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Abstract—Electricity distribution operators must balance the
technical challenge of maintaining reliable networks with the
social responsibility of delivering fair outcomes for the com-
munities they serve. Achieving this is difficult because data
on network assets, geography, and social factors are often
fragmented across different formats and systems. This paper
presents a knowledge graph framework that unifies three layers
of information: (i) asset topology, (ii) geospatial context, and
(iii) socio-economic indicators. A reproducible ETL pipeline
standardises and links these heterogeneous datasets to a domain
ontology, producing a scalable graph that supports cross-domain
analysis. The framework is deployed in two environments: a local
Neodj instance for development and testing, and a secure enter-
prise deployment on Scottish Power Energy Networks’ (SPEN)
private cloud using Amazon Web Services Neptune. Its value
is demonstrated through case studies, including: (i) identifying
rural households with low electricity demand in high-deprivation
areas, (ii) assessing accessibility of electric vehicle chargers using
road-network travel times, and (iii) calculating asset-criticality
scores that combine technical reliability with social vulnerability.
The results show that the framework provides a practical,
transparent foundation for equity-aware network planning and
operation.

Index Terms—knowledge graph; electricity distribution net-
works; social vulnerability; power grid planning; graph
databases.

I. INTRODUCTION

Electricity distribution networks are facing increasing strain
from the energy transition. Rising adoption of electric vehicles,
distributed renewable generation, and shifting demand patterns
are adding complexity to systems that were not originally
designed for such conditions. At the same time, communities
expect electricity supply to remain both reliable and fair. This
requires planners and operators to consider not only technical
performance but also the social and spatial contexts in which
networks operate.

Conventional reliability indices such as SAIDI, CAIDI,
SAIFI and CAIFI [1] provide robust technical benchmarks,
but they treat all customers equally. For example, a two-hour
outage is weighted the same for a hospital as for a hotel resort,
ignoring differences in vulnerability. Research shows that areas
with higher social vulnerability often face more frequent and
prolonged outages [2, 3, 4], while rural communities supplied
by long radial feeders are structurally more exposed to relia-
bility risks. These disparities have placed energy justice at the
forefront, highlighting the need for electricity-grid planning in
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which no community bears an unfair burden and everyone has
equitable access to reliable, affordable energy [5, 6].

Recent regulatory responses reflect this shift, including
Ofgem’s Priority Services Register in the UK [7, 8], the U.S.
Justice40 initiative [9], and Spain’s Bono Social Eléctrico
[10], which embed equity considerations into policy and
operational practice. Despite these efforts, practice remains
fragmented. Technical, spatial, and socio-economic data are
usually stored in separate systems and formats, which prevents
integrated analysis. Traditional indices overlook vulnerability,
while emerging socially responsive metrics [11, 12, 13] show
promise but are rarely adopted in operations.

The remainder of this paper is structured as follows: Sec-
tion II reviews graph data models and related work; Section III
defines the project scope and objectives; Section IV describes
the system architecture and the graph-construction workflow;
Section V details the implementation (data sources, prepro-
cessing, staging tables, ontology mapping, and OpenCypher
exports with loading); Section VI showcases three exploration
examples; Section VII presents a case study on equity-aware
node criticality; and Section VIII concludes with achieve-
ments, limitations, practical relevance, and directions for future
work.

II. BACKGROUND AND RELATED WORK
A. Graph Models

A graph is a data model consisting of nodes (vertices)
and relationships (edges). Nodes represent entities, while re-
lationships describe how these entities are connected. Graphs
may be directed, where relationships indicate one-way flow, or
undirected, where connections are mutual. This makes graphs
a flexible and intuitive framework for representing systems
in which the structure of connections is as important as the
entities themselves. In practice, two graph models are most
widely used: the triple-based model and the property graph
model [14].

1) Triple-based graphs (RDF): In the triple-based model,
all information is represented as a triple composed of a
subject, predicate, and object. For example, the statement
“Transformer feeds Feeder” is encoded with Transformer as
the subject, feeds as the predicate, and Feeder as the object.
This structure forms the basis of the Resource Description
Framework (RDF), a W3C standard designed for the semantic



web. Each entity is assigned a Uniform Resource Identifier
(URI), ensuring unambiguous reference and enabling datasets
from different organisations to be linked together. RDF data
are stored in dedicated semantic databases known as triple
stores and queried using SPARQL, the standard query lan-
guage. The key strength of RDF lies in its interoperability and
reasoning support, allowing integration across diverse domains
and enabling inference through ontologies.

2) Property graphs: Property graphs provide a richer inter-
nal structure by allowing both nodes and relationships to hold
properties as key—value pairs. For instance, a Transformer node
can be represented as {id: T123, voltage: 11kV, location: Glas-
gow}. Nodes may also carry multiple labels that define their
role, while relationships are assigned explicit types that capture
their meaning (e.g., supplies, located in). This flexibility makes
property graphs particularly well suited for modelling real-
world systems in a way that is both intuitive and extensible.
They are widely supported by native graph databases such as
Neo4j, with query languages like Cypher designed for efficient
pattern matching and interactive exploration.

3) Comparison: The two graph models offer complemen-
tary strengths. RDF excels in semantic consistency and cross-
domain interoperability, making it valuable for data integra-
tion and reasoning across heterogeneous sources. In contrast,
property graphs prioritise usability and analytical performance,
providing a more direct and efficient way to represent, query,
and visualise system structure. Increasingly, hybrid approaches
are being adopted that map RDF triples into property graph
structures, combining semantic interoperability with the effi-
ciency of property-graph operations [14].

B. Knowledge Graphs

A knowledge graph (KG) connects entities, relationships,
and metadata to represent domain knowledge in a flexible way
that can integrate structured, semi-structured, and unstructured
data. Unlike generic graphs, a KG embeds explicit semantics,
ensuring that connections are meaningful rather than purely
structural.

1) Semantics: taxonomies and ontologies: Semantics are
introduced through two key mechanisms: taxonomies and
ontologies.

Taxonomies.: A taxonomy is a hierarchical classification
system that organises concepts into parent—child levels. For
example, within an electricity network:

e An LV Transformer is a subtype of Transformer.

e A Transformer is a subtype of Electrical

Equipment.

