
Academic Editor: Pedro Bullon

Received: 7 April 2025

Revised: 4 May 2025

Accepted: 12 May 2025

Published: 14 May 2025

Citation: Pilar Fernández-Figares

Vicioso, M.; Riutord Sbert, P.; López-

González, Á.A.; Ramírez-Manent, J.I.;

del Barrio Fernández, J.L.; Herrero,

M.T.V. Risk of Insulin Resistance:

Comparison of the Commerce vs.

Industry Sector and Associated

Variables. Diseases 2025, 13, 150.

https://doi.org/10.3390/

diseases13050150

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Risk of Insulin Resistance: Comparison of the Commerce
vs. Industry Sector and Associated Variables
María Pilar Fernández-Figares Vicioso 1 , Pere Riutord Sbert 2 , Ángel Arturo López-González 1,2,* ,
José Ignacio Ramírez-Manent 2,3,4 , José Luis del Barrio Fernández 5 and María Teófila Vicente Herrero 1,2

1 Obesity and Metabolic Syndrome Group, Spanish Association of Specialists in Occupational Medicine,
28012 Madrid, Spain; pfigares@gmail.com (M.P.F.-F.V.); correoteo@gmail.com (M.T.V.H.)

2 ADEMA-Health Group of IUNICS, University of Balearic Islands, 07122 Palma, Spain;
pereriutord@gmail.com (P.R.S.); jignacioramirez@telefonica.net (J.I.R.-M.)

3 Health Research Institute of the Balearic Islands (IDISBA), 07120 Palma, Spain
4 Faculty of Medicine, University of Balearic Islands, 07122 Palma, Spain
5 Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain; jose.delbarrio@urjc.es
* Correspondence: angarturo@gmail.com

Abstract: Background: Insulin resistance (IR) is a key metabolic alteration that precedes
type 2 diabetes and is closely linked to obesity and lifestyle factors. Occupational context
may influence IR risk through variations in physical activity, diet, and socioeconomic
determinants. Objective: To compare the risk of insulin resistance between workers in the
commerce and industry sectors and identify associated sociodemographic and lifestyle
factors, in order to improve their occupational health. Methods: This cross-sectional study
analyzed data from 56,856 Spanish workers, assessing four IR-related indices: Triglyceride-
Glucose Index (TyG), TyG-BMI (Triglyceride-Glucose Body Mass Index), Metabolic Score
for Insulin Resistance (METS-IR), and the Single-Point Insulin Sensitivity Estimator (SPISE-
IR). The analysis was stratified by sex and sector (commerce vs. industry) and included
assessments of age, education level, physical activity, adherence to the Mediterranean
diet, and smoking status. Multinomial logistic regressions were performed to determine
the factors associated with high IR scores. Results: Across all IR indicators, industry
workers—particularly men—presented higher mean values and greater prevalence of high-
risk scores compared to those in commerce. Women showed lower values overall but also
reflected sector-based differences. In both sexes, non-physical activity, non-adherence to
the Mediterranean diet, and smoking were consistently associated with higher IR risk.
Males exhibited significantly higher odds of elevated TyG (OR = 2.59, 95% CI: 2.41–2.78),
while physical inactivity and poor diet emerged as the most powerful modifiable predictors
across all scales (e.g., OR = 10.45 for TyG, OR = 12.33 for TyG-BMI). Industry sector was
independently associated with higher odds of insulin resistance compared to commerce.
Conclusions: Insulin resistance is more prevalent among industrial workers, especially
men and those with unhealthy lifestyles. Occupational health strategies should target
sector-specific risk profiles, emphasizing physical activity and dietary interventions.

Keywords: insulin resistance; sociodemographic variables; Mediterranean diet; physical
activity; occupational health

1. Introduction
Insulin resistance (IR) is a complex pathophysiological phenomenon that has gained

increasing importance in the fields of preventive medicine and biomedical research, due
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to its central role in the onset and progression of various non-communicable chronic dis-
eases [1]. Among these, type 2 diabetes mellitus (T2DM) [2], non-alcoholic fatty liver disease
(NAFLD) [3], dyslipidemia [4], arterial hypertension [5], and cardiovascular diseases [6] are
particularly notable, as well as certain types of cancer [7]. It is estimated that a significant
proportion of the global adult population—nearly one in four individuals—exhibits some
degree of insulin resistance, often without overt clinical manifestations, which underscores
its relevance as a major public health challenge [8].

Insulin, secreted by pancreatic β-cells, is essential for maintaining energy homeosta-
sis [9]. It facilitates glucose uptake in insulin-sensitive tissues such as skeletal muscle
and adipose tissue [10], regulates lipogenesis [11] and protein synthesis [12], and inhibits
hepatic gluconeogenesis [13]. In the context of IR, these physiological functions become im-
paired, leading to compensatory hyperinsulinemia and systemic metabolic dysfunction [14].
IR is a multifactorial process influenced by genetic, epigenetic, environmental, and behav-
ioral factors [15–18]. Excess visceral fat plays a central role by disrupting insulin signaling
through the release of free fatty acids and pro-inflammatory molecules [19–21], such as
TNF-α and IL-6, along with a reduction in protective adipokines like adiponectin [22].
At the molecular level, IR is associated with alterations in the insulin receptor signaling
cascade [23–25], ultimately impairing cellular glucose uptake [26].

IR is influenced by multiple factors, with central obesity being one of the most rele-
vant [27]. Other contributing factors include physical inactivity [28], a high-calorie diet [29],
chronic stress [30], aging [31], sleep disorders [32], and genetic predisposition [33]. Addi-
tionally, certain ethnic groups, such as Native Americans, Afro-descendants, and people
from Southeast Asia, are at higher risk due to genetic variants that affect insulin action [34].

The socioeconomic environment also influences the risk of IR. Factors such as poverty,
food insecurity, disorganized urbanization, and limited access to healthy foods promote
obesogenic environments [35]. Furthermore, chronic stress, precarious working conditions,
and adverse childhood experiences increase vulnerability to metabolic disorders related to
insulin resistance [36].

Despite its high prevalence, IR often remains underdiagnosed, partly due to the
absence of universal diagnostic criteria. The most accurate method for assessing IR is the
hyperinsulinemic-euglycemic clamp, considered the gold standard, although its complexity
restricts its use to research settings [37]. In routine clinical practice, indirect methods are
more commonly used, such as HOMA-IR [38], which relies on fasting glucose and insulin
levels, as well as QUICKI [39] and the Matsuda index [40], derived from oral glucose
tolerance tests.

