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ABSTRACT  

Esta tesis presenta el NAVI Trace Toolkit, una plataforma web desarrollada para SPEN con 

el objetivo de modernizar el flujo de trabajo de análisis de traces. Extiende el marco teórico 

de Hoel et al. [1] con un algoritmo que es usado para calcular el camino crítico de instalación. 

La plataforma mejora tanto la velocidad de ejecución como la eficiencia del usuario. 

Palabras Clave: Análisis de Traces, Visualización de Redes Eléctricas, Desarrollo Web 

1. Introducción 

Scottish Power Energy Networks (SPEN) emplea la plataforma NAVI para visualizar su red 

energética y respaldar la toma de decisiones técnicas, siendo el análisis de traces una de sus 

herramientas más potentes. No obstante, SPEN carece de un entorno específico para el 

desarrollo de traces, dependiendo exclusivamente de scripts en Python que limitan la 

flexibilidad y ralentizan el proceso iterativo. Esta tesis presenta el NAVI Trace Toolkit, una 

solución web que permite a los ingenieros desarrollar traces de forma ágil y eficiente. El 

proyecto integra ingeniería de software y un diseño centrado en el usuario para ofrecer una 

plataforma práctica, escalable y orientada a las necesidades reales del equipo de desarrollo. 

2. Metodología 

La metodología adoptada para este proyecto se basa en principios agile y en un enfoque 

centrado en el usuario. El proceso se estructuró en cuatro fases: recopilación de requisitos, 

diseño de wireframes, desarrollo iterativo y evaluación final. 

La investigación inicial permitió identificar los principales puntos críticos en el flujo de 

trabajo de desarrollo de traces en SPEN, como la ausencia de interfaz gráfica, baja 

accesibilidad y una arquitectura monolítica. 

Los wireframes se diseñaron en Figma con el objetivo de responder a las necesidades del 

usuario en cuanto a la interfaz visual. 

Durante la fase de desarrollo iterativo se incorporaron diversas sugerencias, como mejoras 

en la estética de la interfaz, persistencia de sesión y abstracción de la lógica de traces. 

Una vez completada la plataforma, se llevó a cabo una evaluación con cinco ingenieros de 

SPEN, quienes realizaron tareas predefinidas y participaron en encuestas y entrevistas 

abiertas para valorar la experiencia de uso y compararla con el flujo de trabajo anterior. 

3. Implementación 

El NAVI Trace Toolkit se ha implementado como una aplicación web modular, adaptada al 

entorno operativo de SPEN. El backend se desarrolló en Python utilizando el framework 



Flask, mientras que el frontend se construyó con HTML y CSS. Para la representación 

geoespacial se emplea MapLibre GL JS. Las subredes se presentan mediante capas de 

MapLibre con fuentes en GeoJSON, y la lógica de traces se programa directamente en la 

interfaz de usuario a través del editor Ace integrado.  

El backend expone endpoints RESTful para la ejecución de traces, la carga de subredes y el 

acceso a la guía de usuario. Además, incorpora una biblioteca personalizada de traces basada 

en el marco teórico de Hoel et al. [1], que además incluye funciones de estilo de traces, 

mensajes, utilidades y exploración de redes. Entre las funciones de exploración de redes 

destaca la de camino crítico diseñada en este proyecto. 

La clase TraceContext gestiona el estado del grafo y el estilo de visualización, lo que permite 

flujos de trabajo modulares y la aplicación de lógica de traces en múltiples pasos. La 

instalación se ha hecho más intuitiva mediante scripts .bat y una guía de usuario, 

garantizando la accesibilidad para ingenieros con distintos niveles técnicos.  

 

Figure 1 – Arquitectura del Sistema de NAVI Trace Toolkit 

4. Resultados 

El NAVI Trace Toolkit fue evaluado mediante un análisis comparativo, pruebas de usuario 

y un caso de uso realista, con el objetivo de validar tanto su rendimiento como su usabilidad. 

La plataforma ofrece una interfaz rica e interactiva, que incluye visualización geoespacial, 

estilos dinámicos y ejecución de traces en tiempo real. 

4.1. Análisis Comparativo 

En comparación con el anterior flujo de trabajo monolítico, la nueva plataforma mejora de 

forma significativa los tiempos de ejecución de traces y descarga de subredes (3,92 segundos 

frente a 10,73 segundos), incluso al gestionar hasta nueve subredes simultáneamente. Su 

arquitectura modular permite un desarrollo de traces más eficiente, rápido y flexible. 

4.2. Evaluación del Usuario 

Cinco ingenieros de SPEN participaron en una prueba de usabilidad, para completar la 

instalación de la plataforma y cinco tareas definidas en menos de 30 minutos. El NAVI Trace 

Toolkit alcanzó un 100 % de efectividad y una eficiencia de 1,64 tareas por minuto. El 

tiempo medio de instalación fue de 5,05 minutos, en contraste con la versión anterior que 

tomaba más de una hora. 

Para evaluar la experiencia de usuario, se realizó una encuesta tipo Likert (escala 1–5) que 

abarcó nueve dimensiones de usabilidad. Todas las dimensiones tuvieron puntuaciones 



superiores a 4 de media. Los participantes destacaron especialmente la claridad de la interfaz 

y la utilidad de las funciones integradas. Las sugerencias de mejora incluyeron la 

incorporación de un módulo introductorio para nuevos usuarios, funciones de 

importación/exportación de scripts y pequeños ajustes en la interfaz, como la incorporación 

de zoom automático y que el panel de código que se pueda redimensionar. 

 

Figura 2 – La IU de NAVI Trace Toolkit con el Caso de Uso CIC 

4.3. Caso de Uso: Camino de Instalación Crítico (CIC) 

El caso de uso CIC demuestra la capacidad del NAVI Trace Toolkit para evaluar la 

vulnerabilidad de infraestructuras envejecidas usando el análisis de traces. Se implementaron 

dos enfoques: uno basado en DFS, que explora todos los caminos simples, y otro más 

escalable basado en el algoritmo de Dijkstra. Este segundo enfoque utiliza la función 

critical_path(), desarrollada en el marco de esta tesis, que calcula los caminos más cortos 

desde un nodo controlador hasta todos los clientes, seleccionando el más expuesto según el 

valor CIC. El método tiene en cuenta principios de las redes eléctricas como la jerarquía y 

la tolerancia a fallos, y reduce la complejidad computacional a O(E + J log J), lo que lo hace 

adecuado para redes de gran escala. La implementación demuestra la capacidad de la 

plataforma para realizar análisis de traces escalables, reforzando su utilidad como 

herramienta técnica en entornos operativos reales. 

5. Conclusión 

El NAVI Trace Toolkit moderniza con éxito el desarrollo de traces en SPEN, reemplazando 

flujos de trabajo desactualizados basados en scripts por una plataforma web modular. Integra 

ejecución en Python en tiempo real, visualización geoespacial y funciones integradas como 

el algoritmo critical_path() desarrollado en esta tesis. Las pruebas de rendimiento y la 

evaluación con usuarios confirmaron mejoras significativas en velocidad, usabilidad y 

accesibilidad. El caso de uso CIC validó la capacidad analítica y la escalabilidad de la 

plataforma, posicionándola como una solución práctica para el análisis de redes energéticas 

e infraestructuras. 
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ABSTRACT  

This thesis presents the NAVI Trace Toolkit, a web-based platform developed for SPEN to 

modernise trace workflows. It extends Hoel et al.’s framework [1] with a new critical path 

function and validates its performance through a realistic use case. Compared to the previous 

implementation, the platform improves execution speed and delivers high user satisfaction. 

Keywords: Trace Analysis, Energy Distribution Networks, Web, Geospatial visualisation 

7. Introduction 

Scottish Power Energy Networks (SPEN) uses the NAVI platform to visualise the energy 

network and support engineering decisions, with trace analysis being one of its most 

powerful tools. Despite its potential, SPEN lacks a dedicated trace development 

environment, relying on manual Python scripts that limit flexibility and slow iteration. This 

thesis develops the NAVI Trace Toolkit, a web-based solution that enables engineers and 

data scientists to develop and manage traces efficiently. The project combines energy 

network analysis, software engineering, and user experience design to deliver a practical and 

scalable platform. 

8. Methodology 

The methodology followed a user-centred and agile approach, structured into four phases: 

requirements gathering, wireframing, iterative development, and stakeholder feedback.  

Initial research identified key pain points in SPEN’s trace development workflow, such as a 

lack of real-time feedback, poor accessibility, and a monolithic architecture. These insights 

shaped the functional requirements of the NAVI Trace Toolkit, including modular Python 

execution, UI-based trace configuration, and real-time map interaction.  

Wireframes were designed in Figma to align user needs with visual layout, and agile sprints 

ensured continuous refinement based on developer and stakeholder input.  

