving as a strong predictor in the
multivariable model. As age increases, so does the likelihood of elevated MA values,
reflecting the cumulative impact of physiological and metabolic processes underlying
aging [63]. Previous studies have documented that age-related functional and metabolic
decline, such as reduced insulin sensitivity [64,65], increased visceral adiposity [66–68],
and decreased lean mass [69], contributes to this relationship. However, the observed
interindividual variability in MA within each age group underscores that metabolic aging
is not a uniform process but is modulated by additional factors, including lifestyle and
social conditions [24].

In this study, men exhibited significantly higher MA values and a greater prevalence of
elevated values compared to women, suggesting a less favorable metabolic profile in males.
This difference may be partly explained by hormonal factors, as premenopausal women
benefit from estrogen’s protective effects on metabolism [70], including improved insulin
sensitivity [71], a more favorable lipid profile [72], and lower visceral fat accumulation [73].
On the other hand, differences in health behaviors may also play a role, as men tend to
have higher smoking rates [74] and lower adherence to healthy dietary patterns such as the
MD [75], both of which contribute to accelerated metabolic aging.

Socioeconomic status (SES), measured in this study through social class classifica-
tion, was inversely associated with MA values, with individuals in lower social classes
exhibiting significantly higher average MA values and a greater prevalence of elevated val-
ues. This finding reinforces the notion that social inequalities profoundly affect metabolic
health [76], likely through mechanisms including unequal access to healthcare resources,
differential exposure to risk factors such as chronic stress and food insecurity, and barriers
to adopting healthy behaviors [77]. Furthermore, individuals in lower social classes tend to
exhibit higher rates of obesity [78], physical inactivity [79], and consumption of low-quality
diets [80], which may mediate the relationship between SES and MA.

Smoking, recognized as one of the primary modifiable risk factors for a variety of
chronic diseases, was significantly associated with higher MA values in this study. Smokers
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not only exhibited a higher average MA but also a greater prevalence of elevated values com-
pared to non-smokers. This effect can be attributed to the negative impact of smoking on
cardiovascular function [81], oxidative stress [82], systemic inflammation [83], and insulin
sensitivity [84], all of which contribute to accelerated metabolic aging. These results un-
derscore the importance of implementing effective public health policies to reduce tobacco
consumption as a key strategy to mitigate metabolic aging and its associated consequences.

Adherence to the MD, assessed through the PREDIMED questionnaire, showed a sig-
nificant inverse association with MA values, highlighting the protective role of this dietary
pattern against metabolic aging. This effect can be explained by the anti-inflammatory [85]
and antioxidant properties of the diet [86], which includes a high intake of fruits, vegeta-
bles, legumes, whole grains, fish, and olive oil, as well as a low intake of red meats and
ultra-processed foods. Previous studies have demonstrated that the MD improves insulin
sensitivity [87], reduces visceral fat accumulation [88], and promotes a favorable lipid
profile [89], factors that lower the risk of metabolic [90] and cardiovascular diseases [91].
Plant-based diets and the Mediterranean diet provide multiple health benefits due to their
high content of fiber, complex carbohydrates, vitamins, minerals, and phytochemicals.
Isoflavones, such as genistein, act on estrogen receptors and are commonly used in post-
menopausal women. Genistein, the primary isoflavone in soy, has been shown to improve
bone health, enhance endothelial function, and reduce vasomotor symptoms without ad-
verse effects. A one-year treatment with 54 mg/day of pure genistein improved cardiac
function and reduced the risk of diabetes and cardiovascular disease in postmenopausal
women with metabolic syndrome [92]. Our findings support the recommendation to pro-
mote the MD as an effective intervention to enhance metabolic health and reduce disparities
in metabolic aging.

In this section, it is important to refer to the known intestinal microbiota. The gut
microbiota plays a key role in regulating metabolism and inflammation. Factors such as
nutrient composition, meal frequency, and timing influence its balance, affecting baseline
inflammatory tone. This state can be exacerbated by overnutrition (metainflammation) and
aging (chronic inflammation), reflecting immune system activation in response to danger
signals. Metainflammation, as a specific form of inflammation induced by excess nutrients,
is associated with accelerated aging, which may influence MA. From a geroscience per-
spective, integrating these processes enables the development of combined biomarkers,
facilitating preventive strategies and personalized medicine in older adults [93,94].

The relationships between adiponectin, leptin, visfatin, and traditional indicators of
metabolic diseases suggest that these adipokines could serve as additional markers of IR.
In recent years, adipose tissue has been identified as an active endocrine organ that secretes
multiple adipokines with key functions in metabolic homeostasis.

Adiponectin, considered a protective adipokine, has been inversely associated with
insulin resistance and cardiovascular risk. Its levels are typically reduced in obesity and
metabolic syndrome, suggesting that its reduction could serve as an early indicator of
metabolic dysfunction. In contrast, leptin, whose main function is to regulate appetite and
energy balance, is elevated in individuals with obesity, reflecting a state of leptin resistance.
This phenomenon has been linked to an increased cardiometabolic risk and poorer glucose
control, reinforcing the idea that dysregulation of this hormone could contribute to the
progression of insulin resistance.

On the other hand, visfatin, an adipokine predominantly secreted by visceral adipose
tissue, has been associated with pro-inflammatory effects and increased metabolic dysfunc-
tion. Elevated levels in individuals with obesity, type 2 diabetes, and metabolic syndrome
may contribute to the chronic low-grade inflammation characteristic of these pathological
states. Although evidence regarding its exact role remains controversial, its association
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with traditional indicators of metabolic diseases suggests it could play a relevant role
in the pathogenesis of insulin resistance. Together, these adipokines provide a broader
framework for understanding the underlying mechanisms of insulin resistance and could
complement traditional diagnostic tools, such as the HOMA-IR index, fasting glucose and
insulin measurements, or insulin resistance risk scales [95].