In recent years, novel indices that do not require insulin measurements have emerged
and have been validated as reliable markers of IR in population-based studies:

• TyG index (Triglyceride-Glucose index) [41]: This marker has proven to be a practical
and cost-effective substitute for detecting insulin resistance, with good correlation to
the hyperinsulinemic clamp.

• METS-IR (Metabolic Score for Insulin Resistance) [42]: This index incorporates BMI,
glucose, triglycerides, and HDL cholesterol into its formula and has shown high
predictive capacity for identifying IR across diverse populations.

• SPISE (Single Point Insulin Sensitivity Estimator) [43]: Designed primarily for ado-
lescents and young adults, it is based on triglycerides, HDL cholesterol, and body
mass index. It has demonstrated utility in estimating insulin sensitivity without
requiring insulin measurements, making it especially useful for large cohorts or
low-resource settings.
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Additionally, several clinical and biochemical markers have been associated with
IR, including waist circumference, the triglyceride/HDL ratio, high-sensitivity C-reactive
protein (hs-CRP), and proteins such as fetuin-A, resistin, and RBP4 [44–47].

IR contributes not only to the development of type 2 diabetes but also to significant
metabolic and systemic dysfunctions. It is associated with endothelial dysfunction [48],
inflammation [49], and increased platelet reactivity [50], all of which elevate cardiovascular
risk. IR is linked to progressive forms of non-alcoholic fatty liver disease (NAFLD), such as
non-alcoholic steatohepatitis (NASH) [51], as well as to reproductive disorders including
polycystic ovary syndrome (PCOS) [52], male infertility [53], gestational diabetes [54],
and preeclampsia [55]. Recent evidence also associates IR with cognitive decline and
neurodegenerative diseases, such as Alzheimer’s disease [56].

The rising prevalence of IR is placing an increasing burden on healthcare systems.
Early detection and preventive strategies are key to mitigating its impact. Numerous
studies have shown that lifestyle modifications—including weight loss, physical activity, a
healthy diet, and stress management—can reverse IR in its early stages [57].

IR is a central pathophysiological factor in multiple chronic diseases. Addressing it
requires a multidisciplinary approach that considers both biological mechanisms and social
determinants of health. In a context marked by sedentary lifestyles and social inequality,
effective and sustainable preventive policies are essential. Only coordinated action across
research, clinical practice, and public health can reduce the silent yet profoundly disruptive
impact of this metabolic alteration.

This study aimed to explore differences in the risk of IR between workers in the com-
merce and industry sectors by analyzing a broad range of sociodemographic, clinical, and
behavioral variables. Using validated surrogate markers—TyG, TyG-BMI (Triglyceride-
Glucose Body Mass Index), METS-IR, and SPISE—the findings provide a comprehen-
sive overview of how occupational environments and lifestyle factors interact in shaping
metabolic risk. In order to improve the occupational health of these workers.

2. Methods
2.1. Study Design and Population

A cross-sectional descriptive study was conducted, involving a cohort of 56,856 work-
ing individuals from the commerce and industry sectors. Of the total participants,
43,984 were men and 12,872 were women. The sample comprised individuals who attended
occupational health examinations between January 2017 and December 2019. The selection
process for study participants is illustrated in the corresponding flowchart (Figure 1).
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• Explicitly authorize the use of their data for research purposes. 
• Be employed by companies included in the study and not be on medical leave at the 

time of assessment. 

2.3. Data Collection 

Information was collected by trained healthcare professionals affiliated with the oc-
cupational health services of the participating companies. Data collection was carried out 
through three main strategies: 

1. Structured Clinical Interview: Sociodemographic variables (age, sex, education level) 
and health-related behaviors such as smoking, dietary patterns, and physical activity 
were recorded. 

2. Physical and Clinical Measurements: Anthropometric data (weight, height, waist and 
hip circumferences) and blood pressure parameters (systolic and diastolic) were col-
lected. 

3. Biochemical Analyses: Blood lipid profiles and glucose levels were assessed. 

To ensure data quality and reliability, all measurements were standardized accord-
ing to established technical protocols: 

• Weight and height: Measured with the subject barefoot and wearing only underwear, 
standing upright, using a SECA 700 scale (SECA, Chino, CA, USA) and a SECA 220 
stadiometer (SECA, Chino, CA, USA). 

• Body circumferences: Measured using SECA measuring tape (SECA, Chino, CA, 
USA). Waist circumference was measured at the level of the last floating rib, while 
hip circumference was taken at the widest part of the buttocks. Both measurements 
were performed with the subject standing and abdomen relaxed. 

• Blood pressure: Measured with an automatic sphygmomanometer OMRON-M3 
(OMRON, Osaka, Japan), with the participant seated and after a minimum of ten 
minutes of rest. Three consecutive readings were taken at one-minute intervals, and 
the average of the three was recorded. 

Figure 1. PRISMA diagram illustrating the participant selection process for this study.
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2.2. Eligibility Criteria

To be included in the study, individuals had to meet the following criteria:

• Be between 18 and 69 years of age.
• Provide informed consent for participation.
• Explicitly authorize the use of their data for research purposes.
• Be employed by companies included in the study and not be on medical leave at the

time of assessment.

2.3. Data Collection

Information was collected by trained healthcare professionals affiliated with the oc-
cupational health services of the participating companies. Data collection was carried out
through three main strategies:

1. Structured Clinical Interview: Sociodemographic variables (age, sex, education level)
and health-related behaviors such as smoking, dietary patterns, and physical activity
were recorded.

2. Physical and Clinical Measurements: Anthropometric data (weight, height, waist
and hip circumferences) and blood pressure parameters (systolic and diastolic)
were collected.

3. Biochemical Analyses: Blood lipid profiles and glucose levels were assessed.

To ensure data quality and reliability, all measurements were standardized according
to established technical protocols:

• Weight and height: Measured with the subject barefoot and wearing only underwear,
standing upright, using a SECA 700 scale (SECA, Chino, CA, USA) and a SECA 220
stadiometer (SECA, Chino, CA, USA).

• Body circumferences: Measured using SECA measuring tape (SECA, Chino, CA,
USA). Waist circumference was measured at the level of the last floating rib, while hip
circumference was taken at the widest part of the buttocks. Both measurements were
performed with the subject standing and abdomen relaxed.

