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Abstract: Background: Metabolic dysfunction-associated steatotic liver disease (MASLD)
is a prevalent liver disorder with significant metabolic implications. Metabolic age, de-
termined through bioimpedance analysis, has emerged as a potential indicator of overall
metabolic health. The objective of this study is to evaluate the association between metabolic
age and MASLD risk scores in a cohort of Spanish workers. Methods: A cross-sectional
study was conducted on 8590 Spanish workers who underwent annual occupational health
examinations between 2019 and 2020. Metabolic age was determined using bioelectrical
impedance analysis, and the Avoidable Lost Life Years (ALLY) index was calculated as
the difference between their metabolic and chronological age. MASLD risk was assessed
using various validated scales, including the Fatty Liver Index (FLI), Hepatic Steatosis
Index (HSI), Zhejiang University Index (ZJU), Fatty Liver Disease Index (FLD), and Lipid
Accumulation Product (LAP). A multinomial logistic regression analysis was performed
to examine the association between metabolic age and MASLD risk scores, adjusting for
sociodemographic and lifestyle variables. Results: Higher metabolic age values were
observed in individuals with greater MASLD risk across all evaluated scales. The mean
metabolic age was consistently lower in women compared to men, and these differences
were statistically significant (p < 0.01). Multinomial logistic regression analysis revealed that
the strongest associations with increased metabolic age were found for MASLD risk scores,
physical inactivity, and poor adherence to the Mediterranean diet. ROC curve analysis
demonstrated a high predictive capacity for the FLD (AUC: 0.935 in women and 0.917 in
men) and FLI (AUC: 0.900 in women and 0.833 in men), with high Youden index values.
Conclusions: Metabolic age is significantly associated with MASLD risk, suggesting its
potential as a non-invasive biomarker for identifying individuals with a higher risk for
metabolic liver disease. Lifestyle factors, including physical activity and dietary patterns,
play a crucial role in modulating metabolic age, highlighting the importance of targeted
interventions for MASLD prevention. Further research is warranted to validate metabolic
age as a prognostic tool in MASLD risk assessment.
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1. Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as

non-alcoholic fatty liver disease (NAFLD), is a widespread chronic liver condition affecting
over 30% of the global population, with a substantial impact on public health [1] and
a significant economic burden on healthcare systems [2]. It is defined as the excessive
accumulation of fat in the liver (hepatic steatosis) in the absence of significant alcohol
consumption and other secondary causes of liver disease [3]. MASLD arises from complex
interactions involving cardiometabolic, environmental, and genetic factors, with insulin
resistance and adipose tissue dysfunction playing central roles. The condition encom-
passes a spectrum of liver pathologies ranging from simple steatosis to its most severe
form, previously termed non-alcoholic steatohepatitis (NASH) [4], but now referred to as
metabolic dysfunction-associated steatohepatitis (MASH), as well as hepatic fibrosis [5],
and in some cases, cirrhosis [6] and hepatocellular carcinoma [7]. Due to its strong as-
sociation with metabolic syndrome [8] and other non-communicable chronic diseases,
investigating MASLD is essential for developing effective preventive and therapeutic strate-
gies. Despite growing research efforts and a deeper understanding of its pathophysiology,
disease progression and treatment responses remain heterogeneous. This led to a global
initiative—the Nomenclature Development Initiative—to adopt a more accurate and less
stigmatizing terminology. The goal was to reflect the underlying causes of the disease more
clearly, improve diagnostic clarity, raise awareness, and promote better resource allocation
for research and healthcare [9].

The prevalence of MASLD has increased exponentially in recent decades, paralleling
the rise in obesity and type 2 diabetes. Recent studies estimate that between 25% and
30% of the global population is affected by MASLD [10], with higher rates in Western
countries and certain regions of Asia [11]. Factors such as population aging [12], physical
inactivity [13], and diets rich in refined sugars and saturated fats [14] have been identified as
key contributors to this emerging epidemic. Additionally, differences in MASLD prevalence
have been observed among ethnic groups and sexes, with a higher predisposition in
individuals of Hispanic ancestry and a lower prevalence among individuals of African
descent [15], suggesting the involvement of genetic factors in its pathogenesis.