Stakeholder feedback during agile development led to improvements in key UI aesthetics, 

responsiveness, session persistence, and trace logic abstraction.  

Once core functionality was complete, the platform was tested by five SPEN engineers 

through task-based performance tests, surveys, and open feedback. Results confirmed the 

toolkit’s usability, efficiency, and compatibility with SPEN’s corporate environment, 

validating its practical value. 

9. Implementation 



The NAVI Trace Toolkit was implemented as a modular web application tailored for SPEN’s 

operational environment. It uses a Flask Python backend and a responsive HTML/CSS 

frontend, with MapLibre GL JS for map rendering. Subnetworks are visualised using 

GeoJSON layers, and trace logic is executed in real time via a built-in Ace Editor.  

The backend exposes RESTful endpoints for trace execution, subnetwork loading, and user 

guidance, and integrates a custom trace library based on Hoel et al.’s framework [1]. This 

library includes functions for trace styling, messaging, utilities, and network exploration, 

including the critical path algorithm designed in this project. The TraceContext class 

manages graph state and styling, enabling multi-step workflows and modular trace 

development. Setup is simplified through .bat scripts and a user guide, ensuring accessibility 

for engineers regardless of their technical background. The implementation prioritises 

usability, modularity, and compatibility with SPEN’s infrastructure, supporting efficient 

trace development and visualisation. 

 

Figure 3 – System Architecture of the NAVI Trace Toolkit 

10. Results 

The NAVI Trace Toolkit was evaluated through comparative analysis, user testing, and a 

realistic use case to validate its performance and usability. The platform delivers a rich, 

interactive interface with geospatial visualisation, dynamic styling, and real-time Python 

scripting. It supports multi-subnetwork analysis, responsive design across desktop 

resolutions, and intuitive user flows.  

 

Figure 4 – The NAVI Trace Toolkit UI Showing Critical Installation Path (CIP) Trace 



10.1. Comparative Analysis 

Compared to the previous monolithic workflow, the toolkit significantly improves trace 

execution speed and subnetwork loading time (3.92s vs. 10.73s), even when handling up to 

nine subnetworks. The modular architecture enables flexible trace development, while built-

in functions and integrated documentation enhance accessibility.  

10.2. User testing 

A user study with five SPEN engineers evaluated the NAVI Trace Toolkit’s usability, 

efficiency, and user experience. Participants completed setup and five trace-related tasks 

within 30 minutes. The toolkit achieved 100% effectiveness (all tasks completed) and an 

efficiency score of 1.64 tasks per minute, confirming its intuitive design and fast task 

execution. Setup time averaged 5.05 minutes, a significant improvement over the previous 

version, which took up to an hour. 

A Likert-scale survey (1–5) assessed nine usability dimensions, all scoring above 4. Users 

highlighted the toolkit’s clarity, responsiveness, and built-in trace functions. Open feedback 

suggested future improvements, including onboarding new users, import/export features for 

trace scripts and data, and UI enhancements like initial zoom-to-fit and a resizable code 

panel. 

10.3. Use Case: Critical Installation Path (CIP) 

The CIP use case demonstrates how the NAVI Trace Toolkit can assess ageing infrastructure 

in energy networks. Two approaches were implemented: a DFS-based method that explores 

all simple paths to find the highest cumulative CIP weight, and a more scalable Dijkstra-

based method. The second approach uses the custom critical_path() function developed in 

this thesis, which computes shortest paths from a controller node to all customers and 

identifies the most exposed one based on CIP. This method respects energy network 

principles like hierarchy and fault tolerance, and reduces complexity to O(E + J log J), 

making it suitable for large-scale analysis. The implementation highlights the toolkit’s 

support for scalable algorithms, attribute-driven analysis, and operational relevance. 

11. Conclusions 

The NAVI Trace Toolkit successfully modernises trace development at SPEN by replacing 

rigid, script-based workflows with a modular, web-based platform. It integrates real-time 

Python execution, geospatial visualisation, and built-in trace functions, including the custom 

critical_path() algorithm developed in this thesis. Performance tests and user evaluations 

confirmed improved speed, usability, and accessibility. The CIP use case validated the 

toolkit’s analytical capabilities and scalability, making it a practical solution for energy 

network analysis and infrastructure assessment. 
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ABSTRACT 

This thesis presents the development of the NAVI Trace Toolkit, a web-based platform 

designed to modernise trace analysis workflows within energy distribution networks. Trace 

analysis is a powerful technique to visualise and diagnose the structure and behaviour of 

electrical grids. However, the lack of a dedicated trace development environment has limited 

its implementation at Scottish Power Energy Networks (SPEN). Existing trace development 

workflows rely on executing manual Python scripts, which lack real-time feedback, 

flexibility, and accessibility for trace developers. 

The NAVI Trace Toolkit integrates energy network analysis with modern web software 

development and a user-centred design approach to address these limitations. Built using 

Python, Flask, HTML5, CSS3, and JavaScript, the platform provides an interactive interface 

that supports real-time trace execution, dynamic styling, and modular architecture. It allows 

the developers to load multiple subnetworks, customise visual outputs, and develop trace 

logic using built-in functions within a responsive and intuitive environment. 

The theoretical foundation of the toolkit is based on Hoel et al.’s trace framework, adapted 

to energy networks with rich attribute metadata. This project contributes to the trace 

framework by integrating a new function for identifying critical paths using a custom weight 

function. 

The platform leverages GeoJSON for geospatial data encoding and integrates MapLibre GL 

JS for high-performance map rendering. The Critical Installation Path (CIP) use case 

demonstrates a DFS-based and a scalable Dijkstra-based approach, balancing analytical 

depth with computational feasibility. This realistic use case validates the platform’s 

capabilities and illustrates a practical application of the critical path function. 

Industrial constraints were considered to ensure compatibility with SPEN’s corporate 

environment. The application runs locally, requires no administrative privileges, and reduces 

setup time to under five minutes. A user experience evaluation assessed the platform’s 

efficiency, achieving 1.64 tasks per minute, and effectiveness, reaching 100% task 

completion. User survey feedback from participants reflected high customer satisfaction. 
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1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

Scottish Power Energy Networks (SPEN) utilises the NAVI platform to visualise the energy 

network and provide engineers with insights. Among its various capabilities, one of the most 

powerful is trace analysis—an analytical tool used to understand, visualise, and diagnose the 

structure and behaviour of the energy network. This involves highlighting nodes and lines on 

the network topology to visually represent data, such as tracing upstream from a given 

impedance to the source. This process helps to determine the network's path, components and 

electrical characteristics.  

Trace Analysis can be extended to various energy network applications; however, SPEN lacks 

a dedicated trace development platform. The current workflow for trace developers relies on 

executing basic Python scripts locally, which is time-consuming and does not have real-time 

feedback. This particularly frustrates users when they want to make minor changes and iterate 

quickly to refine the code, hindering productivity and experimentation.  

This master’s thesis aims to create the NAVI Trace Toolkit, a web-based platform that enables 

data scientists and engineers to develop and manage traces efficiently. This interdisciplinary 

project combines novel energy network trace analysis approaches with software engineering 

principles and user experience design to create an innovative and practical application. 

This thesis explains the motivation, development, and evaluation of the NAVI Trace Toolkit. 

Chapter 2 describes the literature review and theoretical background, discussing the growing 

importance of analytical tools in distribution networks and reviewing traditional approaches 
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such as GIS tools. This chapter also explores the role of web technologies in smart grids and 

their user experience design principles. Limitations of existing tools are identified, and the trace 

theoretical background based on graph theory is described. 

The project's methodology is described in Chapter 4, which covers requirements gathering, 

wireframing, the agile development process, and user testing and evaluation strategy. The 

following chapter describes the technical implementation, divided into front-end and back-end 

components. 

Chapter 6 presents the project's results, including a visual interface description and an analysis 

of user flows and execution times. This chapter also reports the results of the user study and a 

detailed use case demonstration. The conclusion of the thesis is in Chapter 7, which summarises 

the findings and proposes future work. 

1.2. SCOPE AND OUTLINE 

The work scope is focused on developing a web-based platform that demonstrates how to build 

an application using Python and JavaScript to enable trace developers to create complex and 

specific energy network trace analyses. Although the application is built on SPEN’s NAVI 

platform, it is designed to be replicable, allowing any person or organisation to build the 

platform for their own trace development needs.  