• Blood pressure: Measured with an automatic sphygmomanometer OMRON-M3 (OM-
RON, Osaka, Japan), with the participant seated and after a minimum of ten minutes of
rest. Three consecutive readings were taken at one-minute intervals, and the average
of the three was recorded.

• Blood samples: Collected via venipuncture after a minimum 12-h fast. The samples
were processed as follows: An 8.5 mL BD SST II Vacutainer serum tube with gel
separator (reference BD 366468) was used. The samples were transported to the
laboratory in a refrigerated container (between 5 and 10 degrees Celsius). Upon arrival,
the samples were centrifuged within two hours of collection and immediately analyzed
using an automated analyzer [58,59]. LDL was calculated using the Friedewald
formula, except in cases with triglycerides ≥400 mg/dL, for which direct measurement
was used [60]. All biochemical variables are reported in milligrams per deciliter
(mg/dL).

2.3.1. Operational Definitions of Variables

• Biological sex: Classified as male or female.
• Education level: Grouped into two categories: basic education (primary) and higher

education (secondary or tertiary).
• Tobacco use: Individuals were considered smokers if they had smoked daily in the

past 30 days or had quit smoking within the last 12 months.
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• Adherence to the Mediterranean diet: Assessed using a 14-item binary questionnaire
(score 0–1). A score of 9 or higher indicated good adherence [61].

• Physical activity: Measured using the International Physical Activity Questionnaire
(IPAQ), which evaluates the frequency, duration, and intensity of activities performed
during the previous seven days [62].

2.3.2. Insulin Resistance Risk Scales

The Triglyceride-Glucose Index (TyG) is derived using the natural logarithm of the
product of fasting triglyceride in mg/dL and glucose in mg/dL levels divided by two:
TyG = ln[(triglycerides × glucose)/2]. A threshold value of 8.5 or greater is commonly
interpreted as indicative of elevated insulin resistance risk [63].

The Single-Point Insulin Sensitivity Estimator (SPISE) is computed with the following
formula: SPISE = (600 × HDL0.185)/(triglycerides0.2 × BMI1.338). Insulin resistance accord-
ing to this model is expressed as SPISE-IR = 10/SPISE, and individuals scoring 1.51 or
higher on this inverse scale are classified as high-risk [64].

The Metabolic Score for Insulin Resistance (METS-IR) incorporates lipid and glycemic
variables alongside body mass index. It is calculated using the formula: METS-IR =
ln(2 × glucose) + (triglycerides × BMI)/ln(HDL cholesterol). A value of 50 or above
suggests an increased likelihood of insulin resistance [65].

2.4. Statistical Analysis

Univariate analysis of categorical variables was performed using absolute frequencies
and percentages. Continuous variables were summarized using means and standard
deviations due to their normal distribution. Group comparisons were conducted using
the chi-square test or Fisher’s exact test when appropriate. The Student’s t-test was used
for mean comparisons. Multivariable analysis was conducted using multinomial logistic
regression to explore associations between independent variables and categories of insulin
resistance risk scales, calculating odds ratios with 95% confidence intervals. Model fit
was assessed using the Hosmer–Lemeshow test. Stratified analyses were conducted to
identify potential confounding factors. The model was adjusted for age, sex, education,
diet, physical activity, and smoking; however, no significant effects were detected. All
statistical analyses were conducted using SPSS software, version 29.0 for Windows (IBM
Corp., New York, NY, USA), with a significance level set at p < 0.05.

3. Results
Significant differences were observed between commerce and industry workers, par-

ticularly among women. Female industry workers were older, heavier, and had higher
waist circumference, blood pressure, and a less favorable lipid profile compared to those in
commerce. In men, differences were generally smaller, though industry workers showed
slightly higher systolic blood pressure, glucose, and lipid levels.

Younger age and higher physical activity and Mediterranean diet adherence were
more common in the commerce sector across both sexes. Educational attainment was
lower among commerce workers, especially women. Smoking was more prevalent among
industrial men, while no difference was found in women (Table 1).

These findings underscore notable sector-specific differences in metabolic and
lifestyle profiles, especially among women, with potential implications for occupational
health strategies.
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Table 1. Characteristics of the population.

Header

Men Women

Commerce
n = 18,160

Industry
n = 25,824

Commerce
n = 9288

Industry
n = 3584

Mean (SD) Mean (SD) p-Value Mean (SD) Mean (SD) p-Value

Age (years) 39.5 (9.8) 39.4 (10.5) 0.225 35.9 (10.1) 41.6 (10.5) <0.001
Height (cm) 175.0 (6.7) 173.9 (7.0) <0.001 162.0 (6.4) 160.9 (6.5) <0.001
Weight (kg) 81.5 (12.5) 81.3 (14.2) 0.064 65.3 (13.4) 68.8 (14.0) <0.001

Waist circumference (cm) 87.5 (8.8) 87.7 (9.0) 0.121 73.7 (7.5) 75.1 (8.0) <0.001
Hip circumference (cm) 100.6 (7.9) 99.6 (8.4) <0.001 97.0 (8.9) 98.1 (9.4) <0.001

SBP (mmHg) 122.6 (14.4) 124.5 (5.0) 0.024 112.6 (14.2) 117.9 (16.2) <0.001
DBP (mmHg) 74.5 (10.2) 75.6 (10.5) 0.170 68.9 (9.8) 71.5 (10.7) <0.001

Total cholesterol (mg/dL) 193.9 (37.4) 197.5 (38.6) <0.001 189.4 (35.4) 201.1 (39.3) <0.001
HDL-cholesterol (mg/dL) 51.1 (6.7) 51.4 (7.0) <0.001 54.5 (7.9) 52.3 (7.5) <0.001
LDL-cholesterol (mg/dL) 119.4 (37.7) 121.9 (37.2) <0.001 117.7 (35.6) 130.6 (38.8) <0.001

Triglycerides (mg/dL) 119.3 (81.3) 122.4 (84.6) <0.001 85.4 (37.6) 90.8 (45.8) <0.001
Glucose (mg/dL) 86.3 (11.9) 88.7 (12.9) <0.001 84.2 (10.6) 84.3 (11.9) 0.210

(%) (%) p-value (%) (%) p-value

18–29 years 17.7 20.3 <0.001 32.1 16.5 <0.001
30–39 years 31.8 31.7 32.6 26.9
40–49 years 33.6 28.5 23.6 31.0
50–59 years 14.7 16.7 10.3 23.4
60–69 years 2.2 2.8 1.4 2.2

Elementary school 52.4 36.7 <0.001 90.1 83.7 <0.001
High school 47.6 63.3 9.9 16.3

Non Physical activity 51.5 55.4 <0.001 42.7 59.4 <0.001
Yes Physical activity 48.5 44.6 57.7 40.6

Non Mediterranean diet 56.1 59.8 <0.001 44.4 59.8 <0.001
Yes Mediterranean diet 43.9 40.2 55.6 40.2

Non smokers 70.5 63.0 <0.001 68.0 67.2 0.181
Smokers 29.5 37.0 32.0 32.8

SBP Systolic blood pressure. DBP Diastolic blood pressure. HDL High density lipoprotein. LDL Low density
lipoprotein, SD Standard deviation.