The development of MASLD has been described under the “two-hit” hypothesis. In
the first hit, insulin resistance promotes an increase in hepatic lipogenesis and a reduction
in fatty acid oxidation, leading to triglyceride accumulation in hepatocytes [16]. In the
second hit, various factors, such as oxidative stress [17], chronic inflammation [18], and
mitochondrial dysfunction [19], contribute to disease progression to more severe stages,
such as MASH and fibrosis. Moreover, the role of the gut microbiome has gained relevance
in MASLD pathophysiology, as alterations in gut microbiota can promote an inflammatory
state and increased intestinal permeability, exacerbating liver damage [20].

The clinical implications of MASLD extend beyond the liver, as it has been identified as
an independent risk factor for cardiovascular disease [21], type 2 diabetes [22], and chronic
kidney disease [23]. In fact, cardiovascular disease is the leading cause of morbidity and
mortality in MASLD patients, highlighting the need for a comprehensive risk assessment in
these individuals [24]. At the hepatic level, progression to advanced fibrosis and cirrhosis
can lead to liver failure and the need for transplantation [25]. Additionally, MASLD has
been associated with an increased risk of developing hepatocellular carcinoma, even in
the absence of cirrhosis, emphasizing the importance of monitoring and early detection in
high-risk populations [26].

Since liver biopsy remains the gold standard for diagnosing MASH and fibrosis [27],
various risk scores have been developed to stratify patients without requiring invasive pro-
cedures. These include the Fibrosis-4 index (FIB-4) [28], MASLD Fibrosis Score (NFS) [29],
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Body Mass Index-Age-Insulin Resistance Score (BAAT) [30], Fatty Liver Index (FLI) [31],
Hepatic Steatosis Index (HSI) [32], Zhejiang University Index (ZJU) [33], Fatty Liver Dis-
ease Index (FLD) [34], and Lipid Accumulation Product (LAP) [35]. These scoring systems
have demonstrated a strong predictive capacity for identifying patients at higher risk of
disease progression, facilitating clinical decision making and the selection of candidates for
interventional studies.

The concept of metabolic age has emerged as an alternative biomarker for assessing an
individual’s overall health status in comparison to their chronological age. It is calculated
based on various physiological parameters, including body mass index, body composition
determined by bioelectrical impedance, and other metabolic factors [36]. A metabolic age
higher than one’s chronological age indicates a deteriorated health status and an increased
risk of metabolic diseases, including obesity, type 2 diabetes, and MASLD.

The interest in metabolic age lies in its ability to provide a comprehensive evaluation
of biological aging and the impact of lifestyle factors on health. Recent studies have shown
that a higher metabolic age is correlated with increased systemic inflammation [37] and mi-
tochondrial dysfunction [38], both of which are key processes in MASLD pathophysiology.
Furthermore, metabolic age has been proposed as a useful indicator for identifying indi-
viduals at risk of developing chronic liver diseases, potentially enabling early intervention
and personalized prevention strategies [39].

Metabolic age (MA) reflects the functional status of an individual’s metabolism and
has emerged as a key indicator of overall health. It provides a more accurate assessment
than chronological age, enabling the early detection of metabolic disturbances even in
individuals who appear clinically healthy. Its utility is particularly relevant in the preven-
tion of chronic diseases such as type 2 diabetes, hypertension, dyslipidemia, metabolic
dysfunction-associated steatotic liver disease (MASLD), and cardiovascular disease, facili-
tating personalized interventions to improve metabolic health and prevent comorbidities.

MA is a concept used to evaluate the efficiency with which the body performs its basic
metabolic functions by comparing an individual’s physiological status with population
averages across different chronological age groups [40]. Its estimation is based on a range of
physiological parameters, including body composition [41], basal metabolic rate (BMR) [42],
body fat percentage, and other indicators of functional status [43].

BMR refers to the minimum energy required by the body at rest to maintain vital
functions. It declines by approximately 1–2% per decade in adulthood, primarily due to the
progressive loss of muscle mass, which is gradually replaced by adipose tissue. Although
BMR can be estimated using formulas that incorporate age, sex, weight, and height, these
methods fail to distinguish between fat mass and lean mass, limiting their accuracy in
determining MA.