The platform provides a flexible, developer-friendly environment that supports the creation and 

management of trace logic. The application ultimately bridges the gap between rigid 

commercial GIS software and overly generic network graph libraries, offering a custom 

solution for energy network analysis. 
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Security hardening is considered beyond the scope of the thesis. Although the platform is web-

based, it is intended to be executed locally; therefore, advanced security measures are not a 

priority of this project. As such, server deployment is also excluded from the scope of the 

project; however, the web design is modular and extensible, allowing for future deployment on 

a server if required. 
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2. LITERATURE REVIEW AND THEORETICAL 

BACKGROUND 

2.1. TRENDS AND IMPORTANCE OF ANALYSIS TOOLS IN 

DISTRIBUTION NETWORKS 

The evolution of distribution grids—driven by decentralisation, digitalisation, and 

decarbonisation—has led to a growing need for advanced analytical tools to support network 

optimisation and decision-making [1]. These tools are essential for integrating Distributed 

Energy Resources (DER), Electric Vehicles (EVs), and Smart Grid technologies, while 

maintaining grid reliability, efficiency, and resilience. [2] 

IEEE literature highlights the importance of new analytical tools for tasks such as load 

forecasting, protection, electric power quality, and power factor improvement [2]. Networks 

are evolving from passive, radial configurations to more dynamic and bidirectional networks. 

Traditional manual or static analysis methods may no longer be sufficient. 

Furthermore, new privatisation trends and deregulation of the distribution grid have increased 

the risk of the electrical grid becoming uncompetitive in a new market that can no longer rely 

on regulatory protection. In this new context, innovative tools are required to remain 

competitive, and making better use of spatial data is key to achieving efficiency in a capital-

intensive market. [1] 
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2.2. WEB TECHNOLOGIES IN ELECTRICAL GRID 

Bui et al. present a new paradigm for energy networks in which the Smart Grid (SG) benefits 

from internet technologies to become more interoperable and accessible [3]. The paper 

highlights the importance of referencing internet standardisation bodies such as the Internet 

Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). When 

implementing web technologies, utilising widely adopted internet protocols such as IP, TCP, 

and UDP is essential. These protocols ensure SG’s compatibility and scalability, for example, 

when integrating new energy sources and consumers (e.g., solar panels, EVs).  

Standard web protocols like HTTP and RESTful APIs enable remote access to grid components 

and data. The Representational State Transfer (REST) paradigm organises an Application 

Programming Interface (API) to facilitate data exchange using HTTP operations such as GET, 

POST, DELETE, and UPDATE [4]. This architecture benefits the SG, as web-based platforms 

are recognised for their versatility and interoperability across different domains. 

The IETF created the Constrained RESTful Environments (CoRE) working group to develop a 

RESTful protocol for constrained environments, resulting in the Constrained Application 

Protocol (CoAP) [5]. This protocol facilitates the implementation of the REST protocol in 

hardware with limited resources, achieving both computational and data efficiency. CoRE’s 

web-oriented binary protocol allows an HTTP request of several tens of bytes to be reduced to 

4 bytes. [3] 

Other working groups in the IETF and W3C also developed standards to ease the integration of 

web-based protocols into the smart grid. 6LoWPAN working group efforts were focused on 

delivering IPv6 internet connectivity to constrained WPAN devices [6]. Meanwhile, the W3C’s 
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Efficient XML Interchange (EXI) worked on XML data compression, achieving up to 90% 

storage reductions [7]. 

One of the significant advantages of web technologies is the accessibility of SG services via a 

web browser, which eliminates the need for software installation. Web technologies also offer 

interoperability with devices designed for general-purpose networks such as PDAs, mobiles, 

and servers. [3] 

Bui et al. developed a proof of concept for IoT web visualisation developed using Java and 

Google Maps, in which they present the network topology of connected devices. This work 

demonstrates the scalability and interoperability of web-based solutions. Similarly, Eren et al. 

present a web-based dispatcher information system for the electrical grid, YTBS (Yük Tevzi 

Bilgi Sistemi) [8]. It includes tools for data analysis, forecasting, and long-term investment 

planning. This real-time, centralised monitoring platform presented by the TSO validates the 

viability of web-based platforms in grid operations.  

In summary, web technologies offer a compelling response to the energy networks' needs. 

CoAP and data compression standards such as EXI highlight the efforts from the IETF and 

W3C to enable efficient web technologies implementation in energy grids. At the same time, 

applications like YTBS and the IoT platform by Bui et al. demonstrate the practical viability of 

web-based grid management platforms. 

2.2.1. USER EXPERIENCE AND HUMAN-CENTRED DESIGN IN WEB 

APPLICATIONS 

User experience is key in adopting and using web-based applications in the energy sector. As 

distribution networks become increasingly complex and data-driven, the ability of users to 

interact with digital applications becomes essential. User experience is crucial not only in 
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usability, but also in improving decision-making, reducing errors, and increasing employee 

satisfaction [9]. 

There is a move from human-machine interfaces (HMI) to human-computer interfaces (HCI) 

[10]. HCI offers more flexibility, capabilities, and interoperability than HMI, satisfying the need 

for control systems with dynamic interaction and complex data representation on a real-time 

basis. As the electrical grid continues to grow, manual operation becomes difficult, and new 

HCI are needed to represent large amounts of data. The electric industry's many stakeholders 

and business areas have also led to different tools to control, analyse, simulate, and visualise. 

Each application represents a small part of the energy industry; they gather data from a bigger 

pool of data sources, and the output of one application might be the input of other business 

areas, bringing interoperability issues [10]. 

Visualisation is the representation of the data into information, creating discernible, human-

readable patterns. Significant challenges in data visualisation applications include cleaning, 

organising, and formatting messy data. Open-source repositories and libraries ease the 

implementation of visualisations. Organisations must focus on building visualisation platforms 

that are presented simply and appropriately. [11] 

Nielsen’s usability heuristics provide a framework with principles such as visibility of system 

status, consistency with standards, match between the system and the real world, and user 

control, all of which are essential for creating user-centred web applications [12]. In the context 

of energy networks, we fulfil these principles by enabling real-time feedback on results, 

consistent visual language, and data fidelity. 

Kluge et al. applied a human-centred design (HCD) process to develop a fault-finding mobile 

application [9]. The work assessed the workers' acceptance of the technology and the 
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enhancement in fault detection performance, resulting in an improved operational efficiency 

and detection time [9]. Incorporating feedback and interviewing loops with end users—where 

users continuously test and refine the tool— ensures that the final product aligns with the 

changing operational needs. HCD not only improves usability but also strengthens user 

engagement. 

Responsive Web design must also be considered to ensure accessibility across various devices. 

Furthermore, developing fixed-width websites increases development costs and hinders 

maintainability [13]. Best practice is to implement responsive web features in the initial steps. 

Seth A. Blanchard highlights that data analysis tools should also be responsive [11]. In the 

specific case of the NAVI Trace toolkit, mobile devices have not been considered; however, 

users might work with different computers and monitor resolutions, which need to be 

considered in developing the platform.   

HTML5 and CSS3, along with the responsive web design methodology, enable web developers 

to implement the One Web vision [13]. Key elements of responsive design are [13]: 

1. Fluid layout uses a flexible grid to be screen-resolution agnostic. 

2. Flexible images, whether by themselves or controlled through external logic. 

3. CSS3 Media queries, which adapt the design depending on screen resolution and 

address usability problems. 

2.3. TRADITIONAL APPROACHES FOR ENERGY NETWORK 

TOPOLOGICAL AND SPATIAL ANALYSIS 

In the past three decades, topological and network analysis of the grid have been performed 

using GIS, which private companies typically develop. GIS platforms offer powerful tools for 
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managing and analysing spatial data, making them ideal for visualising and operating complex 

energy infrastructures [1].  

SPEN adopted the NAVI platform, its GIS application to visualise and operate its distribution 

network. NAVI supports SPEN in making both business and technical decisions, ultimately 

leading to more efficient grid management.  

Among the various capabilities offered by NAVI, trace analysis attracts attention as a 

particularly valuable tool. GIS proprietary software platforms, such as ESRI ArcGIS [14] or 

GE Smallworld [15], often include similar trace tools. Trace analysis is applied across utility 

networks to better understand their structure and behaviour; in the context of energy networks, 

typical applications include finding the nearest upstream protective device, calculating voltage 

drops, and optimising the balance of power flows in the network. 

These GIS platforms include trace functions like finding the de-energised features and optimal 

switch configurations. The ESRI ArcGIS framework is the most advanced tool available for 

developing traces in proprietary software, which currently has eight built-in functions for 

tracing utility networks [16]. These trace function algorithms will be discussed in detail in the 

theoretical background section (2.5).  

2.3.1. WEB TECHNOLOGIES FOR GIS 

Integrating web technologies into geospatial applications has significantly transformed how 

networks are visualised and analysed.  Web GIS platforms are emerging as a solution in the 

energy network management to enable dynamic map rendering, collaborative user interaction, 

and data-driven decision making.  
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Kuridža's research about the benefits of web GIS applications highlights the advantages of web-

based platforms, including cross-platform execution regardless of the operating system, 

interface with external services, open standards, simplicity, and ubiquity on top of the 

technologies [17].  