The analysis of insulin resistance (IR) indices across sectors revealed consistent differ-
ences by sex, age, education level, and health behaviors. Across all age groups and scales
(TyG, TyG-BMI, METS-IR, SPISE), both men and women in the industry sector showed
higher mean values and a greater prevalence of elevated IR, indicating a less favorable
metabolic profile compared to commerce workers.

In men, IR increased progressively with age across all scales, with the highest means
and proportions of high values observed in those aged 60–69. Women followed a similar
age-related trend, though the differences were more pronounced in industry workers,
particularly for the TyG-BMI and SPISE-IR indices.

Lower educational attainment was associated with higher IR, especially among
women. Those with only elementary education consistently showed higher means and
prevalence rates across all indices, more markedly so in the industrial sector.

Physical activity (PhA) and adherence to the Mediterranean diet (MD) were strongly
associated with lower IR levels. Physically active individuals and those adhering to MD
consistently showed significantly lower mean scores and lower prevalence of elevated IR
across all scales and both sectors, with more favorable profiles in commerce.

Smoking was associated with higher IR in both sexes. Smokers in the industry sector
showed particularly elevated mean values and higher proportions of IR, especially for TyG-
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BMI and SPISE-IR, suggesting a potential interaction between occupational environment
and unhealthy habits.

These findings underscore the influence of occupational sector, lifestyle behaviors,
and sociodemographic variables on insulin resistance, with consistently less favorable
metabolic profiles in industry workers—particularly among older, less educated, sedentary,
and smoking individuals. These insights may inform targeted prevention strategies and
workplace health interventions. (Tables 2 and 3).

The multinomial logistic regression analysis identified several sociodemographic and
lifestyle factors independently associated with elevated insulin resistance (IR) as measured
by TyG, TyG-BMI, METS-IR, and SPISE-IR indices (Table 4).

Sex differences were prominent: men had significantly higher odds of elevated TyG
(OR: 2.59; 95% CI: 2.41–2.78) and TyG-BMI, whereas they were less likely to present high
METS-IR values (OR: 0.84; 95% CI: 0.77–0.92). The association with SPISE-IR was modest
but positive (OR: 1.11).

Age showed a clear dose-response pattern. Compared to the youngest group
(18–29 years), older individuals exhibited progressively higher odds of elevated IR across
all indices. Notably, those aged 60–69 had the highest odds, especially for METS-IR (OR:
2.37; 95% CI: 1.95–2.79) and SPISE-IR (OR: 1.96; 95% CI: 1.66–2.27), highlighting age as a
strong determinant of metabolic risk.

Educational level was modestly associated with IR. Individuals with high school
education showed slightly higher odds across all indices, suggesting that education alone
may not fully mitigate metabolic risk.

Occupational sector was an independent predictor: workers in the industry sector had
significantly higher odds of elevated IR for all indices, particularly for METS-IR (OR: 1.37;
95% CI: 1.28–1.47), suggesting sector-specific environmental or behavioral risk exposures.
The differences between the industrial and commercial sectors in men were statistically
significant, although less pronounced than in women. This suggests that, in males, the
influence of the occupational sector on the analyzed indicators may be less determinant.

Lifestyle behaviors showed the strongest associations. Lack of physical activity was
the most influential factor, with ORs ranging from 8.31 (SPISE-IR) to 12.33 (TyG-BMI), indi-
cating a ten- to twelvefold increased risk of insulin resistance among inactive individuals.
Similarly, low adherence to a Mediterranean diet was strongly associated with elevated IR
(e.g., OR for TyG-BMI: 5.29; 95% CI: 4.80–5.79).

Finally, smoking was independently associated with higher odds of elevated IR,
although the effect sizes were smaller (e.g., OR for TyG: 1.53; 95% CI: 1.46–1.61). The
effect of the occupational sector was independent of diet, education, physical activity, and
smoking, as shown by the multivariable regression analysis.

These findings emphasize the critical role of modifiable behaviors—especially physical
inactivity and poor dietary habits—in shaping insulin resistance risk, independently of
sex, age, education, and occupational context. Targeted interventions at the workplace and
population levels may help address these disparities.



Diseases 2025, 13, 150 8 of 18

Table 2. Mean of different scales of insulin resistance according sociodemographic variables and healthy habits by sex.

TyG * TyG-BMI * METS-IR * SPISE-IR *

Commerce Industry Commerce Industry Commerce Industry Commerce Industry

Men n Mean
(SD) n Mean

(SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean
(SD) n Mean (SD) n Mean

(SD)

18–29 years 3224 8.1 (0.5) 5248 8.2 (0.5) 3224 204.2 (34.2) 5248 205.8 (39.3) 3224 34.7 (6.5) 5248 34.9 (5.8) 3224 1.4 (0.4) 5248 1.5 (0.4)
30–39 years 5768 8.3 (0.5) 8184 8.4 (0.6) 5768 217.5 (36.2) 8184 225.5 (43.8) 5768 37.3 (6.2) 8184 38.5 (7.5) 5768 1.6 (0.4) 8184 1.7 (0.5)
40–49 years 6104 8.5 (0.5) 7360 8.6 (0.6) 6104 231.0 (39.0) 7360 238.1 (45.2) 6104 39.6 (6.6) 7360 40.8 (7.7) 6104 1.7 (0.4) 7360 1.8 (0.5)
50–59 years 2664 8.6 (0.6) 4312 8.7 (0.5) 2664 241.0 (38.1) 4312 244.8 (38.7) 2664 41.2 (6.7) 4312 42.0 (6.7) 2664 1.8 (0.4) 4312 1.9 (0.4)
60–69 years 400 8.7 (0.5) 720 8.8 (0.5) 400 249.6 (35.4) 720 251.3 (34.4) 400 42.4 (6.0) 720 43.7 (6.7) 400 1.9 (0.5) 720 2.0 (0.5)
Elementary 9512 8.4 (0.6) 9480 8.5 (0.6) 9512 225.7 (37.8) 9480 229.0 (45.3) 9512 38.9 (6.6) 9480 39.1 (7.8) 9512 1.7 (0.4) 9480 1.8 (0.5)
High school 8648 8.3 (0.6) 16,344 8.4 (0.6) 8648 222.1 (40.3) 16,344 223.8 (42.0) 8648 38.0 (6.9) 16,344 38.6 (7.3) 8648 1.6 (0.4) 16,344 1.7 (0.5)