This structure enables queries at different levels of de-
tail. For instance, one can retrieve all items under
Electrical Equipment, or narrow the scope to only LV
Transformers. In this way, taxonomies support aggrega-
tion, filtering, and comparison across categories.

Ontologies.: An ontology goes further by formally defin-
ing what things exist in the system, how they are related, and
what attributes describe them. For example, an ontology may
specify that:

e A Transformer feeds a Feeder.

e A Feeder supplies one or more ServicePoints.

e A ServicePoint is located in a Postcode and has
attributes such as annualDemand or meterType.

Such definitions ensure consistent interpretation across
datasets: for instance, different sources that refer to a “meter
point,” “supply point,” or “service point” can be aligned to the
same concept. Ontologies also enable:

o Rule checking — e.g., a Transformer cannot directly
supply a Household without a ServicePoint.

o Reasoning — new facts can be inferred based on logical
definitions.

In practice, the ontology provides the shared vocabulary and
logical rules, while the property graph serves as the efficient
substrate for storing and querying the data.

2) Construction steps: Constructing a KG typically in-
volves three main steps: (i) extracting entities and relationships
from source systems, (ii) fusing and aligning knowledge to
resolve duplicates and inconsistencies, and (iii) linking entities
into a coherent, queryable graph. Once deployed, KGs can
support a wide range of tasks, including semantic search, graph
analytics, data auditing (e.g., consistency checks and change
tracking), and cross-domain information management.

C. Applications of Knowledge Graphs in the Electricity Sector

Knowledge graphs (KGs) are increasingly applied in the
electricity sector, particularly within smart grids, to inte-
grate and analyse heterogeneous data sources. Acting as a
semantic layer, they connect equipment, events, customers,
and their interrelationships, thereby enhancing interoperability,
search, and reasoning. For example, the BKG framework
in [15] integrates utility systems with external sources such
as meteorological data and GIS. Entities and relations are
extracted, modelled, and stored in graph or big-data platforms
(e.g., Spark/Hadoop combined with Neo4j/HBase), enabling
semantic search and decision support. Similarly, the workflow
reviewed in [16] identifies common stages of knowledge
extraction, ontology modelling, reasoning, and continuous
updates, which together reflect prevailing practice.

Applications of KGs in electricity networks generally fall
into four categories:

1) Search and information services — improving retrieval
and navigation of grid-related data and operational pro-
cedures;

2) Dispatch and fault handling — structuring rules, case
histories, and procedures to support operator decision-
making;

3) Maintenance and fault diagnosis — integrating defect
logs, condition-monitoring data, and equipment specifi-
cations for diagnosis and planning;

4) Customer service and decision support — linking
events and assets with service processes to improve
responsiveness.

Furthermore, some pilot projects demonstrate that KGs can
mitigate “information islands” by aligning equipment data



and their interconnections, thereby improving visualisation,
analysis, and decision support [17].

D. Research Gap and Contribution of this Thesis

Despite these advances, surveys continue to characterise
the use of KGs in the electricity sector as being at an early
stage. Key challenges include keeping knowledge up to date,
expanding reasoning capabilities, and integrating data across
highly heterogeneous sources [16]. Furthermore, most existing
implementations focus mainly on technical and operational
datasets, with limited attention to socio-demographic indica-
tors or links to interdependent infrastructures.

This thesis addresses these gaps by developing an ontology-
aligned property KG that integrates network asset data with
socio-economic indicators and spatial context (e.g., rural-
ity and accessibility). This integration enables cross-domain
queries that jointly consider technical reliability and social
vulnerability, supporting analyses that extend beyond oper-
ational concerns. In doing so, the work contributes to an
underexplored research area by embedding social and spatial
dimensions into electricity-sector knowledge graphs, thereby
broadening their value for both equity-aware planning and
resilience assessment.

III. PROJECT DEFINITION
A. Motivation

The transition to a low-carbon, data-rich energy system
is reshaping the role of UK Distribution Network Operators
(DNOs). Organisations such as Scottish Power Energy Net-
works (SPEN) must plan, operate, and invest in increasingly
complex infrastructures while meeting expectations of fairness,
transparency, and resilience. Regulatory frameworks (e.g.,
RIIO-ED2) and stakeholder engagement processes further re-
quire utilities to demonstrate social impact alongside technical
performance. Conventional tools and siloed databases are
poorly suited to represent these multi-layered realities.

This study addresses the challenge by developing a graph-
based socio-technical data model that links engineering met-
rics with social and spatial context. Graph databases nat-
urally represent infrastructure components and their inter-
dependencies, while semantic relationships connect them to
the communities they serve. Aligning technical data with
contextual indicators enables more equitable and evidence-
based approaches to planning and operations. Specifically, the
model supports: (i) identifying critical infrastructure serving
vulnerable populations, (ii) simulating disruption scenarios and
their social impacts, and (iii) evaluating investment strategies
that are both technically robust and socially fair.

B. Objectives

The graph model is designed around six objectives:

1) Define scope and select data sources: Bound the study
through literature review and consultation with SPEN;
select a representative pilot area and gather relevant
open datasets (e.g., EV chargers, road networks, socio-
economic indicators).

2) Design an integrated graph model: Develop a flexible
property-graph schema linking physical assets, customer
locations, and geo-social context in a single structure.

3) Build reproducible pipelines: Create workflows to
clean, standardise, and prepare heterogeneous data, pre-
serving identifiers, relationships, and spatial references
to ensure repeatability as new data arrive.

4) Enable cross-domain analytics and visualisation: Im-
plement queries that combine technical, spatial, and
social layers; provide results in formats accessible to
both technical and non-technical stakeholders.

5) Deploy locally and in the cloud: Validate portability by
running the graph in (i) a local Neo4j instance and (ii)
an Amazon Neptune deployment within SPEN’s private
cloud.

6) Demonstrate value through case studies: Apply the
model to representative analyses and a real-world case
study to illustrate its use for planning and operational
decision-making.

C. Project Overview

This paper presents a multi-layer knowledge-graph frame-
work that integrates asset topology, geospatial context, and
socio-economic indicators into a unified property graph. A re-
producible ETL pipeline standardises and fuses heterogeneous
datasets, mapping them to a domain ontology for consistent
representation and cross-domain analysis.