GIS web platforms can be categorised into two types [17]. The first type includes web GIS 

platforms developed by traditional GIS software vendors, such as ArcGIS Online. The second 

type consists of completely web-based GIS platforms that do not rely on the desktop 

applications of traditional vendors. These two previous groups can be further divided into two 

categories: companies that develop applications for GIS end users (e.g., MangoMap, eSpatial) 

and vendors that focus on building platforms for developers (e.g., MapBox GL, CARTO) [17].  

Developers can define their architecture based on the previously mentioned GIS developer 

platforms, JavaScript open-source libraries (e.g., Turf, Leaflet, OpenLayers), or a combination 

of those tools. Own developed platforms include server-side data handling and RESTful APIs 

for communication [17].  

One of the most prominent JavaScript libraries is MapLibre GL JS [18], an open-source tool 

for rendering vector maps using WebGL. MapLibre is a fork of MapBox GL JS, which is a 

proprietary software for developers that was once open source. It supports GPU-accelerated 

rendering of vector tiles, allowing for smooth zooming and real-time dynamic styling of map 

layers. MapLibre is an appropriate solution for many applications, including energy networks, 

due to its: 

1. Custom styling capabilities, 

2. Integration with open standards like GeoJSON and Mapbox Style Specification, and 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIONES 

 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

11 

 

3. Interoperability with frameworks like React, Angular, and maps like MapTiler and 

OpenStreetMap. 

Fournier et al. developed an interactive decision support tool based on web maps for equitable 

energy planning, which was developed with stakeholders caring about social and environmental 

justice [19]. This project demonstrates the viability of web technologies for visualising energy 

networks for DER deployment. The web mapping tool was able to report imbalances between 

DER supply potential and grid capacity limits, helping in energy transition efforts. The web 

mapping platform used in this solution was ArcGIS Online, although open-source web-

mapping software was considered.  

2.3.2. WEB DATA FORMAT FOR GIS 

GeoJSON is a widely adopted standard format, defined by the IETF in RFC 7946 [20], for 

encoding geographical data using JavaScript Object Notation (JSON). Its design focuses on 

being lightweight, human-readable, and easily parsed by web applications. It supports several 

types of geometry. Point and LineString are the main types in the energy network context, but 

it also supports other geometry types such as Polygon, MultiPoint, MultiLineString, and 

GeometryCollection. The geographic feature has associated metadata, which is crucial for 

storing electrical data, and coordinates, using WGS84 (EPSG: 4326), which ensures 

compatibility with most web mapping tools. The JSON format enables smooth integration with 

REST APIs, databases, and front-end libraries. 

2.4. LIMITATIONS OF EXISTING TOOLS 

There is currently no solution in the market that offers the flexibility to develop trace analysis 

tailored to specific cases in the electrical grid, while also being compatible with SPEN’s 

distribution network data format. Existing Python network libraries are too generic to be applied 
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to energy networks, and commercial Geographic Information System (GIS) software solutions 

are either too rigid to enable developers to create custom traces or lack a trace analysis tool.  

For example, ArcGIS, which has the best trace tool in the market, is still constrained by the user 

interface, which has no code panel [21]. It does not allow users to combine multiple functions, 

preventing users from pipelining and creating tailored traces. While the user interface may be 

accessible to someone unfamiliar with trace development, it might limit developers who want 

to implement a particular trace logic or require a sandbox to experiment with it. 

Commercial GIS platforms are mostly closed-source and license-restricted, hindering their 

adaptability for research. In many cases, their tracing functions are hardcoded and not easily 

extensible. Aside from the Oliver and Hoel (Esri) framework [22], there is currently no widely 

recognised theoretical framework, and it is not currently implemented in an open-source 

platform where developers can create traces upon those functions. 

Additionally, open-source libraries such as NetworkX [23] or Graph-tool [24] provide powerful 

graph analysis functions, including shortest path, predecessors’ retrieval, and cycles detection. 

Nevertheless, these libraries are too generic for direct application in electrical trace analysis. 

These libraries lack specific electrical domain applications such as impedance modelling and 

protective device behaviour. As a result, applying them to an energy network requires large 

amounts of custom code. 

Moreover, SPEN has already developed its trace analysis tool in NAVI, eliminating the need 

for an external license platform. The NAVI Trace Toolkit addresses these challenges by 

building on SPEN’s existing NAVI infrastructure. This project is based on SPEN NAVI 

developers' current Python scripts for trace development. Updating the script-based workflow 

is a logical step to enhance usability, accessibility, and long-term maintainability, since the 
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current toolkit implementation lacks a unified trace framework and a user-friendly interface. A 

web-based implementation can provide an intuitive graphical interface that simplifies 

interaction with trace functions, reduces the learning curve for non-trace developers, and 

supports modular development. 

In conclusion, existing commercial GIS platforms like ArcGIS offer built-in tracing functions; 

however, they are limited by rigid user interfaces and closed-source architectures. Open-source 

Python libraries like NetworkX and Graph-tool offer strong capabilities for graph analysis; 

however, they do not include the specific features needed for trace analysis in energy networks. 

These limitations prevent SPEN engineers and data analysts from innovating and customising 

traces. 

The NAVI Trace Toolkit has been created to overcome these limitations. This toolkit provides 

a strategic solution that effectively connects usability with programmability through a flexible 

framework. It allows engineers to develop, test, and refine trace logic specifically tailored to 

the unique characteristics of SPEN’s distribution network, all without needing external licensed 

platforms. 

 

2.5. THEORETICAL BACKGROUND: MODELLING ENERGY NETWORKS 

FOR TRACE ANALYSIS 

The theoretical background is based on Hoel et al.'s trace framework for utility networks [22], 

which is the only formal theoretical framework for trace analysis. Their framework will be 

adapted to the energy networks domain for the NAVI Trace Toolkit. 
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The energy network can be formally defined as a graph 𝑈 = (𝐽, 𝐸), where: 

• 𝐽 are the junctions representing physical components such as transformers, switches, 

fuses, meters or intersection points of lines. Each junction 𝑗 ∈ 𝐽 has a geospatial 

coordinate (𝑥, 𝑦) in a Euclidean plane. 

• 𝐸 are the physical connections between junctions, i.e., the electric lines. Each edge 𝑒 ∈

𝐸 is modelled as a pair (𝑢, 𝑣) connecting junctions 𝑢 and 𝑣. 

This graph abstraction allows efficient trace analysis by leveraging graph algorithms. 

The model's connectivity defines whether two features are logically connected, regardless of 

geometric coincidence. For example, a transformer does not directly touch a line but is 

connected. Two logically connected junctions may not be traversable if, for example, a 

protective device is open, or a line is disabled due to a fault condition. 

Each junction and edge carries a dictionary of network attributes; nullable numeric, string, or 

Boolean values representing real-world properties such as: 

• Physical: length or shape length of the line, conductor material, and cross-sectional area. 

• Electrical properties: impedance, reactance, rating in KVA and Amps, operating 

voltage, and number of phases. 

• Logical: entity id, feeder id, predecessors, successors, and circuit hierarchy. 

• Simulation and analysis attributes: OpenDSS simulation outputs and ADMD metrics. 

• Metadata: unique identifier, installation metadata, financial tracking, and construction 

details. 

Attributes are used to compute metrics for analysis or to control traversability—whether 

electricity can flow in a path between connected features. For example, the ENABLE line 
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attribute set to zero is not traversable. The protective device NORMALPOSITION_[A|B|C] 

attribute indicates if it is closed. If the normal position attribute is set to one, it is closed and 

traversable; if set to zero, it is open and not traversable. Additionally, if the 

breakpoin_phase[a|b|c] attribute is false, no breakpoint (i.e., open or fault condition) is present 

on any phase, thus not blocking traversal. The same attributes work at other junctions, such as 

switches and fuses, which are also normally closed. 

The barriers are specific locations 𝐵 ⊆ 𝑈 where traversability must terminate, they are based 

on physical device types or logical state constraints. Barriers are fundamental for modelling:  

• Protection zones: trace operations simulate fault propagation and containment strategies 

with barriers. 

• Islanded operation: Barriers enable the simulation of autonomous network elements that 

operate independently from the main grid. Trace operations identify the boundaries of 

islanded zones by terminating at devices configured for disconnection or isolation.  

• Maintenance planning: ensures safety for field crews in maintenance operations. Trace 

analysis can simulate the isolation process to identify which customers and assets are 

affected. 

Finally, the filters are applied after traces are executed; thus, they do not affect traversability. 

They allow the subnetwork to be discovered. The filters can consist of a set of barrier nodes or 

categories.  