Non PhA 9344 8.6 (0.5) 14,304 8.7 (0.6) 9344 249.9 (35.1) 14,304 253.6 (39.6) 9344 42.9 (6.2) 14,304 43.5 (6.9) 9344 1.9 (0.4) 14,304 2.0 (0.4)
Yes PhA 8816 8.0 (0.4) 11,520 8.1 (0.4) 8816 194.3 (22.0) 11,520 196.2 (19.1) 8816 33.3 (3.6) 11,520 34.3 (3.2) 8816 1.3 (0.2) 11,520 1.4 (0.2)
Non MD 10,184 8.6 (0.6) 15,440 8.7 (0.6) 10,184 245.3 (37.2) 15,440 249.5 (41.2) 10,184 42.1 (6.6) 15,440 42.7 (7.2) 10,184 1.9 (0.4) 15,440 2.0 (0.5)
Yes MD 7976 8.0 (0.4) 10,384 8.1 (0.4) 7976 193.9 (22.0) 10,384 196.4 (19.5) 7976 33.3 (3.7) 10,384 33.8 (3.3) 7976 1.3 (0.2) 10,384 1.4 (0.2)

Non smokers 12,808 8.3 (0.6) 16,280 8.4 (0.6) 12,808 222.7 (43.2) 16,280 223.7 (41.8) 12,808 38.3 (7.7) 16,280 38.8 (7.8) 12,808 1.6 (0.4) 16,280 1.7 (0.5)
Smokers 5352 8.4 (0.6) 9544 8.5 (0.6) 5352 223.9 (38.0) 9544 229.7 (44.5) 5352 38.9 (7.8) 9544 39.3 (7.9) 5352 1.7 (0.5) 9544 1.8 (0.5)

Women n Mean
(SD) n Mean

(SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean
(SD) n Mean (SD) n Mean

(SD)

18–29 years 2984 7.9 (0.5) 592 8.0 (0.4) 2984 187.5 (40.2) 592 190.7 (40.1) 2984 32.0 (6.8) 592 33.1 (6.7) 2984 1.2 (0.4) 592 1.3 (0.4)
30–39 years 3024 8.0 (0.4) 960 8.1 (0.5) 3024 198.2 (42.7) 960 213.9 (50.1) 3024 34.0 (7.2) 960 36.7 (8.1) 3024 1.4 (0.4) 960 1.5 (0.5)
40–49 years 2192 8.1 (0.5) 1112 8.2 (0.5) 2192 210.9 (44.0) 1112 221.3 (49.8) 2192 36.4 (7.5) 1112 38.2 (8.2) 2192 1.5 (0.4) 1112 1.6 (0.5)
50–59 years 960 8.2 (0.5) 840 8.3 (0.5) 960 229.8 (59.5) 840 231.6 (42.2) 960 38.3 (5.8) 840 40.2 (7.2) 960 1.6 (0.7) 840 1.7 (0.4)
60–69 years 128 8.3 (0.5) 80 8.4 (0.5) 128 231.5 (33.8) 80 257.4 (63.9) 128 39.7 (10.1) 80 44.9 (10.8) 128 1.7 (0.6) 80 2.1 (0.7)
Elementary 8368 8.1 (0.5) 3000 8.2 (0.5) 8368 202.5 (44.4) 3000 219.6 (50.6) 8368 34.9 (6.8) 3000 37.9 (8.4) 8368 1.5 (0.5) 3000 1.6 (0.5)
High school 920 8.0 (0.4) 584 8.0 (0.5) 920 201.3 (38.9) 584 203.6 (41.3) 920 34.6 (8.0) 584 35.4 (7.1) 920 1.4 (0.4) 584 1.5 (0.4)

Non PhA 3928 8.3 (0.5) 2128 8.4 (0.5) 3928 237.6 (47.5) 2128 243.1 (46.6) 3928 40.8 (8.1) 2128 41.9 (7.7) 3928 1.8 (0.5) 2128 1.9 (0.5)
Yes PhA 5360 7.9 (0.4) 1456 8.0 (0.4) 5360 176.5 (19.8) 1456 178.8 (20.3) 5360 30.2 (3.4) 1456 30.9 (3.5) 5360 1.1 (0.2) 1456 1.2 (0.2)
Non MD 4120 8.2 (0.4) 2144 8.3 (0.5) 4120 232.8 (49.9) 2144 241.5 (47.5) 4120 39.9 (8.6) 2144 41.6 (7.9) 4120 1.7 (0.5) 2144 1.8 (0.5)
Yes MD 5168 7.8 (0.4) 1440 7.9 (0.4) 5168 178.0 (21.1) 1440 180.4 (22.7) 5168 30.5 (3.6) 1440 31.4 (3.9) 5168 1.1 (0.2) 1440 1.2 (0.2)

Non smokers 6320 8.0 (0.5) 2408 8.1 (0.5) 6320 199.1 (44.4) 2408 204.4 (43.6) 6320 34.0 (7.5) 2408 35.3 (7.3) 6320 1.4 (0.4) 2408 1.5 (0.5)
Smokers 2968 8.1 (0.5) 1176 8.2 (0.5) 2968 203.9 (46.3) 1176 223.1 (51.1) 2968 35.0 (8.0) 1176 38.5 (8.6) 2968 1.5 (0.5) 1176 1.6 (0.5)

TyG Triglyceride glucose index. BMI Body mass index. METS-IR Metabolic score for insulin resistance. SPISE-IR Single-point insulin sensitivity estimator. SD Standard deviation. SD
Standard deviation. PhA Physical activity. (*) Statistical significance in all cases.
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Table 3. Prevalence of high values of different scales of insulin resistance according sociodemographic variables and healthy habits by sex.