The framework is validated in two environments: (i) a local
Neo4j instance for iterative development, and (ii) an enterprise
deployment on SPEN’s private cloud using Amazon Neptune.

Its applicability is illustrated through case studies, including:

e identifying rural low-demand households
deprivation areas,

o cvaluating EV-charger accessibility using road-network
travel times, and

o deriving asset-criticality scores that combine technical

reliability with social vulnerability.

in high-

IV. SYSTEM ARCHITECTURE

The graph model is implemented using a modular system
architecture that supports data ingestion, transformation, graph
construction, and deployment across different environments.
The design emphasises flexibility—to accommodate hetero-
geneous datasets and evolving use cases—and scalability—to
move seamlessly from local prototypes to enterprise-grade
deployments.

At its core, the architecture ingests technical and con-
textual datasets such as network asset records, outage logs,
socio-economic indicators, and geographic metadata. These
are harmonised and transformed into an ontology-aligned
property-graph schema that preserves both topological and
semantic integrity. The processing workflow is complemented
by a deployment layer, which enables end-users to query and
explore the graph through modern database tools and visual
interfaces.
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Fig. 1. End-to-end methodology for graph model construction.

Two complementary deployment configurations are sup-

ported:

o Local Neodj: A Docker-based environment for devel-
opment, testing, and visualisation using Cypher queries.
This setup enables rapid prototyping and interactive ex-
ploration.

+« Amazon Neptune: A secure, cloud-hosted environment
within SPEN’s Amazon Web Services (AWS) Virtual
Private Cloud (VPC), accessed through a WireGuard
VPN tunnel to meet corporate privacy and compliance
requirements. This setup is optimised for scale, robust-
ness, and multi-user collaboration.

The remainder of this section describes the graph construc-

tion workflow and the technical features of each deployment
scenario.

A. Graph Construction Methodology

The graph is developed through a structured pipeline
that transforms raw datasets and semantic definitions into
a property-graph representation of the electricity distribution
network and its context. The methodology, illustrated in Fig-
ure 1, is ontology-driven to ensure that the resulting graph is
not only topologically valid but also semantically meaningful.
This design supports intuitive querying, scalability, and the in-
tegration of new datasets as analytical needs evolve. Section V
details each pipeline stage.

B. Local Deployment: Neo4j

The first deployment configuration is a local Neo4j envi-
ronment (Figure 2), designed to support rapid prototyping and
iterative development without relying on external infrastruc-
ture.

3 Neodj
Desktop

Docker container

Fig. 2. Local development architecture using Neo4j and Docker.

Neo4j natively implements the property-graph model and
provides the Cypher query language, which is well suited for

pattern matching and exploratory analysis. Its integration with
Neo4j Desktop offers built-in visualisation and schema explo-
ration tools, making it particularly useful for designing graph
structures, testing ontology mappings, and developing queries
in an interactive manner. The Neo4j Community Edition is
used in this work, which is free under the GPL v3 licence
yet fully featured for research and prototyping purposes. This
configuration prioritises accessibility and flexibility, enabling
experimentation before moving to a production-grade environ-
ment.

C. Private Cloud Deployment: Amazon Neptune

For enterprise deployment, the system is hosted on Ama-
zon Neptune, a managed graph database service provided
by AWS. The database is deployed within Scottish Power
Energy Networks” AWS Virtual Private Cloud (VPC), ensuring
isolation, scalability, and compliance with corporate security
standards. Access is secured using a WireGuard VPN tunnel,
which allows authenticated users to connect to the VPC
while meeting SPEN’s privacy and cybersecurity requirements
(Figure 3).

Amazon
Neptune

_________________________

Docker container
SP ENERGY
NETWORKS

Fig. 3. Private cloud deployment architecture using Amazon Neptune and
Graph Explorer.

Amazon Neptune supports multiple query languages (Grem-
lin, SPARQL, and OpenCypher), making it compatible with
both RDF and property-graph models. OpenCypher is adopted
in this work to ensure continuity with the Neo4j-based de-
velopment phase. In addition, the Amazon’s Graph Explorer
[18]—deployed as a Docker service—provides a browser-
based interface for visualising nodes, relationships, and query
results, complementing programmatic access through APIs and
client libraries.

Compared to the local Neo4j setup, this cloud configuration
prioritises robustness and scalability. It is designed for pro-
duction use, supporting larger datasets, integration with other



AWS services (e.g., storage and monitoring), and secure multi-
user collaboration across distributed teams.

V. IMPLEMENTATION
A. Input Data Sources and Formats

To examine distribution networks in context, the study
brings together four kinds of information: (i) technical data
about network assets and connections, (ii) socio-economic
indicators that describe community need and vulnerability,
(iii)) mobility and transport layers that reflect accessibility,
and (iv) geospatial classifications that characterise places.
Taken together, these sources let the analysis link physical
infrastructure to the people and locations it serves. Table I
summarises the datasets and formats used.

B. Pilot Region Selection

A pilot region was chosen to allow faster development while
remaining representative of typical UK conditions. A suitable
pilot region had to span multiple voltage levels (LV/HV/EHV),
a mix of urban, peri-urban and rural settings, and reliable
data coverage. Because UK distribution networks are largely
radial, a mainly radial subnetwork was preferred for the initial
implementation. On this basis, the subnetwork centred on
Lanark (South Lanarkshire, South Scotland) was selected.
It covers Lanark, Biggar and nearby rural communities and
includes hundreds of feeders across voltage levels (Fig. 4).

C. Preprocessing Pipeline

A reproducible Python pipeline was developed to prepare
the different input datasets before graph construction. The
workflow has three main stages: cleaning, linking, and spatial
resolution.

1. Cleaning and standardisation. Raw files are first
checked and corrected: duplicate records are removed, missing
identifiers and coordinates are flagged, and measurement units
are converted to common formats (volts, kilowatts, min-
utes). Column names are aligned across datasets. All spatial
data are converted to a single coordinate system (WGS84,
EPSG:4326), while postcodes are normalised to a standard
format. Time fields are parsed into a single datet ime format
and used to calculate basic indicators such as event durations
and averages. The cleaned outputs are exported as UTF-8
CSVs with consistent headers.