Regular physical activity was identified as another determinant of MA values. Par-
ticipants engaging in regular exercise exhibited significantly lower MA values and a
lower prevalence of elevated values compared to sedentary individuals. Physical activity
enhances insulin sensitivity [96], increases energy expenditure [97], reduces visceral adipos-
ity [98], and helps preserve muscle mass [99], all of which are essential for maintaining a
healthy metabolism and preventing accelerated metabolic aging [100]. Our results empha-
size the importance of promoting accessible and sustainable physical activity programs for
the entire population as a key strategy to improve metabolic health and reduce inequalities
in MA.

Although our study excluded patients diagnosed with DM, we do not have a record
of the drugs that the participants are taking for other pathologies. The effect that certain
medications have on CV risk may have misled the association between MS. This is a
limitation of the study that we note in Section 5.

Among all variables analyzed, IR risk scales (such as METS-IR and SPISE) showed
the strongest association with elevated MA values, underscoring the critical role of insulin
resistance as a key determinant of metabolic aging. Individuals with high scores on these
scales exhibited not only a significantly higher average MA but also a greater prevalence
of elevated values. IR is closely linked to metabolic syndrome and other chronic condi-
tions such as type 2 diabetes [101], cardiovascular disease [102], and obesity [39], which
accelerate biological aging through inflammatory and oxidative mechanisms [103]. Our
findings highlight the need to incorporate these scales as useful tools for identifying at-risk
individuals and prioritizing interventions aimed at improving insulin sensitivity, such as
dietary and physical activity modifications.

A particularly relevant finding of this study was the interaction between the analyzed
variables and sex. Although women generally exhibited lower MA values, the observed
differences in factors associated with MA, such as physical activity and the MD, suggest
that the benefits of these interventions may vary by sex. For instance, women’s higher
adherence to the MD and lower smoking prevalence may contribute to their more favorable
metabolic profile, whereas men may benefit more from targeted interventions to improve
specific habits, such as smoking cessation and increased physical activity. These findings
underscore the importance of adopting personalized, gender-sensitive approaches in the
prevention and treatment of metabolic aging.

The findings of this study have significant clinical and public health implications.
First, the use of metabolic age (MA) as a marker for assessing metabolic aging enables
the identification of individuals at high risk of developing metabolic and cardiovascular
diseases before clinical manifestation. Insulin resistance (IR) is an increasing public health
concern due to its high prevalence and its impact on the development of chronic diseases.
The association with an elevated MA may serve as an early detection tool, helping to
identify at-risk individuals before they develop severe complications. This is particularly
crucial in a context where type 2 diabetes and cardiovascular diseases pose a significant
burden on healthcare systems, both in terms of costs and quality of life.

Second, our observations highlight the need to address the social and behavioral
determinants of metabolic health, including the promotion of healthy lifestyles and the
reduction in social inequalities. The use of MA in clinical practice and public health could
enhance prevention strategies by providing a more individualized approach. For instance,
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in populations with a high prevalence of obesity and sedentary behavior, monitoring
MA alongside insulin resistance indicators could facilitate the implementation of early
intervention programs. These programs could focus on lifestyle modifications, such as
improving dietary habits and increasing physical activity, before metabolic diseases emerge.

Third, the strong association between IR scales and MA suggests that these tools
should be integrated into clinical practice as part of a comprehensive approach to metabolic
risk assessment. If an elevated MA is detected in a patient with signs of insulin resistance,
early intervention strategies can be implemented, thereby reducing the progression to
more severe diseases. Its use in public health could improve the identification of at-risk
populations and optimize prevention and treatment strategies, ultimately reducing the
burden of chronic diseases and enhancing individuals’ quality of life.

5. Strengths and Limitations
One of the strengths of this study is the large sample size, comprising nearly

8600 individuals, and the wide variety of variables analyzed.
While this study provides a comprehensive overview of the determinants of MA,

several limitations should be considered:
Only individuals of working age (18–69 years) were included, excluding unemployed

individuals, retirees, minors, and those over 69 years. Therefore, our results cannot be
generalized to the entire population, as certain age groups are missing.

Over half of the sample belongs to social class I, which may not be representative of
the general population.

As the study focused exclusively on the population of the Balearic Islands, the findings
may differ for other populations and thus cannot be extrapolated.

Although a wide range of variables was analyzed, other potentially relevant factors,
such as comorbidities, pharmacological treatments, chronic stress, and sleep quality, were
not evaluated due to data unavailability. Future research should explore these areas and
conduct longitudinal studies to confirm the directionality of the observed associations.

Another limitation is the “healthy worker effect”, a common methodological issue in
occupational health studies. Workers with chronic illnesses or greater predisposition to dis-
ease may be less likely to attend occupational health check-ups, potentially underestimating
the results.

Being a cross-sectional study, it establishes associations between the variables and
obesity but does not establish causality.

Finally, the menstrual phase of women included in the study was not accounted for,
which could lead to weight variations.

6. Conclusions
MA and IR are critical indicators of overall metabolic health. Understanding the

interrelation of these factors and the underlying mechanisms influencing them is essential
for developing effective prevention and treatment strategies. Interventions addressing
diet, exercise, stress management, and sleep, alongside a focus on continued research, are
crucial for improving metabolic health and reducing the burden of associated diseases in
the population.
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