TyG
High *

TyG-BMI
High *

METS-IR
High *

SPISE-IR
High *

Commerce Industry Commerce Industry Commerce Industry Commerce Industry

Men n % n % n % n % n % n % n % n %

18–29 years 3224 9.4 5248 11.0 3224 6.9 5248 11.3 3224 1.2 5248 3.4 3224 3.0 5248 5.9
30–39 years 5768 16.1 8184 20.0 5768 14.0 8184 21.5 5768 4.3 8184 8.1 5768 6.4 8184 14.9
40–49 years 6104 27.5 7360 33.5 6104 23.1 7360 31.0 6104 6.3 7360 11.5 6104 13.6 7360 22.8
50–59 years 2664 36.0 4312 38.7 2664 35.4 4312 37.8 2664 11.1 4312 12.5 2664 20.1 4312 23.9
60–69 years 400 46.0 720 49.1 400 44.2 720 46.5 400 20.0 720 22.1 400 28.0 720 29.1
Elementary 9512 23.3 9480 23.6 9512 19.4 9480 20.1 9512 6.4 9480 9.2 9512 11.7 9480 14.6
High school 8648 21.3 16,344 24.9 8648 21.6 16,344 24.7 8648 5.2 16,344 7.8 8648 9.8 16,344 12.3

Non PhA 9344 42.3 14,304 42.7 9344 35.2 14,304 38.6 9344 10.0 14,304 13.8 9344 18.8 14,304 21.8
Yes PhA 8816 1.2 11,520 2.0 8816 4.1 11,520 4.3 8816 1.3 11,520 2.2 8816 2.2 11,520 4.3
Non MD 10,184 38.3 15,440 39.5 10,184 34.8 15,440 39.2 10,184 9.5 15,440 13.2 10,184 17.2 15,440 22.0
Yes MD 7976 1.9 10,384 2.4 7976 4.6 10,384 5.3 7976 2.2 10,384 3.3 7976 3.5 10,384 4.7

Non smokers 12,808 19.7 16280 22.8 12,808 19.6 16,280 24.7 12,808 5.0 16,280 6.6 12,808 9.8 16,280 13.9
Smokers 5352 27.6 9544 28.7 5352 20.2 9544 25.8 5352 7.6 9544 10.0 5352 12.9 9544 14.9

Women n % n % n % n % n % n % n % n %

18–29 years 2984 5.1 592 8.1 2984 7.0 592 9.5 2984 2.7 592 4.1 2984 4.0 592 4.2
30–39 years 3024 7.7 960 8.1 3024 10.1 960 19.2 3024 3.7 960 8.3 3024 5.5 960 7.9
40–49 years 2192 11.3 1112 13.7 2192 13.9 1112 20.1 2192 7.3 1112 7.9 2192 9.9 1112 10.8
50–59 years 960 21.9 840 24.2 960 23.8 840 25.5 960 12.5 840 12.9 960 10.9 840 12.4
60–69 years 128 24.5 80 26.4 128 25.8 80 30.1 128 15.5 80 17.6 128 15.8 80 17.2
Elementary 8368 9.9 3000 14.1 8368 12.3 3000 20.5 8368 5.4 3000 9.6 8368 7.5 3000 12.5
High school 920 4.3 584 9.6 920 8.7 584 12.3 920 2.6 584 4.1 920 4.4 584 5.5

Non PhA 3928 19.7 2128 20.1 3928 24.8 2128 28.9 3928 10.8 2128 12.5 3928 14.8 2128 17.8
Yes PhA 5360 3.2 1456 4.4 5360 5.5 1456 6.7 5360 2.5 1456 3.8 5360 2.8 1456 4.1
Non MD 4120 18.2 2144 19.2 4120 24.1 2144 26.8 4120 10.2 2144 11.8 4120 13.8 2144 16.5
Yes MD 5168 4.4 1440 5.1 5168 6.5 1440 8.1 5168 3.1 1440 4.9 5168 4.4 1440 5.6

Non smokers 6320 9.4 2408 13.6 6320 11.3 2408 11.8 6320 4.8 2408 5.4 6320 6.7 2408 7.5
Smokers 2968 9.7 1176 14.0 2968 12.3 1176 12.9 2968 5.7 1176 6.8 2968 7.3 1176 13.3

TyG Triglyceride glucose index. BMI Body mass index. METS-IR Metabolic score for insulin resistance. SPISE-IR Single-point insulin sensitivity estimator. SD Standard deviation. PhA
Physical activity. (*) Statistical significance in all cases.



Diseases 2025, 13, 150 10 of 18

Table 4. Multinomial logistic regression.

Header
TyG High TyG-BMI METS-IR High SPISE-IR High

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Women 1 1 1 1
Men 2.59 (2.41–2.2.78) 1.36 (1.27–1.1.46) 0.84 (0.77–0.92) 1.11 (1.07–1.15)

18–29 years 1 1 1 1
30–39 years 1.06 (1.04–1.08) 1.20 (1.15–1.25) 1.33 (1.22–1.44) 1.16 (1.12–1.20)
40–49 years 1.21 (1.16–1.26) 1.30 (1.23–1.37) 1.43 (1.31–1.55) 1.25 (1.19–1.31)
50–59 years 1.56 (1.48–1.65) 1.45 (1.37–1.54) 1.51 (1.38–1.64) 1.37 (1.28–1.47)
60–69 years 1.92 (1.66–2.19) 1.94 (1.80–2.09) 2.37 (1.95–2.79) 1.96 (1.66–2.27)
Elementary 1 1 1 1
High school 1.10 (1.07–1.14) 1.15 (1.10–1.21) 1.12 (1.10–1.15) 1.15 (1.10–1.20)
Commerce 1 1 1 1
Industry 1.23 (1.16–1.30) 1.17 (1.12–1.23) 1.37 (1.28–1.47) 1.20 (1.14–1.26)

Yes physical activity 1 1 1 1
Non physical activity 10.45 (9.25–11.66) 12.33 (11.01–13.66) 11.87 (10.27–13.48) 8.31 (7.50–9.12)

Yes Mediterranean diet 1 1 1 1
Non Mediterranean diet 4.23 (3.70–4.77) 5.29 (4.80–5.79) 5.22 (4.60–5.83) 3.64 (3.19–4.10)

Non smokers 1 1 1 1
Smokers 1.53 (1.46–1.61) 1.13 (1.09–1.17) 1.09 (1.04–1.14) 1.09 (1.05–1.13)

TyG Triglyceride glucose index. BMI Body mass index. METS-IR Metabolic score for insulin resistance. SPISE-IR
Single-point insulin sensitivity estimator. OR Odss ratio.