2. Linking and enrichment. Low-voltage metering ser-
vice points (LV_MSPs) are connected to the premises they
supply using property identifiers (UPRNs) and postcodes,
and enriched with smart-meter readings where available. So-
cioeconomic indicators are also aligned: for example, the
Urban—Rural Classification (2022), originally defined on Data
Zone 2022 boundaries, is translated to the 2011 geography
used by the Scottish Index of Multiple Deprivation (SIMD).
Each postcode is further assigned a Spatial Signature, which
classifies areas by built form and land use.

3. Spatial resolution. Some records have coordinates
but no postcode. These are resolved using a three-step

reverse-geocoding process, where each step acts as a fall-
back if the previous one fails: (i) bulk lookup with the
postcodes.io API [24]; (ii) spatial join with open post-
code boundaries [25]; and (iii) nearest-centroid assignment
using Code-Point Open [26]. Finally, large national datasets
such as the road network and Spatial Signatures are clipped
to the pilot region to avoid unnecessary pre-processing.

D. Structured Staging Tables

Once cleaned, the datasets are organised into a set of
staging tables that act as an intermediate layer before building
the graph. Each table contains only one type of entity—for
example, smart meters, addresses, postcodes, EV chargers,
or road nodes—while separate link tables record how these
entities are connected.

This structure has three main benefits. First, it keeps the data
clean and consistent: separating entities avoids duplication
and makes it easier to spot errors. Second, it ensures unique-
ness and speed: every entity has a stable identifier (such as
asset_id or, charger_id) with indexes that allow fast
matching across datasets.

Spatial information, such as the locations of assets, chargers,
and roads, is stored as geometry fields. Non-spatial entities,
like socioeconomic indicators, are linked to places through

Carluke

Fig. 4. Pilot area: distribution network footprint around Lanark (South
Lanarkshire).



TABLE I
OVERVIEW OF DATASETS USED IN THE GRAPH MODEL

Category Dataset Description Format(s) Source
Technical Infras- | SPEN Asset Registry | Inventory of distribution assets (transformers, fuses, protection devices, etc.), CSV/XLSX SPEN
tructure including IDs, types, coordinates, and metadata.
SPEN Line and Link | Topology of cables and junctions connecting assets across the network. CSv SPEN
Data
Customer  Address | Customer premises with addresses, postcodes, and smart-meter links. CSV SPEN
Mapping
Smart Meter Voltage | Half-hourly voltage readings (min/max/demand) over one week. CSV SPEN
Alerts
Smart Meter Fault | Fault event logs at the smart-meter level (e.g., supply loss). CSv SPEN
Alerts
Socioeconomic Scottish Index of | Scores for 6,976 data zones, covering income, employment, health, education, XLSX [19]
Context Multiple Deprivation | access, housing, and crime (deciles/quintiles).
(2020)
Mobility and | ChargePlace Public EV chargers: locations, connector types, power ratings, operators, and CSV/XLSX [20]
Transport Scotland EV | status.
Infrastructure
OS Open Roads GB road network with geometries, classes, and linkages; used for accessibility | GPKG [21]
analysis.
Geospatial Classi- | Urban—Rural Classi- | Classification by settlement size and drive-time from settlements >10,000 CSV/XLSX [22]
fication fication (2022) people.
Spatial ~ Signatures | Built-form and land-use typology for small areas across Great Britain. CSV/GPKG [23]
Framework

postcodes or data zones. The result is a normalised relational
schema (Figure 5) that acts as a stable hand-off point to the
graph loader. From here, data can be exported consistently
as nodes.csv and edges.csv for Neo4j or Amazon
Neptune. The staging schema also remains directly usable
for quality checks and relational queries, making it a reliable
backbone for both graph construction and validation.

E. Ontology and Semantic Mapping

The staging tables provide a clean and linkable structure, but
they do not explain the meaning of the entities or why they
are related. To make this knowledge explicit and machine-
readable, a domain ontology was developed in Protégé [27].
In simple terms, an ontology acts like a shared vocabulary: it

defines the types of things that exist in the system, how they
relate to one another, and what attributes describe them.

In this project, the ontology specifies three aspects:

« Entities (classes) — the main building blocks of the
system, organised into hierarchies.

o Relationships (object properties) — the links between
entities that reflect real-world connections (e.g., a smart
meter HAS_ VOLTAGE_ALERT, a charger LOCATED_AT
an address; see Table II).

o Attributes (data properties) — the descriptive features
of each entity (e.g., voltage level, capacity, coordinates,
deprivation index).

The taxonomy is designed to be both clear—each class

represents a distinct and understandable concept—and scal-

ONTOLOGY OBJECT PROPERTIES LINKING SUBJECT AND OBJECT ENTITIES.

TABLE I

Subject Entity

Object Entity

Relationship

Postcode

RoadNode

ChargingStation

SmartMeter

SmartMeter

LV_MSP

Datazone

Address

SmartMeter, ChargingStation

LV_MSP

Dist_Transformer

Intersection_Point_HV, Added_Endpoint_HV
HV_MSP, LV_MSP, Unmetered_SP
ElectricAsset

LV_Fuse, Protective_Device, Dynamic_Protective_Device
ElectricAsset

Electric switches, joints, links, intersections
Added_Endpoint_*

Datazone

RoadNode

ChargingSession

FaultAlert

VoltageAlert

SmartMeter

SocioEconomicProfile

Postcode

Address

Address

Intersection_Point_HYV, Added_Endpoint_HV
Dist_Transformer

ElectricAsset

HV_MSP, LV_MSP, Unmetered_SP
ElectricAsset

LV_Fuse, Protective_Device, Dynamic_Protective_Device
Electric switches, joints, links, intersections
Intersections and Joints

BELONGS_TO
CONNECTED_TO
HAS_CHARGING_SESSION
HAS_FAULT_ALERT
HAS_VOLTAGE_ALERT
HAS_SMART_METER
HAS_SOCIOECONOMIC_PROFILE
IN_POSTCODE
LOCATED_AT
SERVES_ADDRESS
SUPPLIES

SUPPLIED_BY
SERVED_BY

SERVES

PROTECTS
PROTECTED_BY
INTERCONNECTS
CONNECTS_TO




able—new assets, spatial units, or event categories can be
added without changing the overall structure. The ontology
is exported in Turtle (.tt]) format and used directly by the
pipeline to generate graph nodes and relationships that are
both structurally consistent and semantically meaningful.