Bioelectrical impedance analysis (BIA) is a non-invasive technique that improves BMR
estimation by differentiating between fat mass, fat-free mass, skeletal muscle mass, and to-
tal body water [44–47]. Unlike conventional methods based on weight or body mass index
(BMI), BIA provides a more precise assessment of body composition, which is essential for
accurate MA calculation. Skeletal muscle, being metabolically active, has a significantly
greater influence on BMR than fat mass, which has only a minimal effect (2–3%) [48]. Stud-
ies conducted by TANITA have shown that BMR estimated through BIA is more accurate
than that derived from weight or BMI alone [49]. Furthermore, BIA has proven particularly
useful in patients with MASLD, allowing for the early identification of metabolic imbal-
ances and supporting personalized interventions [50]. BIA has outperformed traditional
anthropometric methods and shows good agreement with dual-energy X-ray absorptiome-
try (DXA) for estimating body fat percentage [51–53]. More recently, Cretescu et al. (2025)
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confirmed a strong correlation between BIA-derived values and actual body fat percentage,
further supporting its clinical utility in metabolic health assessment [54].

MASLD represents a growing global health challenge with implications extending
beyond the liver to multiple organ systems. Understanding its epidemiology, pathophysi-
ology, and clinical consequences is crucial for developing effective management strategies.
In this context, the use of risk scores and biomarkers such as metabolic age could improve
disease detection and prevention, enabling more personalized patient care.

The objective of this study is to evaluate the association between different MASLD
risk scores and metabolic age values in a large cohort of Spanish workers.

2. Material and Methods
2.1. Participants

A cross-sectional, descriptive study was conducted involving a total of 8590 Spanish
workers based in the Balearic Islands. The sample comprised individuals who underwent
their annual occupational health examination between January 2019 and December 2020 at
a workplace health and risk prevention service. This service provides coverage to various
companies operating across multiple sectors, including healthcare, public administration,
hospitality, retail, transportation, education, industry, and cleaning services. Further details
on participant selection and study flow can be found in Figure 1.

 

Figure 1. PRISMA diagram illustrating the participant selection process for this study.

Inclusion criteria:

• Individuals aged between 18 and 69 years;
• Voluntary participation in the study;
• Provision of informed consent for the use of personal data in epidemiological research;
• Active employment with one of the companies included in the study, without being

on temporary disability leave at the time of participation;
• Not a habitual alcohol drinker;
• Not suffering from known liver disease, thyroid disease, celiac disease, or drug addiction.

Exclusion criteria:

• Age below 18 or above 69 years.
• Lack of employment within the participating companies;
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• Refusal to participate in the study;
• Refusal to grant consent for the use of personal data in epidemiological research;
• Absence of a required parameter necessary for scale calculations;
• Habitual alcohol drinker;
• Known liver disease;
• Hypothyroidism;
• Hypopituitarism;
• Celiac disease;
• Drug addiction;
• Inborn errors of metabolism;
• Patients on antiretroviral therapy.

2.2. Variable Determination

The data collection process was carried out by healthcare professionals affiliated with
the occupational health services of participating companies. The following methods were
employed:

• Medical History Assessment: A comprehensive clinical history was obtained, covering
sociodemographic variables such as age, sex, social class, smoking status, physical
activity levels, and adherence to the Mediterranean diet;

• Anthropometric and Clinical Measurements: Parameters including height, weight,
waist and hip circumference, and both systolic and diastolic blood pressure were
recorded;

• Laboratory Analyses: Blood lipid profile and glucose levels were measured.

2.3. Anthropometric Measurements

To ensure the reliability and consistency of the data, standardized measurement tech-
niques were applied. Height and weight assessments were performed using an SECA
700 scale and an SECA 220 stadiometer, with participants wearing only light clothing,
following international anthropometric evaluation standards established by the Interna-
tional Society for the Advancement of Kinanthropometry (ISAK) [55]. Measurements were
documented in centimeters and kilograms.

Waist circumference was measured using an SECA tape, positioned midway between
the last rib and the iliac crest, parallel to the floor, with participants standing in a relaxed
posture. Hip circumference was measured in a similar manner, at the widest point of
the buttocks.

2.4. Clinical Measurements

Blood pressure was assessed using an OMRON-M3 digital sphygmomanometer. Par-
ticipants were instructed to remain seated with their backs supported, resting for at least
ten minutes before measurement. The assessment was conducted with the arm positioned
at heart level, ensuring no recent intake of food, alcohol, tobacco, or caffeinated beverages
in the preceding hour. The cuff was placed 2–3 cm above the elbow crease, ensuring a
secure but non-restrictive fit. Three consecutive measurements were taken at one-minute
intervals, with the final reading calculated as the mean of the three measurements.