4. Discussion
In all IR indices, a consistent pattern was identified: workers in the industrial sector,

both men and women, exhibited significantly higher mean values and prevalence rates
than their counterparts in the commerce sector. These differences were consistent across all
age groups, educational levels, and lifestyle categories.

Multinomial logistic regression analyses, adjusted for potential confounders (age,
sex, physical activity, diet, and smoking), confirmed this association. Employment in the
industrial sector increased the likelihood of elevated values in TyG (OR = 1.23), TyG-BMI
(OR = 1.17), METS-IR (OR = 1.37), and SPISE-IR (OR = 1.20).

The higher risk observed in the industrial sector may be partly explained by the inher-
ent characteristics of the work environment. Industrial occupations often involve physically
demanding and repetitive tasks, exposure to toxic agents, adverse working conditions,
and irregular or night shifts. These factors can disrupt circadian rhythms and hormonal
balance, promote metabolic dysfunction, and contribute to the development of IR, even in
the absence of classical risk factors such as poor diet or physical inactivity. Furthermore, low
job autonomy and psychosocial stress—common in such environments—may exacerbate
metabolic dysfunction through activation of the hypothalamic-pituitary-adrenal axis and
systemic inflammation [66,67].

Across all indices used, men exhibited significantly higher IR values and prevalence
than women. For instance, the likelihood of elevated TyG was more than twice as high in
men compared to women (OR = 2.59), even after adjustment for covariates. While both
sexes were affected by sectoral differences, the gap between commerce and industry was
particularly pronounced among older women and those with lower educational attainment.
These findings align with existing evidence on sexual dimorphism in insulin sensitivity [68],
adipose tissue distribution [69], and hormonal regulation [70]. Premenopausal women are
partly protected due to the estrogenic effects on glucose metabolism and fat distribution [71],
but this advantage tends to decline with age. Moreover, the industrial work environment
appears to blunt part of this protective effect, as reflected in the higher SPISE-IR values
observed among industrial-sector women.
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Age emerged as one of the strongest predictors of IR across all scales analyzed. Partici-
pants aged 60–69 were nearly twice as likely to show elevated values in TyG and SPISE-IR
compared to the 18–29 age group, and 2.4 times more likely in the case of METS-IR. This
progressive increase reflects the natural decline in insulin sensitivity associated with aging,
likely exacerbated by the cumulative burden of adverse metabolic factors over time [72].

A noteworthy interaction was found between age and sector: older individuals in
the industrial sector had the highest mean values and prevalence across all four indices,
highlighting the urgent need for targeted preventive strategies for older workers, who may
bear a double burden of risk—due to both aging and work conditions.

Participants with higher educational attainment consistently exhibited lower values
and prevalence of insulin resistance. For example, those with secondary education had
a 10–15% lower likelihood of presenting abnormal values in the indices compared to
individuals with only primary education. These results are consistent with the well-
established inverse relationship between education level and cardiometabolic risk, likely
mediated by higher health literacy, healthier behaviors, and greater access to preventive
care [73].

Notably, the protective effect of education was more evident in the commerce sector,
possibly due to the combination of more sedentary work and healthier dietary and behav-
ioral patterns among more educated employees. In contrast, this effect was attenuated in
the industrial sector, perhaps due to the intensity of physical and environmental stressors
in that occupational setting.

Although our study considered educational level as a relevant sociodemographic
variable, it would have been highly valuable to also include data on individual or house-
hold income. This information could provide a more comprehensive understanding of
the influence of socioeconomic status on IR values, as previous research suggests an as-
sociation between lower income and higher metabolic risk. However, due to the absence
of this variable in our sample, we were unable to assess it. We recommend that future
studies incorporate income-related variables to allow for a more comprehensive analysis.
Regarding access to healthcare services, it is important to note that Spain has a public and
universal National Health System, which provides free healthcare to the entire population
regardless of economic status. Nevertheless, educational level may influence the effective
use of these services, as individuals with lower educational attainment are generally less
engaged in preventive healthcare and health promotion activities.

The strongest protective effects against IR were observed among workers who engaged
in regular physical activity and adhered closely to the Mediterranean diet. These two
healthy behaviors were significantly associated with lower mean values and prevalence
of alterations across all IR indices. Lack of physical activity was one of the most potent
predictors of insulin resistance: those not engaging in regular exercise were between 8
and 12 times more likely to show abnormal values, depending on the scale analyzed.
For instance, inactive workers had an OR of 12.33 for elevated TyG-BMI and 11.87 for
high METS-IR, confirming the central role of sedentary behavior as a modifiable risk
factor—findings supported by recent studies in this field [74].

Similarly, low adherence to the Mediterranean diet increased the likelihood of present-
ing IR by 3.6 times (SPISE) to more than 5 times (TyG-BMI and METS-IR). These findings,
corroborated by several studies [75], underscore the importance of diet quality for metabolic
health, particularly in work environments where access to healthy food may be constrained
by time or economic factors.

Current smokers exhibited higher values in all IR indices, with significantly increased
odds of metabolic alterations. Although the effect size was smaller than that of diet or
physical activity, the association remained statistically significant. This aligns with previous
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research showing that smoking disrupts insulin signaling, increases oxidative stress, and
promotes abdominal fat accumulation [76,77].

Interestingly, the magnitude of smoking’s effect varied by sex and sector. Among
male smokers in the industrial sector, the prevalence of elevated METS-IR reached 10%,
nearly double that of non-smokers in the same setting. This suggests a possible interaction
between smoking and work-related stress factors, in which adverse occupational conditions
may induce a state of chronic anxiety that promotes the maintenance or increase of smoking
habits, which in turn could synergistically worsen the observed metabolic outcomes [78]. In
this regard, it would be interesting for future studies to include the assessment of molecular
markers such as cortisol or high-sensitivity C-reactive protein.

This study employed four validated non-invasive indices as indirect markers of insulin
resistance: TyG, TyG-BMI, METS-IR, and SPISE. Each of these indices captures specific
metabolic dimensions, enabling a more nuanced assessment of insulin resistance risk across
different population subgroups. The consistency of the findings across all indices strength-
ens the validity of the results and supports their potential application in occupational health
surveillance programs. This multidimensional approach enhances early identification of
individuals at metabolic risk, facilitating targeted interventions in workplace settings.