During the mapping step, the ontology is aligned with
the staging tables. Subclasses inherit the attributes of their
parent classes, relationships are linked to foreign keys in the
relational schema, and attributes are bound to table columns.
Bidirectional relationships—such as cables connecting two
joints or roads linking two nodes—are explicitly modelled as
symmetric so they can be traversed in either direction.

This approach ensures that queries reflect real-world ques-
tions: for example, tracing how a specific transformer supplies
households in rural areas with high deprivation scores. By
combining expert knowledge with a formal semantic model,
the resulting property graph is not only technically consistent
but also interpretable, extensible, and directly usable for net-
work analysis.

F. Entity/Relationship Extraction and CSV Generation

The final step before loading into a graph database
is to export the cleaned and semantically aligned data
into two OpenCypher-compatible files: nodes.csv and
edges.csv. These files can be ingested directly by both
Neo4j and Amazon Neptune’s OpenCypher bulk loader [28].

The exporter first reads the ontology (in Turtle format) to
determine which attributes and relationships are valid for each

| postcode

postede VARCHAR(45)

"] ev_charging_session

session_id VARCHAR(56)

session_connection_type VARCHAR(4. datazone VARCHAR(45) ype VARCHAR(45)
session_amount FLOAT

v INT

ur_signature VARCHAR(4 tatus_code VARCHAR(45)
H—

session_conne

session_kwh FLOAT P

class. Inheritance is applied automatically, so subclasses carry
the properties of their parent classes, ensuring consistency
across entity types.

Nodes.: Each staging table is transformed into rows in
nodes.csv, with one row per entity. Every entity receives
a globally unique identifier, ontology attributes (e.g., voltage
level, postcode) are stored as columns, and a semicolon-
separated list of labels records its class hierarchy. This design
allows queries to be run at different levels of abstraction, from
broad categories to specific subclasses.

nodes.csv (header and example row)

ID, :LABEL, asset_type,voltage_level,postcode, ...
12088991, "Asset;Electric; LV; LV_MSP",LV_MSP,LV,ML11
8NT, ...

Edges.: Relationships between entities are written to
edges.csv. These come either from inline foreign keys
(e.g., a voltage alert linked to a smart meter produces a
HAS_VOLTAGE_ALERT edge) or from dedicated link tables
encoding connectivity (e.g., road links and electric lines).
Relationships that are naturally undirected—such as two road
nodes connected by a road segment—are written in both
directions so traversals work consistently across engines.

edges.csv (header and example row)
:ID, : START_ID, :END_ID, : TYPE, ...
e68047,DG14BQ,S01007616, BELONGS_TO, ...

] simd2020
simd_id VARCHAR(45)

| smart_meter
sm_id INT

] electric_line
ine_id INT
ine_type VARCHAR(45)

asset_type VARCHAR(S6) heakth_decile INT

wpm INT access_decile INT

location GEOMETRY

F T ¥ address VARCHAR(45) B detndat -
session_start DATETIME | | | EF | posteads VARCHAR(45) housing_dscile INT location GEOMETRY
session_duration FLOAT | | | i > | spen_region VARCHAR(4 education-dacie INT >
charger_id VARCHAR(45) | | | | ' | ———F# asset_id INT income_decile INT
T T T 4 | : | } | ! simd_decie INT
| : | % |1 datazone VARCHAR(4.
‘ | | i Ll >
* ] voltage_alert v | ] datazone v
] address v vol N | datazone VARCHAR(4S)
address VARCHAR(4S) [, _ _ _ | ______J.___E w e VARGHAR(.. |©
posteode VARCHAR (4. voltage_hh_data JSON urb_class_name VARCHAR(4. ]
asser i INT Byf— — — —| & minimum_vokage FLOAT byp— — — —  population INT == =T | O read essshcasen varoarss) N, 7
» maximum_voltage FLOAT > ARCHAR(45) |
maximum_demand_date DATETL.. [ — — — — — — — — — — — — — — — — | ——— |
® sm_id INT | | |
> | | |
¥ I he 1
| T3
I : ol
! ] 1 road_name VARCHAR(45) | | [
_urs % | motorway_junction v v | location GEOMETRY T2 v ] ev_charging_stati... ¥
urb_class_name VARCHAR(S otorway_junction_number VARCHAR(4. | | —— —t: ur2_class_name VARCHAR(S. charger_id VARCHAR(S6)
ol [ | » road_nods_ic VARCHAR(255) = :,:: ::'r II_ s R £ | © ur2_cass_fold I charg ARCHAR(45)
:_name VARCHAR(S > sder_id VARCHAR(4S)  |— — — — 1 — — — — — N [N — — — 4| © ur2_population INT charger_ls_srea VARCHAR(45)
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Fig. 5. Relational staging schema used to organise cleaned

r02d_node_id VARCHAR(2S.
ro2d_form VARCHAR(45)
location VARCHAR(45)
postcode VARCHAR(45]

datasets into entity and link tables prior to graph export.



Integrity checks.: Before export, several quality checks
are performed: duplicate nodes and edges are removed, edges
without valid endpoints are discarded, and required attributes
are verified for each class. The final files are UTF-8 encoded,
use ISO-8601 timestamps, and store numeric/boolean values
in plain types. Property names follow lower_snake_case
conventions, while labels and relationship types follow the
ontology. This guarantees that the exports are portable and
immediately usable in both Neo4j and Amazon Neptune.

G. Graph Loading and Deployment

After preprocessing, the data are exported into two
files—nodes.csv and edges . csv—which capture the en-
tities in the system and the links between them. Both follow
the OpenCypher format, allowing them to be loaded directly
into Neo4j and Amazon Neptune. Using a single, consistent
export ensures that the same graph structure is reproduced
across environments.