2.5. Laboratory Analyses

Blood samples were collected via venipuncture following a 12 h fasting period.
The samples were processed as follows: An 8.5 mL BD SST II Vacutainer serum tube

with gel separator (reference BD 366468) was used. The samples were transported to
the laboratory in a refrigerated container (at between 5 and 10 degrees Celsius). Upon
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arrival, the samples were centrifuged within two hours of collection and immediately
analyzed using an automated analyzer [56,57]. LDL was calculated using the Friedewald
formula, except in cases with triglycerides ≥ 400 mg/dL, for which direct measurement
was used [58]. All bio-chemical variables are reported in milligrams per deciliter (mg/dL).

2.6. Risk Assessment Scales

• Adherence to the Mediterranean Diet: Assessed using the PREDIMED questionnaire,
a validated 14-item instrument in which each question is assigned a score of zero or
one. A total score of nine or higher indicates strong adherence to the Mediterranean
diet [59].

• Physical Activity Levels: Evaluated using the International Physical Activity Ques-
tionnaire (IPAQ), a self-reported survey capturing physical activity over the previous
seven days [60].

• Smoking Status: Individuals who had smoked at least one cigarette per day (or its
equivalent) in the past 30 days, or who had quit smoking within the last 12 months,
were classified as smokers. Non-smokers included individuals who had abstained
from smoking for at least one year or had never smoked.

• Socioeconomic Classification: Defined according to the Spanish Society of Epidemiol-
ogy guidelines based on the 2011 National Classification of Occupations [61].

# Class I: Senior executives, directors, and university-educated professionals.
# Class II: Intermediate professionals and self-employed individuals.
# Class III: Manual laborers.

• Metabolic Age: Determined using a TANITA MC-780 S MA bioimpedance meter
(TANITA Corporation, Tokyo, Japan).
Avoidable Lost Life Years (ALLY): Calculated as the difference between metabolic age
and chronological age. Previous studies suggest that a metabolic age at least 12 years
lower than chronological age is associated with reduced cardiovascular risk. ALLY
classification [62]:

# Low: Difference of less than three years;
# Normal: Difference of three to eleven years;
# High: Difference of 12 years or more;
# A metabolic age exceeding one’s chronological age by 12 years or more was

considered a high-risk threshold.

The risk of MASLD was determined by applying different scales:

• Fatty Liver Index (FLI) [63] FLI=(e0.953 × log (triglycerides) + 0.139 × BMI+0.718 × log (GGT)+0.053 × waist circumference − 15.745)

/(1 + e0.953 × log (triglycerides) + 0.139 × BMI + 0.718 × log (GGT) + 0.053×waist circumference − 15.745) × 100. FLI values
above 60 are considered high risk;

• Hepatic Steatosis Index (HSI) [64] HSI = 8 × AST/ALT + BMI + 2 if diabetic and + 2 if
female. Values above 36 are considered high risk;

• Zhejiang University Index (ZJU index) [65] ZJU = BMI + glycemia (mmol L) + triglyc-
erides (mmol L) + 3 AST/ALT + 2 if female. Values above 38 are considered high
risk;

• Fatty Liver Disease Index (FLD) [66] FLD = BMI + triglycerides + 3 × (AST/ALT) + 2
× hyperglycemia (present = 1; absent = 0). Values above 37 are considered high risk;

• Lipid Accumulation Product (LAP) [67] = Men. (waist (cm) − 65) × (triglycerides
(mMol)) and Women: (waist (cm) − 58) × (triglycerides (mMol)). Values above 42.7
are considered high risk.
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2.7. Statistical Analysis

A descriptive analysis was performed on categorical variables, presenting their fre-
quency distributions. For normally distributed quantitative variables, means and standard
deviations were calculated. Student’s t-test was used for comparing means, while the
chi-square test was employed for comparing proportions. The dependent variable, ALLY,
was categorized into three groups. Given that it consists of more than two categories, a
multivariate analysis stratified by age groups was conducted to evaluate the effect of each
studied variable within each stratum. Independent variables were selected based on their
statistical and biological relevance as indicated in the literature review. The multivariate
analysis was performed using multinomial logistic regression, with odds ratio calculations
and the Hosmer–Lemeshow goodness-of-fit test applied for model evaluation. Statistical
analyses were conducted using SPSS version 29.0, with a significance threshold of 0.05.