2.5.1. PROBLEM FORMULATION AND STATEMENT 

The core problem in trace analysis of energy networks can be formalised as follows: 

Given: 
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• An energy network 𝑈 = (𝐽, 𝐸), where: 

o 𝐽 is the set of junctions (e.g., transformers, protections, switches, fuses) 

o  𝐸 is the set of edges (i.e., electric cables or logical connections) 

o Each 𝑗 ∈ 𝐽 and e ∈ 𝐸 have associated network attributes (e.g., status, voltage 

rating, type) 

• A set of starting points 𝑠 ∈ 𝑆 from which the trace begins the analysis. 

• A set of barriers 𝑏 ∈ 𝐵 that restricts traversability at determined locations. 

• A traversability expression 𝑇, which stops the traversal based on a barrier function 

Boolean expression. 

• The analysis function type (e.g., upstream, downstream, loops). 

Find: 

• The subnetwork 𝑈 ⊆ 𝑈′ that is reachable from S under the abovementioned constraints 

and the traversability definition. 

2.5.2. TRACE TYPES 

The trace framework supports multiple trace types and allows configurable and scalable trace 

analysis on energy networks. The main trace types developed by Hoel et al. are: 

• Shortest path trace, which finds the shortest path between two starting points. 

• Loops trace detects loops in the network and helps detect redundancies. 

• Subnetwork trace extracts all traversable lines and devices from a subnetwork 

controller.  

o In distribution energy networks, controllers are the transformers or the 

substations, the network's energy source. 
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o A subnetwork 𝑆𝑁 ⊆ 𝑈 is defined as a connected subset of the network that 

includes at least one network subnetwork controller. All junctions and edges in 

the subnetwork must be traversable, and subnetworks may overlap. 

• Subnetwork controller trace, which identifies the controllers of the subnetwork. 

• Upstream trace, which finds all controllers supplying power to a location. 

• Downstream trace, which identifies all features receiving power from a location. It 

results from all reachable junctions and edges not belonging to the upstream trace. 

2.5.3. TRACE CONFIGURATION EXAMPLE 

To configure traces for tailored operations, we must include control over traversability, starting 

points, barriers, filters, and functions. Here is a brief explanation on how to configure a trace 

for calculating the grid and the number of customers affected by an electric fault: 

• First, we need to define the fault location. That would be the starting point 𝑆.  

• Then we set the barriers 𝐵 to include open switches, faulted lines or any device that 

blocks traversal due to the fault or its state.  

• For this operation, we run a downstream trace to identify all the junctions that are no 

longer reachable due to the fault. It simulates the propagation of the fault and identifies 

the disconnected areas.  

• Finally, a filter is applied to get the junctions representing the customer nodes, and we 

count the number of customers based on the customer nodes' attributes. 

This fault trace example can be applied to many business cases. It can be used for fault response 

prioritisation depending on the number of high-priority customers (e.g., hospitals). It can 

improve customer communication and transparency by informing affected customers about 

expected restoration times and service updates. The fault trace map can help maintenance teams 

to identify affected areas and prioritise restoration efforts quickly. This trace operation can 
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simulate the impact of a fault or a planned maintenance, assisting engineers in assessing which 

customers will be affected.  

2.6. THEORETICAL BACKGROUND: DIJKSTRA’S ALGORITHM 

Dijkstra’s algorithm is a foundational method in graph theory and network optimisation for 

finding shortest paths from a single node in a network. It is a node labelling and greedy 

algorithm that only works with non-negative edge weights.  

Dijkstra’s algorithm progressively selects the node with the smallest tentative distance from the 

source and updates the distances of its neighbours. Each node is assigned a label consisting of 

two attributes (𝑑(𝑖), 𝑝(𝑖)), where 𝑑(𝑖) is the current shortest known distance from the source 

to the node 𝑖, and 𝑝(𝑖) is the predecessor node of the current shortest path to the node 𝑖. 

The step-by-step algorithm for finding the shortest paths from the starting node s to all other 

nodes in the network is defined as follows [25]: 

1. Assign an initial tentative upper bound length to each node. Initially, the source node is 

assigned a distance of zero 𝑑(𝑠) = 0, and infinity to the rest of the nodes 𝑑(𝑖) =

∞ ∀ 𝑖 ≠ 𝑠. Label node 𝑠 with (0, −). 

2. Assuming 𝑐𝑖𝑗 is the weight between the two nodes 𝑖 and 𝑗, select the labelled node 𝑖 

with 𝑑(𝑖) minimum. Node 𝑖 is now scanned, and scanned nodes can never be labelled 

again. For each edge with weight 𝑐𝑖𝑗, compute 𝑑(𝑗) = 𝑚𝑖𝑛{𝑑(𝑗), 𝑑(𝑖) + 𝑐𝑖𝑗}. Each 

neighbour node of 𝑖 is marked as labelled. 

3. Repeat step 2 until all nodes are scanned, not labelled. 
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The correctness of the algorithm assumes that all weights are non-negative, meaning that once 

a node is scanned, the shortest path cannot improve any further. 

Dijkstra’s algorithm is widely used in routing protocols, transportation systems, and utility 

networks. Its time complexity is 𝑂 (𝐸 +  𝐽  log 𝐽) when implemented with Fredman and 

Tarjan's Fibonacci heap priority queue, making it suitable for large-scale graphs [25]. This 

algorithm is presented because it will be utilised for the critical path function. 
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3. NAVI TRACE TOOLKIT CONTRIBUTIONS 

NAVI Trace Toolkit is a demonstrator platform for trace development in distribution grids, 

which makes the following key contributions: 

3.1. TRACE DEVELOPMENT DEMONSTRATOR 

The NAVI Trace Toolkit showcases a proof-of-concept application demonstrating how modern 

web technologies can be applied to build a trace development environment. It provides a 

sandbox environment for developers to experiment with trace logic, visualise real-time results, 

and iterate quickly, addressing significant limitations in the current SPEN workflow. 

The platform proves how web technologies (HTML5, CSS3, JavaScript, Python Flask, and 

MapLibre GL JS) can be used to develop a responsive and real-time trace analysis platform for 

distribution networks. This new approach lowers the entry barrier for new developers and 

enhances the productivity for experienced trace developers. 

3.2. PYTHON-BASED TRACE FRAMEWORK 

The backend of the NAVI Trace Toolkit is built on a custom Python framework inspired by the 

framework proposed by D. Hoel et al. The framework is extended by: 

• Including a new function for finding the critical path. 

• Introducing new functions tailored for SPEN’s operational needs. 

• Supporting modular trace logic, allowing scalability and complex trace logic. 

• Specific implementation for electrical utilities. 
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3.3. UX EVALUATION AND FEEDBACK 

A user experience study was conducted with SPEN trace developers to analyse the usability 

and effectiveness of the NAVI Trace Toolkit. Feedback was collected through task-based 

testing and user open feedback, providing insights into: 

• Interface clarity, 

• Ease of trace configuration, 

• Effectiveness and efficiency, 

• And overall perceived satisfaction. 

3.4. USE CASE DEMONSTRATION 

A realistic use case was developed in this work to demonstrate the platform’s capabilities in a 

practical scenario. The installation date is used to calculate the subnetwork's Critical Installation 

Path (CIP) to prioritise maintenance tasks and prevent faults. This trace analysis example 

proved the correctness and usability of the toolkit, showcasing its value as a trace development 

tool. 

3.5. INDUSTRIAL RELEVANCE 

Industrial constraints were considered for its design: 

• Local application runs on Python, is accessible through Microsoft Store, and does not 

require administrative privileges, making it easily deployable in the SPEN corporate 

environment with strict IT policies. 
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• Application setup and running in five minutes, considerably reducing the previous setup 

time and learning curve. 

• Business operations are run independently, reducing reliance on external tools. 
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4. METHODOLOGY 

The methodology combines user-centred design, agile development, and testing in a corporate 

environment with trace developers. The process was divided into four key phases: 

4.1. REQUIREMENTS GATHERING AND DOMAIN EXPLORATION 

The project began with researching the traces domain and exploring the business necessities. 

This phase of the project involved: 

• Researching trace development: learning about current trace analysis tools in the market 

and realising there was no platform for trace development.  

• Deciding that the NAVI Trace Toolkit would be built on the foundations of the D. Hoel 

et al. framework. 

• Reviewing current trace development workflow in SPEN: understanding current Python 

scripts and NAVI platform. 

• Conducting informal interviews: identifying pain points in the current trace 

development workflow: 
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Table 1 - Summary of Key Usability Pain Points Identified During Initial NAVI Trace Toolkit Development 

PAIN POINT DESCRIPTION 

MANUAL SCRIPT 

EDITING FOR 

REPETITIVE TASKS 

Users must modify Python scripts to define traces and set SSID 

subnetworks. Locating and modifying the correct parameters is 

often confusing. 

LACK OF REAL-

TIME UI 

FEEDBACK 

There is no graphical interface with real-time feedback of trace 

results. 