Neodj (local).: In the local setup, a Python script loads
the graph in two stages: first creating nodes (entities), then
linking them with relationships. Integrity checks are applied
during loading to avoid duplicates and ensure efficient queries.
If a relationship cannot be created because one of its nodes is
missing, it is skipped and logged. Once loading is complete,
the system reports node and edge counts and runs sample
queries to confirm correctness.

Amazon Neptune (cloud).: For enterprise deployment, the
same export files are ingested into Amazon Neptune. During
development, Amazon’s Simple Storage Service (S3) was not
available, so loading followed the same step-by-step process as
Neo4j: adding nodes and edges in batches and validating their
identifiers and labels. While this approach is slower than bulk
loading, it was sufficient for testing and schema validation.

For production use, however, Neptune’s high-speed bulk
loader should be used. This loader operates through S3 buck-
ets, which are essentially secure cloud-based folders where
data files are stored. The loader reads directly from these
buckets, allowing parallel ingestion, automatic retries, and
built-in monitoring. This makes S3-based loading far more
efficient and reliable for large datasets.

Summary.: Because both environments rely on the same
ontology-aligned exports, they yield equivalent graphs. Neo4j
is best suited for interactive exploration and rapid prototyping,
while Amazon Neptune provides a secure, scalable option for
production deployment.

VI. GRAPH EXPLORATION

This section presents three examples that demonstrate how
the knowledge graph integrates technical, geographic, and
socio-economic data within a single structure. The goal is
to show how different layers of information can be explored
together, enabling richer analysis and more informed decision-
making.

A. Example 1: Exploring a Distribution Transformer and Its
Subgraph

To illustrate the model in practice, a specific distribution
transformer (ID: 9078228) was selected. Its surrounding sub-
graph contains not only the connected electrical infrastructure
(high- and low-voltage assets) but also contextual information
such as smart meters, sensor alerts, addresses, postcodes, and
socio-economic indicators.

Figure 6 compares two views of the same system: the
traditional geospatial network model (left) and the graph-
based view (right). In the graph representation, the transformer
(shown in red) sits at the centre, with connections radiating
outward across both engineering and social layers. This high-
lights how a graph structure naturally links together data that
would otherwise be stored in separate silos.
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Fig. 6. Distribution transformer subgraph: traditional geospatial view (left)
and graph-based view (right). The transformer (red) anchors links across
engineering and social layers.

By zooming in step by step, these relationships become
clearer. At the first level (Figure 7), the transformer is linked
upstream to high-voltage nodes (purple) and downstream to
low-voltage nodes (green). This shows how the transformer
fits into the overall electrical hierarchy.
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Fig. 7. Zoom 1 — Transformer context. Upstream HV nodes (purple) and
downstream LV nodes (green).
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The next view (Figure 8) moves closer, showing low-voltage
joints (green) branching to multiple metering service points
(cyan). Each of these service points is linked to specific



customer addresses and postcodes, making the bridge from
network infrastructure to households explicit.
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Fig. 8. Zoom 2 — LV joints (green) branching to LV_MSPs (cyan), linked
to addresses and postcodes.

A further zoom (Figure 9) brings smart meters into focus.
Each meter is connected to sensor-originated alerts such as
voltage fluctuations or supply faults, with associated time-
series readings and summary statistics. This makes it possible
to move seamlessly from network topology into real-time
performance data.
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Fig. 9. Zoom 3 — Smart meters connected to sensor-originated alerts (e.g.,
voltage events), enriched with time-series and summary statistics.

Finally (Figure 10), the graph connects customer addresses
to postcodes, postcodes to datazones, and datazones to socio-
economic profiles such as Scottish Index of Multiple Depri-
vation (SIMD) scores.

This layered exploration shows how the graph enables end-
to-end navigation: from a transformer, through its connected
network, to the individual customers it serves, and finally to
the socio-economic characteristics of those communities.
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Fig. 10. Zoom 4 — Linking addresses and postcodes to datazones and socio-
economic profiles (e.g., SIMD).

B. Example 2: Identifying Rural Customers Near EV Chargers

This example examines how accessible electric vehicle
(EV) chargers are for rural customers, using realistic road-
network distance rather than simple straight-line distance. A
customer is considered “served” if at least one charging station
can be reached within 5km by road of their address.

The knowledge graph enables this calculation by linking
customer addresses to their nearest road nodes, connecting
chargers to road nodes in the same postcode, and then com-
puting the shortest path distance through the road network.
This produces a more practical measure of accessibility and
highlights where charger provision is weaker.
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Fig. 11. Rural customers within 5km by road of an EV charger. Orange =
Address, cyan = LV MSP, pink = ChargingStation. The large rural cluster (top
left) is served by only one charger, while the smaller cluster (bottom right)
has two chargers.

The results (Figure 11) highlight two contrasting situations.
In one case, a large rural cluster is covered by just one charger
within 5km, creating a potential vulnerability: if the charger
is unavailable, all nearby customers are left without accessible
charging. In contrast, a smaller rural cluster (Figure 12)
has two chargers within the same distance, providing greater
resilience and choice.



This analysis gives a useful first approximation of coverage,
but it also has limitations. Charger positions are estimated at
postcode level, and accessibility alone does not reveal the full
picture: understanding the actual EV penetration in each zone
is crucial for prioritising investment. Nevertheless, this simple
view provides a clear starting point for identifying underserved
areas and directing more detailed planning efforts.
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Fig. 12. Zoom into the smaller rural cluster. Customers here have access to
two chargers within 5km, offering higher resilience compared to the larger
cluster.

C. Example 3: Identifying Vulnerable Low-Demand Rural
Households

This example shows how the graph can be used to spot
potentially vulnerable rural households by combining elec-
tricity demand data from smart meters with socio-economic
indicators from SIMD. A household is flagged as at risk if it
meets all three criteria:

o Low demand — daily electricity use of <5kWh.

o High deprivation — located in a datazone with SIMD

decile <3.

o Rural location — classified as UR2 = RURAL.

Figure 13 shows all households that meet these conditions,
with connections traced from electrical assets to addresses,
postcodes, and socio-economic profiles.
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Fig. 13. Rural households meeting all three vulnerability filters: low demand
(<5kWh/day), high deprivation (SIMD <3), and rural classification.