3. Results
The anthropometric and clinical characteristics of the study participants are summa-

rized in Table 1. The analysis included a total of 8590 individuals, comprising 4104 men
(47.8%) and 4486 women (52.2%). The mean age of the participants was slightly above
41 years, with the majority falling within the 30–49 age range. The analysis of anthropomet-
ric, clinical, and biochemical parameters revealed significantly lower values in the female
participants across all measured variables. Most participants were classified within social
class I. Regarding smoking status, approximately 15% of both the men and women were
current smokers. Physical inactivity was observed in 25.9% of the male participants and
35.1% of the female participants. Furthermore, more than half of the participants in both
genders adhered to the Mediterranean diet.

Table 1. Characteristics of the population.

Men n = 4104 Women n = 4486

Mean (SD) Mean (SD) p-Value

Age (years) 41.6 (10.6) 41.5 (10.5) 0.492
Height (cm) 175.8 (7.2) 162.5 (6.1) <0.001
Weight (kg) 81.2 (14.8) 63.9 (13.6) <0.001

Waist circumference (cm) 89.8 (12.5) 77.0 (12.0) <0.001
Hip circumference (cm) 101.8 (8.7) 99.6 (10.9) <0.001

Systolic blood pressure (mmHg) 128.6 (13.3) 117.2 (14.1) <0.001
Diastolic blood pressure (mmHg) 79.9 (10.2) 74.9 (9.9) <0.001

Glycemia (mg/dL) 93.4 (17.8) 88.9 (12.6) <0.001
Total cholesterol (mg/dL) 191.8 (36.0) 189.0 (34.8) <0.001
HDL-cholesterol (mg/dL) 49.2 (11.3) 59.5 (12.8) <0.001
LDL-cholesterol (mg/dL) 124.0 (54.6) 113.8 (30.7) <0.001

Triglycerides (mg/dL) 107.8 (69.4) 81.5 (46.3) <0.001
GGT (UI) 31.5 (30.0) 18.5 (15.9) <0.001
AST (UI) 24.4 (17.3) 18.2 (7.7) <0.001
ALT (UI) 29.3 (34.9) 17.3 (13.4) <0.001
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Table 1. Cont.

Men n = 4104 Women n = 4486

Mean (SD) Mean (SD) p-Value

% % p-value

18–29 years 15.5 16.8 0.005
30–39 years 27.8 25.1
40–49 years 32.7 34.4
50–59 years 19.0 19.7
60–69 years 5.0 4.0
Social class I 57.1 50.8 <0.001
Social class II 20.2 23.8
Social class III 22.7 25.4
Non-smokers 84.5 84.2 0.348

Smokers 15.5 15.8
No physical activity 25.9 35.1 <0.001

Physical activity 1–3 days/week 27.0 26.5
Physical activity more 3

days/week 47.1 38.4

Mediterranean diet not followed 44.5 41.6 <0.001
Mediterranean diet followed 55.5 58.4

GGT Gamma-glutamyl transpeptidase. AST Aspartate transaminase. ALT Alanine transaminase.

Table 2 presents the mean values of ALLY metabolic age according to the risk scale
values for MASLD. The mean values of ALLY metabolic age are higher in individuals with
a greater risk of MASLD. The mean values are consistently lower in women. In all cases,
the differences are statistically significant (p < 0.01).

Table 3 presents the results of the multinomial logistic regression. All independent
variables (sex, age, social class, tobacco consumption, Mediterranean diet, physical activity,
and MASLD risk scales) are associated with the values of ALLY metabolic age. Among
these, the variables showing the strongest associations (the highest odds ratios) are the
MASLD risk scales, physical activity, and the Mediterranean diet.

Table 2. Mean values of metabolic age according to values of sociodemographic variables, healthy
habits, and MASLD risk scales by sex.