MONOLITHIC 

ARCHITECTURE 

The running shell script executes all Python scripts 

simultaneously, even when only one task is needed. This is time-

consuming and reduces flexibility. 

ERROR-PRONE 

SCRIPTS 

Users reported many errors during NAVI Trace initial execution 

(e.g., curl request failing, map loading issues). 

ACCESSIBILITY 

Non-developers struggled to engage with trace development due to 

technical barriers. For example, the shell running script was not 

executable for Windows users, requiring a Linux terminal 

environment. Linux terminal environment installation required an 

IT request, delaying onboarding. 
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• The pain points identified during the interview phase were translated into platform 

limitations to address those issues in the development phase. 

Table 2 – Summary of Platform Limitations Identified During Initial Development 

LIMITATIONS DESCRIPTION 

NO PARAMETER 

ABSTRACTION 

Trace parameters are hardcoded, making customisation difficult. 

LACK OF 

MODULAR 

EXECUTION 

Scripts are tightly coupled, preventing modular execution. 

Modular architecture solves problems like running several SSIDs 

simultaneously. 

NO BUILT-IN 

ERROR HANDLING 

Poor user error feedback prevents the user from understanding 

issues. Scripts are not sufficiently tested, providing a poor user 

experience. 

PLATFORM 

DEPENDENCY 

The shell-based execution model is incompatible with Windows, 

limiting accessibility to most users. 

NO VISUAL 

INTERFACE 

Users cannot interact with trace logic and results through UI, 

reducing efficiency and usability. 
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This phase helped to define the main general requirements of the platform: 

Table 3 – Functional Main Requirements of the NAVI Trace Toolkit 

REQUIREMENTS DESCRIPTION 

UI SSID 

The application must include a UI input where users can load a 

subnetwork by introducing its SSID. The application must support 

several SSID handling. 

REAL-TIME 

EXECUTION AND 

FEEDBACK 

The application must provide real-time feedback when the user 

runs a trace—for example, notifying the user when trace logic is 

loading, showing error traceback, or displaying traces on a map 

when loading is finished. 

UI FOR 

REPETITIVE TASKS 

UI must have a section for changing the size and colour of nodes 

and lines by type. It should also allow the user to configure the 

features of default nodes and lines. 

PYTHON CODE 

EXECUTION 

The application must support real-time Python execution code. It 

should allow the user to input trace scripts, execute them, and view 

output (i.e., errors and results). 
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TRACE 

FRAMEWORK 

The application must provide functions that allow the user to write 

trace scripts efficiently. It must give comprehensive documentation 

with examples to help understand the functions. 

 

4.2. WIREFRAMING AND INITIAL PROPOSAL 

Once requirements were gathered, wireframes were created to get the application’s visual 

representation and illustrate the intended user flow. These wireframes were presented to the 

stakeholders, including the manager, for feedback and approval. The wireframes served as a 

graphic tool to refine scope, align expectations with stakeholders before development began, 

and as a roadmap to guide the development toward the final product. 

 

Figure 1 - Wireframe proposal 
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The wireframe proposal was developed using Figma [26], and the result is shown in Figure 1. 

This user interface wants to fulfil user requirements while providing a great user experience. 

Besides the map, the UI comprises four main elements that the user can interact with: 

1. Map: The interactive map on the background is the primary visualisation canvas of the 

traces, enabling intuitive interaction. When the user hovers over the traces, information 

about the nodes and lines is displayed to facilitate the understanding of the network. 

2. Subnetwork input: A search bar is included at the top, where the user can input an SSID 

to load the subnetwork on the map. The user can load as many subnetworks as they 

want. A list below the search bar informs the user of the subnetwork SSIDs loaded on 

the map. The user can remove any subnetwork by clicking its SSID card's cross icon. 

3. Features panel: The features panel enable the user to configure basic nodes and lines 

settings. This panel has a card for setting the default size and colour of the nodes and 

lines. By clicking “Add Node/Line Feature +”, the user can create as many feature 

configurations as they want. This panel allow the user to do repetitive tasks with an 

intuitive UI. 

4. Code panel: This panel will include a Python code editor for script editing. Code 

highlighting and editor functionalities are crucial, since the user needs a smooth coding 

experience that does not hinder their performance. Code output is also included in this 

panel. 

The buttons positioned along the bottom of the two panels allow the user to hide the panels, 

providing a bigger and cleaner view of the map. The SSID section remains visible; however, it 

does not interfere with usability due to its compact size and position. 
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4.3. AGILE DEVELOPMENT PROCESS 

The application’s development followed an agile methodology, with 2-week sprint cycles for 

continuous refinement of features based on feedback. This phase was characterised by regular 

check-ins, incremental implementation of features based on priority, and updates to the 

requirements based on user input and technical feasibility. This user-centred approach ensures 

user involvement on the platform and responds to real user needs. Agile methodology kept the 

criteria aligned with SPEN’s operational context. 

The feedback the stakeholders gave during the two months of the development process was: 

Table 4 - Stakeholder Feedback and Corresponding Improvements During Agile Development of the NAVI Trace 

Toolkit 

FEEDBACK DESCRIPTION 

IMPROVE UI 

AESTHETICS 

Application components appeared outdated due to limited CSS 

customisation. UI components were improved by rounding 

borders, adding shadows, and updating colour schemes. 

IMPROVE 

RESPONSIVENESS 

Several errors due to panel hiding were reported, specifically when 

you change the window size during the same session. These issues 

were addressed to ensure smooth interaction. 
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STORE SESSION IN 

LOCAL STORAGE 

Upon closing, the user lost application status, including traces 

displayed, subnetworks loaded, UI feature configuration, and 

Python script. Local storage was implemented to preserve session 

data and restore it upon relaunch. 

WRAPPING CODE 

Suggestions were made to improve the wrapping of the legacy 

trace code. These suggestions were solved, resulting in a better 

trace logic abstraction. 

RESIZING CODE 

PANEL 

Users wanted the right-hand code panel to be resizable for an 

improved coding experience. This enhancement was noted but 

could not be developed due to time constraints. 

 

4.4. USER TESTING AND EVALUATION 

Once the application was fully operative and the core functionality was implemented, the 

application was tested by five SPEN engineers and trace developers. The evaluation consisted 

of three categories: 

• Quantitative Task-Based Testing: Users were asked to complete tasks (e.g., installing 

the app, launching it, running a trace), and we recorded their completion times. This test 

provided valuable insights into the platform’s efficiency and effectiveness, based on 

measurable performance data. 
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• Quantitative Feedback Survey: A questionnaire with a Likert scale was conducted to 

assess user experience on usability and performance. They were also asked to report the 

time spent running the previous Python scripts for trace development. 

• Qualitative Feedback: Users provided open feedback on the usability, interface 

aesthetics, and overall experience. This helped identify the platform's strengths and 

guided the implementation of future iterations.  

The evaluation was conducted on SPEN corporate computers to ensure the platform’s operation 

in corporate settings. This demonstrates that the application runs without administrative 

privileges and does not require external dependencies beyond Python.   
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5. IMPLEMENTATION 

The NAVI Trace Toolkit was implemented as a modular web application tailored for SPEN’s 

operational environment. It uses a Flask Python backend and a responsive HTML/CSS 

frontend, with MapLibre GL JS for map rendering. Subnetworks are visualised using GeoJSON 

layers, and trace logic is executed in real time via a built-in Ace Editor.  

The backend exposes RESTful endpoints for trace execution, subnetwork loading, and user 

guidance, and integrates a custom trace library based on Hoel et al.’s framework. This library 

includes functions for trace styling, messaging, utilities, and network exploration, including the 

critical path algorithm designed in this project. The TraceContext class manages graph state 

and styling, enabling multi-step workflows and modular trace development. Setup is simplified 

through .bat scripts and a user guide, ensuring accessibility for engineers regardless of their 

technical background. The implementation prioritises usability, modularity, and compatibility 

with SPEN’s infrastructure, supporting efficient trace development and visualisation. 
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Figure 2 - The NAVI Trace Toolkit System Architecture 

5.1. FRONT-END IMPLEMENTATION 

The front-end was developed using standard web technologies—HTML and CSS—providing 

a clean and responsive interface. It allows the user to interact with network data and run trace 

logic. 

Other solutions were explored for map visualisation and user interactivity. One alternative was 

using Dart, a Python library built on Plotly, enabling interactive web data visualisations. This 

solution was discarded due to low rendering efficiency when visualising multiple subnetworks 

and compatibility issues with NAVI. 

5.1.1. MAP 

The interactive map is implemented with MapLibre GL JS, using OpenStreetMap as the source 

of map tiles. Traces are displayed on the map using MapLibre GL JS layers. The layers are 
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rendered using GeoJSON sources; each subnetwork has a GeoJSON associated with it. Two 

layers are created for each subnetwork: one for junctions, using Point GeoJSON geometry, and 

another for lines, using LineString GeoJSON geometry. If the user wants to display a message 

on the map with the Python script, a new layer is created for messages. 