A closer view is given in Figure 14, showing one example: a
household in SIMD decile 1 (most deprived) with smart-meter
readings of only 3—4 kWh/day—well below the UK average of
approximately 7-10kWh/day [29].

Low demand alone does not necessarily signal hard-
ship—some homes may simply be small or under-occupied.
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Fig. 14. Zoom into a single household in SIMD decile 1. The smart meter
records only 3—4 kWh/day, far below the UK average (=7-10kWh/day).

But when combined with high deprivation and rural iso-
lation, it can point to more concerning issues such as self-
rationing of energy, pre-payment constraints, or inefficient
housing. By linking engineering data with social context, the
graph provides a simple but powerful way to flag cases where
technical risk and social vulnerability overlap, offering
a foundation for more targeted customer support and policy
interventions.

VII. CASE STUDY: TOPOLOGICAL VULNERABILITY AND
SOCIOECONOMIC IMPACT OF NODE FAILURES

A. Overview and Related Work

Power interruptions do not affect all customers equally: the
same outage can impose very different burdens depending
on who experiences it and how resilient the surrounding
network is. Classical graph-theoretic studies of power grids
typically focus on structural properties—such as betweenness
centrality or degree distributions—and consistently show that
removing high-centrality components fragments the network
more severely than random failures [30, 31, 32, 33]. Yet
such purely topological measures neglect three critical as-
pects: (i) the number of customers actually disconnected,
(ii) the time required for restoration, and (iii) the social
vulnerability of the affected population. To overcome these
limitations, recent research has begun to augment structural
analysis with impact-based metrics (e.g., Customer Hours of
Outage) and socioeconomic indicators, producing assessments
that more closely reflect real-world consequences [3, 13, 34].
Building on this trajectory, the present case study employs
the knowledge graph to integrate failure likelihood, technical
impact, and social vulnerability within a single, queryable
model—enabling analyses that account for both engineering
risk and equity considerations.

B. Objectives

The case study focuses on a section of SPEN’s distribution

network (the pilot region) with four aims:

1) Quantify reliability risks by estimating failure proba-
bilities and expected repair durations for different asset
types.

2) Assess customer impacts by simulating single-node
failures and calculating Customer Minutes of Interrup-
tion (CMI).



3) Measure social context through a Social Vulnerability
Index (SVI) derived from SIMD 2020 scores and the
Urban/Rural Classification.

Integrate technical and social factors by combining
CMI and SVI into a composite criticality score that
supports planning decisions balancing reliability and
equity.

4)

C. Methodology

1) Failure Likelihood from External Outage Data: Un-
planned outage records from Electricity North West (ENWL)
[35] are used as a proxy to estimate annual failure rates
for SPEN. This approach relies on the assumption that the
underlying failure processes—such as asset ageing, weather-
related events, and operational practices—are sufficiently sim-
ilar across UK DNOs to allow transferability of statistics. To
ensure consistency with RIIO-ED1 reporting standards, only
events after 2015 are included. Each event is classified by asset
category a, cause c, and voltage level v € LV, HV.

The mean annual outage frequency for each class (a,c,v)
is:

ENWL
ENWL __ a,c,v
)‘a,c,v - T 9 (1)

where NENWE is the number of ENWL outages observed in

that class over the period, and 7' is the number of years of
data.

Because ENWL and SPEN serve different customer bases,
the rate is scaled by the ratio of total customers:

SPD

a,c,v

2

where CSPP is the number of customers in the pilot area and
CENWL js ENWL’s total customer base. This scaling assumes
that outage exposure is proportional to customer numbers,
meaning that larger customer bases imply proportionally more
assets and therefore more outage events.

Finally, to obtain a per-asset failure rate (failures per asset
per year), the scaled frequency is divided by the number of
relevant SPD assets:

SPD
a,c,v
TG»C,U = SPD ’ (3)
a,c,v
where A5TD is the count of SPD assets of type a at voltage

v subject to cause c. This formulation assumes that all assets
within a given class (a,v) are statistically homogeneous with
respect to the failure causes considered.

Thus, 74, gives a normalised failure likelihood that can
be applied across the pilot network in subsequent simulations.

2) Repair Duration and Downtime: Repair durations are
taken from the same ENWL outage dataset. For each asset
class (a, ¢, v), the 75th percentile duration D7?, ,, is used rather
than the mean, providing a conservative estimate that better
reflects tail risks of long repairs. The transfer of repair times
from ENWL to SPD assumes that repair time distributions in
the two regions are comparable, and that the 75th percentile
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provides a suitable balance between typical and worst-case
outcomes.

The expected annual downtime for an asset of type a at
voltage v is then:

Downtime, , = Z Ta,c,v DZFC,U. 4)
C

Here, the sum covers all relevant failure causes, producing the

expected number of outage-minutes per year for a single asset.

3) Customer-Impact Simulation: In the distribution net-
work, supply must always follow a valid path: current flows
downstream from a Primary Transformer (EHV), through one
or more Distribution Transformers (HV/LV), and finally to
the individual Low-Voltage Metering Service Points (MSPs).
A path is therefore considered valid only if it connects an MSP
back to a primary transformer through this sequence of assets.
This assumes radial operation of feeders and does not account
for normally open points or real-time reconfiguration beyond
the static connectivity recorded in the dataset.

Using the knowledge graph, these supply paths are traced
for every MSP. Assets that appear on all valid paths to an MSP
are classified as critical nodes, since their failure necessarily
disconnects the MSP (no alternative route exists).

The number of households dependent on node n is then:

> )

meENMSsP,n

Ncust,n = Hma

where Nyisp ,, is the set of MSPs whose supply always tra-
verses n, and H,,, is the number of households served at MSP
m. The calculation assumes that household counts remain
constant over the analysis period and that each household
contributes equally to interruption impact.

The annual Customer Minutes of Interruption (CMI) at-
tributable to node n is:

CMI, (6)

where (a, v) denotes the asset type and voltage level of . This
formulation combines asset reliability with network structure
and customer counts, providing a practical measure of service
impact.