Men Women

Metabolic
Age n Mean (SD) p-Value n Mean (SD) p-Value

FLI low 2206 −10.3 (6.1) <0.001 3645 −8.7 (8.5) <0.001
FLI moderate 971 −3.0 (9.7) 478 6.3 (9.4)

FLI high 1107 7.1 (9.6) 361 11.7 (6.7)
HSI normal 2518 −10.2 (6.9) <0.001 3268 −10.5 (6.6) <0.001

HSI high 1766 3.6 (10.6) 1216 6.5 (9.6)
ZJU normal 3102 −9.5 (7.5) <0.001 3443 −10.2 (7.0) <0.001

ZJU high 1182 6.1 (9.5) 1041 8.1 (8.5)
FLD normal 3700 −7.2 (9.0) <0.001 4175 −7.3 (9.6) <0.001

FLD high 584 12.2 (6.8) 309 13.0 (5.2)
LAP normal 3276 −7.1 (9.4) <0.001 3994 −7.4 (9.7) <0.001

LAP high 1008 5.2 (10.4) 490 8.5 (9.0)
FLI Fatty Liver Index. HSI Hepatic Steatosis Index. ZJU Zhejian University. FLD fatty liver disease. LAP Lipid
Accumulation Product.
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Table 3. Multinomial logistic regression.

MA High MA High MA High MA High MA High

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Women 1 1 1 1 1
Men 1.27 (1.20–1.34) 1.18 (1.14–1.23) 1.15 (1.10–1.21) 1.10 (1.07–1.14) 1.23 (1.18–1.29)

18–29 years 1 1 1 1 1
30–39 years 1.13 (1.10–1.17) 1.20 (1.16–1.25) 1.15 (1.11–1.20) 1.11 (1.08–1.15) 1.16 (1.10–1.23)
40–49 years 1.29 (1.24–1.35) 1.38 (1.31–1.45) 1.28 (1.21–1.35) 1.22 (1.16–1.28) 1.30 (1.20–1.41)
50–59 years 1.48 (1.38–1.57) 1.56 (1.50–1.63) 1.46 (1.38–1.54) 1.40 (1.31–1.50) 1.48 (1.35–1.61)
60–69 years 1.79 (1.64–1.94) 1.75 (1.66–1.85) 1.69 (1.58–1.80) 1.66 (1.51–1.81) 1.63 (1.49–1.78)
Social class I 1 1 1 1 1
Social class II 1.79 (1.46–2.12) 1.67 (1.50–1.84) 1.84 (1.57–2.11) 1.49 (1.35–1.632) 1.63 (1.48–1.79)
Social class III 2.33 (1.95–2.71) 1.89 (1.70–2.09) 2.22 (1.82–2.62) 1.99 (1.64–2.35) 2.43 (2.10–2.77)
Non-smokers 1 1 1 1 1

Smokers 1.12 (1.10–1.15) 1.24 (1.18–1.30) 1.29 (1.20–1.39) 1.09 (1.06–1.11) 1.17 (1.10–1.24)
Physical activity

more 3
days/week

1 1 1 1 1

Physical activity
1–3 days/week 1.96 (1.64–2.28) 1.88 (1.56–2.20) 1.79 (1.64–1.94) 1.81 (1.60–2.02) 2.14 (1.85–2.44)

No physical
activity 3.19 (2.68–3.70) 3.19 (2.66–3.72) 3.20 (2.64–3.77) 4.12 (3.38–4.85) 4.20 (3.64–4.77)

Mediterranean
diet followed 1 1 1 1 1

Mediterranean
diet not followed 2.26 (1.95–2.58) 2.65 (2.27–3.04) 2.35 (2.00–2.71) 2.39 (2.03–2.76) 2.42 (2.15–2.70)

FLI low 1
FLI moderate 5.47 (4.45–6.50)

FLI high 10.13 (8.90–11.37)
HSI normal 1

HSI high 11.13 (9.93–12.34)
ZJU normal 1

ZJU high 9.88 (8.60–11.17)
FLD normal 1

FLD high 12.10
(10.80–13.51)

LAP normal 1
LAP high 8.75 (7.56–9.95)

FLI Fatty Liver Index. HSI Hepatic Steatosis Index. ZJU Zhejian University. FLD fatty liver disease. LAP Lipid
Accumulation Product.

Figures 2 and 3, along with Table 4, present the results of the ROC curves. The areas
under the curve for both sexes show very high values (which are higher in women), with
the highest values observed for FLD (0.935 in women and 0.917 in men) and the FLI (0.900
in women and 0.833 in men). The Youden index values are also high, particularly for FLD
(0.759 in women and 0.736 in men) and the FLI (0.669 in women and 0.602 in men).
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A B C 

D E 

Figure 2. ROC curves in women: (A) FLI, (B) HSI, (C) ZJU, (D) FLD, (E) LAP.