 

Figure 3 - Display layers on MapLibre GL 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIONES 

 

IMPLEMENTATION 

35 

 

Figure 3 illustrates the workflows for loading trace layers on the map. The first workflow occurs 

when the user executes a script, triggering a POST request to the /code endpoint. The backend 

processes the script, updating the GeoJSON files with subnetwork properties and returning an 

output text, which is the output of running the script, and messages, a JSON file with messages 

that the user might want to display on the map. The front-end refreshes the subnetwork layers 

with the updated GeoJSON files, removes the previous message layers and updates the message 

layers. 

The second workflow is initiated when the user loads a new subnetwork. First, the front-end 

checks if the file is already available locally. The front-end sends a POST request to the 

/subnetwork endpoint if the file is not downloaded. The front-end adds a new source and creates 

two new layers corresponding to the nodes and lines of the subnetwork. 

5.1.2. CODE EDITOR 

The code panel is implemented using the Ace Editor, an embeddable, lightweight, and highly 

customizable code editor written in JavaScript. It provides features commonly found in plain-

text native editors, such as Sublime Text or Vim. Key features of the Ace Editor are: 

• Syntax highlighting, improving readability and error detection, 

• Custom Styling, the Monkai theme was selected for the application, providing a dark 

background with vibrant syntax colours, improving visual comfort, 

• Editing capabilities include line wrapping, line numbering, multiple line editing, and 

tab spacing control. 
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5.1.3. OTHER FRONT-END IMPLEMENTATIONS 

A hiding functionality was implemented in both panels to enhance user interaction and optimise 

screen map view, combining CSS transitions, JavaScript, and local storage management (Figure 

4). This solution provides a smooth and persistent user experience. The sliding function is 

encapsulated in a JavaScript function, which selects the element, retrieves the current state, and 

uses the CSS translateX function to change the panel's position. 

To improve data exploration, listeners were added to the map to detect when the user hovers 

over the lines and nodes of the network. Upon hover, a function that displays the element's 

information is triggered (Figure 4). 

 

 

Figure 4 - Panels Hidden with Node Data Displayed on Hover 
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Local storage is implemented to persist the user-defined configurations and session data: 

• Node and lines UI configuration. 

• SSIDs of the loaded subnetworks. 

• Python script. 

• The hiding state of the panels. 

This approach retains user preferences and session context, providing a more personalised user 

experience. 

5.2. BACK-END IMPLEMENTATION 

The back-end system was developed using Flask, a Python framework for web development. 

The back-end serves as the front-end interface's computational engine and data orchestrator. Its 

main tasks are handling front-end user requests, parsing from the NAVI API fetched data to the 

NAVI Trace Toolkit data format, executing trace logic, and generating geospatial outputs for 

visualisation. 

5.2.1. API REST ENDPOINTS 

The API exposes multiple RESTful endpoints that support data retrieval and custom trace 

execution. The endpoints are designed to be stateless and modular, enabling seamless 

integration with the front-end and scalability. The backend has five endpoints described below: 

1. / (Index Route): It loads the main HTML interface using Flask’s render_template 

function. This route does not process data and is only used for initial page load. 

2. /subnetwork (GET/POST): This route handles requests to load specific subnetwork data 

based on its SSID. If the corresponding file does not exist locally, it fetches it on the 
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NAVI SPEN API, stores it, and processes it using the execute_trace() function. The 

trace result is formatted to GeoJSON using the create_geojson() function and returned 

to the front-end for rendering. This endpoint supports code customisation and node and 

line styling, so that when the user loads the subnetwork, it has the user-configured 

styling.  

3. /code (POST): This endpoint executes user-configured styling and Python code across 

one or multiple subnetworks. It reads the graph data from local storage and applies the 

user-configured styling and code using the execute_trace() function. It generates a 

GeoJSON file for each subnetwork. The output of the user’s code execution is captured 

using Python’s contextlib.redirect_stdout, allowing the endpoint to return the code 

output and trace result. Additionally, messages for map display are handled through 

helper functions. 

4. /delete-ssid (POST): This route removes cached graph and GeoJSON files associated 

with an SSID. This endpoint handles proper data lifecycle management and maintains 

a clean work environment.  

5. /user-guide (GET): This endpoint dynamically renders a Markdown-based user guide 

into HTML using the markdown Python library.  

Additionally, the backend implements basic error handling mechanisms like validation of the 

required parameters (e.g., SSID), graceful fallback upon external API failure, and structured 

JSON error responses to the front-end. 
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Figure 5 - Backed architecture and Flow 

 

5.2.2. TRACE ENGINE 

The backend uses a custom trace library (navi_trace_lib), encapsulating the energy network 

trace analysis logic. Key helper functions used by the REST API are: 

• read_json_file(): Parses from JSON format to NetworkX graph. 

• execute_trace(): Executes the trace algorithm based on the user’s code and 

configuration. 

• create_geojson(): Converts trace results into GeoJSON format suitable for front-end 

MapLibre GL rendering. 

• frontend_messages and clear_messages(): Manage displayable messages on MapLibre 

GL. 

The trace library includes built-in functions that support advanced energy analysis and 

visualisation, making the development of new traces more efficient. These functions are based 

on the theoretical framework proposed by Hoel et al. There are four categories of built-in trace 

functions: 
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• Trace Styling: These functions allow users to customise the visual representation of 

network elements. Examples include: 

o highlight_all_nodes(ctx, color, size): Applies styling to all nodes uniformly. 

o highlight_nodes_by_type(ctx, entity_type, color, size): Applies styling to nodes 

of a specific type. 

o highlight_nodes_by_attribute(ctx, attr_name, attr_value, color, size): Applies 

styling to nodes based on custom attributes. 

• These functions use helper utilities created for the previous Trace Toolkit Python 

scripts, like get_solver_attribute() and save_solver_attribute(), to interact with node and 

edge metadata. Trace styling functions create contextually rich maps, improving visual 

communication and decision-making. 

• Messaging: support user map annotation. The send_message() function lets the user 

display text labels on the map by setting the coordinates. 

• Utilities: Additional functions such as get_color_gradient_continuous() provide 

gradient colour scheme styling based on data values (e.g., installation date). Other 

functions like get_node_by_id() and get_entity_id() facilitate entity lookup. 

• Network exploration: This category comprises the functions that implement trace 

algorithms for interactive network exploration. These algorithms support deeper 

topological analysis and enhance the user’s ability to create tailored traces. The trace() 

function serves as the unified interface that allows the user to run the trace algorithms 

grounded in the framework of Hoel et al.: 

o Upstream and downstream tracing. 

o Loop detection. 

o Shortest path computation. 

o Subnetwork extraction and control. 
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• Additionally, a custom critical_path() function was developed to compute the shortest 

path from a specified source to each node in the network. This function includes a filter 

mechanism that allows the user to target one or more entity types. After computing all 

the shortest paths, the function evaluates the cumulative weight and identifies the 

maximum total weight among filtered entities. This enables the user to analyse the most 

critical path based on a custom weight. The pseudo code is defined as follows: 

Input: 

• ctx: TraceContext object with the network graph 

• source_node_id: ID of the starting node 

• weight_func: Function to compute edge weights 

• filters: Set of entity types to filter 

Output: 

• max_distance: Maximum shortest-path weight among filtered nodes 

• path_nodes: List of nodes forming the critical path 

 

Table 5 - Critical Path Function Pseudocode Using Weighted Dijkstra Traversal 

1  Initialize an empty weighted graph G' 

 

2  For each edge (u, v) in the original graph: 

3      Try: 

4          Compute weight ← weight_func(u, v, edge_data) 

5      Catch error: 

6          Set weight ← ∞ 

7      Add edge (u, v) with weight to G' 

 

8  Run Dijkstra’s algorithm on G' from source_node_id 

9  Store shortest path distances and paths: lengths, paths 
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10 Initialize max_distance ← 0 

11 Initialize max_node ← null 

 

12 For each node in the original graph: 

13     If node.entity_type ∈ filters: 

14         If node is reachable (node ∈ lengths): 

15             If lengths[node] > max_distance: 

16                 Update max_distance ← lengths[node] 

17                 Update max_node ← node 

 

18 Retrieve path_nodes ← paths[max_node] 

 

19 Return (max_distance, path_nodes) 

 

These functions enhance a clean and expressive trace library, enabling users to concentrate on 

analysis instead of low-level implementation specifics. 

Central to this implementation is the TraceContext class, an essential component of the trace 

library. It is a simple, stateful container for managing trace operations and styling. This object 

encapsulates the current graph and the list of nodes and edges to be highlighted during trace 

operations. Maintaining a persistent reference to the graph facilitates multi-step trace 

workflows, where intermediate steps can be styled.  