4) Social Vulnerability Index (SVI): Beyond technical out-
age impacts, a social vulnerability index was developed to
reflect how different populations experience inequities dur-
ing interruptions. The construction followed two steps. First,
SIMD 2020 deciles (income, employment, health, educa-
tion, housing, access, crime) and the Urban—Rural Classifi-
cation (UR6) were rescaled to [0,1] using indicator-specific
curves, capturing nonlinear effects such as the heightened
risks of poor health or geographic remoteness. It is as-
sumed that these indicators remain representative over the
study horizon, and that the chosen rescaling functions ad-
equately capture the marginal risks of deprivation. Second,
LV MSPs were ranked with multi-objective Pareto dominance
(pymoo.NonDominatedSorting () [36]), ensuring that
high deprivation in one dimension cannot be masked by better
performance in another.

= Ncust,n Downtlmea,U7



Since a single node can affect many MSPs with different
profiles, results were aggregated by computing a household-
weighted Pareto score. This assumes that vulnerability con-
tributions are additive across households and that weighting
by household count provides a fair proxy for aggregate social
exposure. The result is a node-level SVI in [0, 1] that reflects
both the vulnerability of the affected areas and the size of the
population impacted.

5) Unified Criticality Score: To balance technical and so-
cial aspects, both CMI,, and SVI,, are min—max scaled to the
interval [0, 1]:

CMI,, SVI,, € [0,1].

The unified criticality score is then defined as:

Crit, = aCMIL, + BSVI,, a+8=1, (7

where o controls the weight on technical interruption impact
and [ controls the weight on social vulnerability. Equal
weighting (« = B = 0.5) is used in the base case, though
sensitivity analysis can explore alternative policy preferences.
Nodes with high Crit,, represent locations where both outage
risk and population vulnerability are concentrated, making
them natural priorities for resilience planning and investment.

D. Results and Discussion

In the graph, every electrical asset is linked to a
CriticalityScore node that captures not only the num-
ber of customers affected but also their social vulnerability (see
Figure 15). This means high-risk components can be identified
directly through queries, without the need to rerun simulations.
The stored values also make it straightforward to reproduce
results and experiment with different weighting schemes.

Criticalit-
yScore

Fig. 15. Graph representation of an electric node (Busbar) and its associated
CriticalityScore node. The criticality score shown was calculated using
a weight of & = 0.7 for technical impact and 5 = 0.3 for social vulnerability.

Sensitivity to weighting.: Changing the balance between
technical and social factors produces different priorities. When
technical impact is emphasised (« > 0.5), large assets such as
Primary Transformers dominate the ranking because of their
wide reach and longer repair times. When social vulnerability
is emphasised (8 > 0.5), smaller assets in deprived or remote
areas move up the list, despite affecting fewer customers. A
balanced weighting produces a mixed shortlist, highlighting
both types of risk.
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Archetypes and planning implications.: Across the net-
work, three broad patterns appear. Some assets have high tech-
nical impact but low vulnerability; these are systemic hubs best
managed through reinforcement, switching options, or stronger
protection. Others serve fewer customers but are located in
socially vulnerable areas; here, targeted interventions such as
faster restoration or backup supply may be more appropriate.
A third group combines both high technical and high social
risk; these are few in number but deserve the highest priority
for investment and contingency planning.

Geographic patterns.: The two perspectives also high-
light different areas on the map. Technical weighting points
to hubs around substations and main feeders. Social weighting
shifts attention to remote rural areas and pockets of deprivation
in urban settings. This contrast underlines the need to align
engineering reinforcement with community-focused measures.

Operational use.: Because both the technical (CMI,,) and
social (SVI,,) components are stored alongside the combined
score, operators can flexibly adjust the weights to match policy
goals, generate alternative rankings under different assump-
tions, and link the results to planned maintenance programmes.
In practice, giving more weight to « prioritises security of
supply, while raising 3 reflects commitments to equity.

Robustness and limitations.: The rankings remain stable
under different assumptions about repair times and outage
causes, which makes the approach reliable for first-order
screening. Still, the method simplifies reality by assuming in-
dependent single-node failures, ignoring cascading effects, and
not modelling power flows. Future extensions could include
load-flow analysis, restoration strategies, or asset-condition
data to refine failure probabilities.

VIII. CONCLUSIONS

This paper has shown that electricity distribution networks
can be represented as multi-layer knowledge graphs that
bring together technical assets, geospatial context, and socio-
economic indicators in a single, ontology-aligned model.
Heterogeneous datasets were mapped to a domain ontology
and processed through a reproducible ETL pipeline, creating
a shared vocabulary and relationship structure across do-
mains. The resulting graph supports flexible, cross-domain
queries—such as identifying vulnerable households or assess-
ing EV-charger accessibility—without changing query logic.

Deployment was demonstrated in both Neo4j (for local
prototyping) and Amazon Neptune (for enterprise-scale use),
using a common OpenCypher export to guarantee portability
across engines. In the case study on node criticality, the
graph combined failure likelihood, expected downtime (CMI),
and a Social Vulnerability Index (SVI) into a single tunable
score. Adjusting the balance between technical and social
weights produced complementary insights: large hubs emerged
as priorities under technical weighting, while smaller assets in
deprived or rural areas were highlighted when social vulnera-
bility was emphasised.

The study has some limitations. The network topology is
simplified, power-flow constraints are not included, and the



model operates on static snapshots rather than real-time data.
These choices ensured tractability but mean the framework
is not yet a full digital twin. Future work should integrate
operational parameters such as transformer capacities, extend
spatial hierarchies, test the approach on meshed networks,
and support near real-time data ingestion from smart meters
and EV infrastructure. Incorporating utility-governed datasets
would further improve coverage and accuracy.

Practical relevance. The framework has value for both
public and private stakeholders. Policymakers can use it as a
transparent and flexible tool to plan interventions that balance
infrastructure resilience with social fairness, helping to target
investment where technical and social risks overlap. For distri-
bution network operators, it acts as a decision-support system
for asset management, reinforcement planning, and demand
forecasting, while also strengthening trust with communities.

In summary, ontology-aligned knowledge graphs offer a
portable and extensible way to bridge engineering and socio-
economic perspectives. They enable decisions that are not
only technically robust but also socially equitable, laying the
foundation for more resilient energy systems.
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