Table 4. Areas under the curve, cutoff, sensitivity, and specificity of Youden index by sex.

Women Men

AUC (95% CI) AUC (95% CI)

FLI high 0.900 (0.884–0.916) 0.833 (0.817–0.848)
HSI high 0.878 (0.866–0.890 0.799 (0.785–0.814)
ZJU high 0.898 (0.888–0.909) 0.852 (0.838–0.865)
FLD high 0.935 (0.925–0.945) 0.917 (0.903–0.932)
LAP high 0.864 (0.848–0.881) 0.802 (0.786–0.818)

cut-off-sens-specif-Youden cut-off-sens-specif-Youden

FLI high -2–83.5–83.4–0.669 -3–80.1–80.1–0.602
HSI high -3–81.0–80.9–0.619 -5–77.0–74.1–0.511
ZJU high -1–83.3–83.3–0.666 -3–81.0–77.5–0.585
FLD high 9–88.2–87.7–0.759 6–87.5–86.1–0.736
LAP high 1–80.4–80.3–0.607 -3–75.6–72.7–0.483

FLI Fatty Liver Index. HSI Hepatic Steatosis Index. ZJU Zhejian University. FLD fatty liver disease. LAP Lipid
Accumulation Product.
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Figure 3. ROC curves in men: (A) FLI, (B) HSI, (C) ZJU, (D) FLD, (E) LAP.

4. Discussion
Considering the results of this study, we can affirm that there is an association between

metabolic age values and the values of different MASLD risk scales.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent

liver pathology worldwide, characterized by the accumulation of fat in the liver in the
absence of excessive alcohol consumption. Its development and progression are strongly
influenced by metabolic factors, including obesity [68], insulin resistance [69], and dyslipi-
demia [70]. Recently, the concept of metabolic age has emerged as a comprehensive indica-
tor of an individual’s metabolic status, potentially providing insights beyond traditional
risk markers. Metabolic age is a composite measure that integrates various physiological
signs, including body composition, fat distribution, and basal metabolic rate (BMR), into
a single, easily interpretable index that reflects an individual’s overall metabolic health
status. This integrative nature allows for a more comprehensive assessment of underlying
metabolic disturbances that may not be apparent through conventional indicators. There-
fore, metabolic age has been proposed as a non-invasive biomarker with particular utility
for cardiometabolic risk stratification in both clinical and population-based settings. In this
context, the objective of this discussion is to analyze the relationship between metabolic
age and MASLD, as well as to explore the influence of sociodemographic factors and health
habits on metabolic age.

In this research, we have confirmed that individuals with higher values across all
analyzed MASLD risk scales exhibited higher metabolic age values. These findings are
consistent with various studies demonstrating that an elevated metabolic age compared
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to chronological age is associated with an unfavorable metabolic profile, including a high
body mass index (BMI) [71], insulin resistance [42], and increased visceral adiposity [72].
These metabolic conditions also represent key factors in the pathogenesis of MASLD. It
has been identified that individuals with a metabolic age exceeding their chronological age
present a higher risk of developing hepatic steatosis, suggesting that metabolic age could
serve as a prognostic marker for disease progression [73].

One of the fundamental mechanisms linking metabolic age to MASLD is mitochon-
drial dysfunction [74] and increased oxidative stress [75]. It has been postulated that a
higher metabolic age is accompanied by a reduction in oxidative phosphorylation efficiency,
contributing to the accumulation of reactive oxygen species (ROS) in hepatocytes, thereby
promoting inflammation and hepatic fibrosis [76]. Additionally, insulin resistance, a com-
mon feature among individuals with a higher metabolic age, plays a critical role in hepatic
lipid accumulation through the activation of de novo lipogenesis.

Recent studies have suggested that metabolic age assessment could be used for risk
stratification in MASLD patients. A recent investigation demonstrated that an elevated
metabolic age was significantly associated with higher levels of alanine aminotransferase
(ALT) and aspartate aminotransferase (AST), hepatic biomarkers used to assess disease
severity [77]. Furthermore, the relationship between increased metabolic age and hepatic
fibrosis suggests a direct impact on the progression of MASLD to more advanced stages,
such as metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis [78].