• TyG and TyG-BMI were highly sensitive to adiposity and dyslipidemia, proving
especially useful in identifying risk among overweight individuals and those with low
physical activity.

• METS-IR provided a more comprehensive perspective by incorporating HDL cholesterol.
• SPISE, though less commonly used, yielded relevant information on insulin sensitivity

in younger and leaner individuals.

The findings of this study have significant implications for public health and occupa-
tional medicine. The higher metabolic risk observed in the industrial sector underscores
the need for targeted interventions to improve workplace conditions, such as adjusting
shift schedules, facilitating access to healthy food, and promoting physical activity.

Our results suggest that there may be differences in lifestyle habits between workers
in the industrial and commercial sectors, which could influence their predisposition to
developing insulin resistance. These differences may be related to factors such as work
schedules, the level of physical or mental demands, ergonomic conditions, access to healthy
food during the workday, or available time for physical activity. It would be highly valuable
to extend this analysis to other professional sectors, such as education or healthcare, in
order to better understand how the specific characteristics of each occupational setting
may affect health-related behaviors. This information would support the design and
implementation of targeted preventive interventions tailored to each sector, with the aim of
improving metabolic health, overall well-being, and quality of life among workers, within
more comprehensive and personalized occupational health strategies.

It is essential to strengthen health education initiatives and early detection programs,
particularly targeting older workers and those with lower educational levels. Employers
should promote workplace wellness programs that include structured physical activity,
smoking cessation support, and nutritional counseling. Implementing workplace nutrition
policies is key to improving dietary habits by offering healthy options in cafeterias and
removing vending machines with ultra-processed products. Work schedules should also
allow sufficient time for proper meals, avoiding rushed or unbalanced eating due to lack of
breaks. Providing on-site fitness areas would encourage regular physical activity, benefit-
ing cardiovascular health. Finally, incorporating stress management programs—such as
mindfulness, yoga, or relaxation techniques—would help enhance employees’ emotional
well-being. These integrated interventions can have a positive impact on workers’ overall
health and quality of life.
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From a public policy perspective, these findings support incorporating IR risk assess-
ment into occupational health protocols, particularly in high-risk occupational sectors. The
use of simple, validated indices such as TyG or METS-IR would enable early detection and
timely intervention, helping to reduce the burden of chronic metabolic diseases.

4.1. Strengths of the Study

• Large sample size and sectoral representativeness: The study is based on a sample
of over 56,000 workers from the commerce and industrial sectors, providing robust
statistical power and allowing for reliable comparisons between groups. This broad
scope facilitates the identification of genuine differences in IR risk and enhances the
generalizability of findings within the labor context.

• Equitable inclusion of both sexes and a wide age range: The sample includes both
men and women aged 18 to 69, enabling analysis of sex- and age-related differences
and tracking the evolution of metabolic risk throughout the working life cycle.

• Simultaneous use of multiple validated IR indices: The combined use of TyG, TyG-BMI,
METS-IR, and SPISE provides a more comprehensive evaluation of metabolic risk.
Each index captures different IR-related dimensions (dyslipidemia, adiposity, insulin
sensitivity), increasing the validity of findings and minimizing bias associated with
reliance on a single marker.

• Comparative approach by economic sector: The sector-specific analysis (commerce
vs. industry) represents a novel contribution. Few studies have explored how occupa-
tional type and structural characteristics (shifts, physical effort, stress, environment)
relate to IR, lending added value to this research in the field of occupational health.

• Rigorous statistical control of confounding factors: The use of adjusted multinomial
logistic regression models allows for assessment of independent associations while
controlling for age, sex, education, physical activity, diet, and smoking—strengthening
the reliability of the observed associations.

• Detailed assessment of lifestyle variables: The study incorporates key health behaviors
(Mediterranean diet adherence, physical activity, smoking), often underrepresented in
occupational health research, enabling the identification of meaningful associations
between lifestyle and metabolic risk in workplace settings.

• Practical applicability to public health and occupational medicine: The indices em-
ployed are simple, cost-effective, and non-invasive, making the results easily trans-
latable to screening, monitoring, and prevention programs within companies or or-
ganizations. This enhances the translational value of the study and its potential for
large-scale interventions.

4.2. Study Limitations

• Cross-sectional design of the study prevents inferring causal relationships between
the variables analyzed and IR rates. It would be interesting to conduct longitudinal
studies to examine how IR evolves in these groups over time.

• Indirect measurement of IR: Although validated and widely used indices such as TyG,
METS-IR, and SPISE were employed, they are indirect proxies and do not replace
gold-standard methods like the hyperinsulinemic-euglycemic clamp.

• Self-reported data: Key variables such as physical activity, dietary adherence, and
smoking status were self-reported, potentially introducing recall or social desirabil-
ity bias.

• The pre- or postmenopausal status of the women was not recorded, which may
influence glucose metabolism, body fat distribution, and insulin resistance.
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• Lack of control for other occupational variables: Factors such as shift type, physi-
cal workload, occupational stress, or sleep quality were not included, despite their
potential influence on metabolism and IR risk modulation.

• Limited generalizability: While the sample size is large, findings are limited to two
occupational sectors and may not be generalizable to the entire working population or
other socioeconomic settings.

5. Conclusions
The results of this study reveal significant differences in IR risk between workers in the

commerce and industrial sectors. Industrial workers, regardless of sex, age, or education
level, display less favorable metabolic profiles, with higher values and prevalence of
alterations in TyG, TyG-BMI, METS-IR, and SPISE. These differences persist even after
adjusting for sociodemographic factors and lifestyle, suggesting an independent influence
of the work environment on metabolic risk.

Physical inactivity, low adherence to the Mediterranean diet, and smoking emerge as
strongly modifiable factors associated with increased IR risk, with consistent odds ratios
across all multivariate models. In this context, the scales used not only enable robust risk
assessment but also serve as practical tools for epidemiological monitoring and decision-
making in occupational health.

Overall, these findings support the need for tailored interventions aimed at promoting
healthy lifestyles in work environments—particularly in the industrial sector—and rein-
force the value of incorporating indices such as TyG, METS-IR, and SPISE in screening and
prevention programs targeting cardiometabolic risk in working populations.
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