Chronological age is a natural determinant of metabolic age; however, the disparity
between the two can be influenced by various sociodemographic factors, as observed in this
study. In particular, sex has proven to be a relevant variable in modulating metabolic age,
both in this research and in others [36]. Hormonal differences between men and women can
influence body composition [79], fat distribution [80], and insulin sensitivity [81], which
in turn may impact metabolic age. It has been observed that men tend to have a higher
metabolic age compared to women, possibly due to lower estrogenic protection against
insulin resistance and oxidative stress [36].

Socioeconomic status has also been identified as a key determinant of metabolic age
in this study. It is well known that individuals of lower socioeconomic status often have
limited access to resources that promote a healthy lifestyle, such as a balanced diet and
opportunities for regular physical activity [82]. Additionally, chronic stress associated
with economic instability may promote metabolic dysfunction through neuroendocrine
mechanisms, such as the hyperactivation of the hypothalamic–pituitary–adrenal (HPA)
axis [83].

Considering the results of this research, several health habits appear to modulate
metabolic age and, consequently, influence the development of MASLD. Tobacco consump-
tion, for instance, is associated with a higher metabolic age due to its negative impact on
endothelial function, increased oxidative stress, and promotion of chronic inflammation.
These mechanisms also contribute to MASLD progression [84].

Conversely, adherence to a Mediterranean diet has been associated with a lower
metabolic age, both in this study and in others [85]. This dietary pattern, characterized by a
high intake of monounsaturated fatty acids, polyphenols, and fiber, contributes to improved
insulin sensitivity [86] and reduced systemic inflammation [87]. Studies have demonstrated
that the Mediterranean diet can decrease hepatic fat accumulation and mitigate MASLD
progression [88].

Physical activity is another crucial factor in the modulation of metabolic age, as evi-
denced by the findings of this study. Regular physical exercise improves cardiorespiratory
fitness [89], optimizes mitochondrial function [90], and reduces visceral adiposity [91].
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It has been demonstrated that physically active individuals have a significantly lower
metabolic age and a reduced risk of developing MASLD [92].

In our study, we assessed MA using BIA, a non-invasive, rapid, and cost-effective
technique that enables a more accurate estimation of BMR. This method has proven useful
not only for evaluating body composition but also as an indirect indicator of an individ-
ual’s overall metabolic status. Our findings revealed a significant association between
a higher metabolic age and elevated scores on various MASLD risk scales. Specifically,
participants with higher values on the analyzed indices (such as the FLI, HSI, ZJU, FLD,
and LAP) also showed higher MA values, suggesting a greater degree of underlying
metabolic impairment.

These results are consistent with those reported by Choi et al. (2022) [93], who
identified a significant relationship between BIA-derived parameters and the presence of
hepatic steatosis. In their study, the authors proposed BIA as a valuable screening tool for
fatty liver disease in both men and women. In this context, our results further support
the hypothesis that BIA-derived metabolic age is not only effective in characterizing the
functional state of metabolism but may also serve as an early marker of hepatic metabolic
risk. This has important clinical implications, as it could aid in the early identification of
individuals at risk of MASLD and guide personalized interventions aimed at improving
metabolic health and preventing progression to more advanced stages of liver damage.

Adherence to a balanced Mediterranean diet, regular engagement in physical activ-
ity, weight management, and smoking cessation are modifiable lifestyle behaviors that,
according to our findings, significantly influence metabolic age and the risk of developing
metabolic dysfunction-associated steatotic liver disease (MASLD). These results support the
role of comprehensive lifestyle interventions as effective strategies for improving metabolic
health and preventing MASLD. Promoting such habits may offer substantial public health
benefits, particularly in populations at increased risk of metabolic and hepatic disorders.

5. Conclusions
Metabolic age has emerged as a non-invasive and clinically valuable indicator of over-

all metabolic health, with particular relevance in the early detection of risk for metabolic
dysfunction-associated steatotic liver disease (MASLD). An MA higher than one’s chrono-
logical age typically reflects an underlying metabolic impairment, making it a potential
screening tool. Sociodemographic factors and lifestyle habits influence MA, highlighting
the need for integrated preventive strategies. Assessing MA enables the early identification
of individuals at risk, thereby facilitating personalized interventions aimed at improving
metabolic health and preventing progression to more advanced stages of liver damage.
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