This design facilitates a structured and modular workflow. For example, the result of executing 

the ‘upstream’ function can be stored in a new TraceContext, allowing the user to isolate and 

manipulate this subgraph independently. 
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This library's modular design decouples the trace logic from the back-end API and front-end, 

enhancing reusability and testability. 

5.2.3. LIBRARIES 

The development of the NAVI Trace toolkit relies on Python libraries that were carefully 

selected to support its capabilities. The Python libraries used for developing the application are: 

• Markdown [27]: Markdown is a lightweight language developers use to write 

documentation using plain-text editors. The NAVI Trace Toolkit uses the Python 

Markdown library to render Markdown plain text to HTML through the /user-guide 

endpoint. 

• Requests [28]: This project uses HTTP requests to external APIs to retrieve the network 

graph from the SP Energy Networks NAVI API. It provides reliable GET and POST 

request functions, including error handling and response parsing methods. 

• Ujson [29]: Ultra JSON is a parsing library that reads and writes JSON files efficiently. 

It provides faster serialisation and deserialization than the built-in JSON module. The 

NAVI Trace Toolkit use this module to manipulate the network’s GeoJSON files. 

• Networkx [23]: A library for creating, manipulating, and analysing networks. The 

toolkit uses its data format to store the subnetwork data, and the trace algorithms are 

implemented using networkx’s transversal utilities—such as loopfinding, shortest path, 

and graph transversal. 

• Flask [30]: The core web framework used to build the back-end of the NAVI Trace 

Toolkit. Flask offers routing, request handling, endpoint exposure, and HTML 

rendering capabilities. 
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5.3. SETUP AND APPLICATION LAUNCHER 

Two .bat files were created to prevent users from manual command-line interaction, which 

raises the technical bar for non-developer users. These files enable users to install and launch 

the NAVI Trace Toolkit through the Windows operating system’s interface. The first file, 

install.bat, creates a new Python environment and installs all the necessary libraries. This step 

is crucial for maintaining an isolated and consistent library version, which helps prevent 

compatibility issues arising from system-wide Python configurations.  

The second file, run.bat, launches the application within the previously created Python 

environment, ensuring that the toolkit operates with the correct dependencies. 

A comprehensive guide was developed to support the user through the setup process. This guide 

includes step-by-step instructions for installing Python, executing the install.bat script to 

configure the environment, and launching the NAVI Trace Toolkit using the run.bat. This guide 

aims to make the toolkit accessible to all engineers regardless of their technical background.  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIONES 

 

RESULTS 

45 

 

6. RESULTS 

A comparative analysis has been performed to evaluate the effectiveness and improvements of 

the NAVI Trace Toolkit compared to previous scripts for trace development. A user evaluation 

was also conducted to gather feedback and assess the application's intuitiveness. Finally, the 

Critical Installation Path (CIP) use case demonstrates the platform’s correctness and 

capabilities. 

6.1. VISUAL RESULT AND INTERFACE DESCRIPTION 

The NAVI Trace Toolkit provides a rich, interactive interface (Figure 6) that comprises 

geospatial visualisation, trace styling configuration, and trace scripting capabilities. The visual 

output includes the main components designed in the wireframe phase: the map display, the 

SSID loader, the feature sidebar, and the code editor panel. 

The central element of the interface is the dynamic map rendered using MapLibre GL. The map 

visualises the energy network, with nodes and edges styled according to parameters defined by 

the user.  

On the left side of the interface, a configuration panel enables the user to define the properties 

for nodes and lines. In Figure 6, default nodes are turned off by setting their size to 0, while 

transformers are highlighted in black. Lines are displayed in blue. This styling capability 

enhances the clarity of the network representation and aids in exploratory analysis. 
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Above the styling panel, the user finds the SSID loader to display multiple subnetworks. The 

SSIDs of these subnetworks are shown below the SSID input. This feature enables multi-

network and comparative analysis, improving analytical flexibility. 

 

Figure 6 - The NAVI Trace Toolkit Application 

The right side of the interface features the Python code editor, where the user can write and 

execute trace scripts. The Python editor supports the built-in functions developed in this project 

for tailored trace development—such as trace(), highlight_node(), and TraceContext (). The 

user can execute traces, providing real-time updates directly on the map by pressing the run 

button next to the right panel. In Figure 6, a shortest path trace is executed between two nodes, 

with styles applied to the results. Below the editor, the user can find UI feedback, including 

trace outputs and error messages (e.g., missing nodes). 
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6.1.1. RESPONSIVE ACROSS COMPUTER AND MONITOR DISPLAYS 

The user interface is responsive across screen resolutions and varying window sizes, which is 

a key feature for usability in web-based applications. Given that the toolkit is intended for 

desktop only, not for mobile devices, the design has been tested for standard monitor resolutions 

(ranging from 1280 x 720 (HD) to 1920 x 1080 (Full HD)). Additionally, the application has 

been tested for different window sizes (Figure 7). 

The layout showed resolution and size responsiveness indicators such as consistent element 

positioning, no overlapping panels, and no scroll overflow. This test demonstrates effective 

responsive UI, confirming the application is well-suited for desktop environments with varying 

resolutions. 

 

 

Figure 7 - Multiple Window Sizes Responsive test 
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6.2. APPLICATION COMPARISON 

6.3. USER FLOWS 

The NAVI Trace toolkit has significantly enhanced user flows compared to the previous 

implementation. The system now supports a modular, interactive, and user-friendly interface 

that enables users to perform more flexible and efficient trace analysis. 

6.3.1. CURRENT USER FLOW 

The NAVI Trace toolkit's current flows allow the user to: 

• Load subnetworks individually by selecting the SSIDs, enabling the user to select 

multiple subnetworks within a single session. 

• Modify node and line features dynamically, depending on their attributes and entity 

types. 

• Run Python scripts using the code panel and the built-in functions to execute trace logic 

and apply styling. 

• Refer to the markdown documentation to understand how to use the functions. 

All these features are integrated into a web interface that instantly displays results, without 

needing to refresh or reload external files. 
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Figure 8 - Current User Flow 

 

6.3.2. PREVIOUS USER FLOW 

By contrast, the previous implementation had no user interface or modularity. Thus, the user 

was required to: 

• Execute all steps in a single shell script, which runs all Python scripts, including data 

loading, styling, trace execution, and HTML rendering. 

• Refresh the static HTML file generated at the end of execution to view the results. 
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• Limit your analysis to one network at a time, constraining the comparison and user flows 

across multiple networks. 

• Operate without integrated documentation or examples, depending solely on guidance 

from expert trace developers. 

The previous workflow was functional but rigid and time-consuming, only accessible to users 

with specialised trace programming skills. 

 

 

Figure 9 - Previous User flow 
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6.3.3. COMPARATIVE USER FLOW SUMMARY 

Table 6 – User Flow Comparison Between Previous Implementation and the NAVI Trace Toolkit 

Feature Previous Implementation NAVI Trace Toolkit 

(Current) 

Subnetwork Loading Manual, one at a time Interactive, multiple SSIDs 

Node/Edge Styling Script-based and static Dynamic, UI-driven or 

scripted 

Script Execution Full script required Modular, panel-based 

Result visualization Refresh the HTML file Real-time map rendering 

Documentation Access No formal documentation Documentation with new 

functions and integrated with 

a Markdown HTML viewer. 

User Interface None Interactive web-based UI 

 

The NAVI Trace Toolkit transforms the user experience from a monolithic style, heavy code 

into a modular and interactive workflow that facilitates smooth trace analysis. 
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6.3.4. EXECUTION TIME COMPARISON 

Performance experiments were conducted using a corporate Dell laptop with an Intel i7 

processor. Each test was repeated 100 times to ensure statistical reliability. 

Trace workflows' performance with a single subnetwork: 

• Trace Execution: The average time to execute a trace in the NAVI Trace toolkit on a 

single network is 1.25 seconds, with a standard deviation of ±0.27 seconds. This metric 

reflects the time to run the trace logic and render the result on the user interface. 

• Subnetwork Loading: Loading and rendering of a single subnetwork, i.e. input an SSID 

in the NAVI Trace Toolkit, takes 3.92 seconds on average with a standard deviation of 

±0.55 seconds. This workflow comprises retrieving the subnetwork from the SPEN 

NAVI server, generating the GeoJSON, and rendering it in the application. This metric 

compares the application performance with the previous bulk implementation, which 

followed a similar workflow but lacked a user interface. 

• Previous Monolithic Workflow: The previous Python-based workflow took an average 

of 10.73 seconds to complete, equivalent to the current application's subnetwork loading 

workflow, with a standard deviation of ±1.28 seconds. This included all operations 

executed in a single shell script. 

 

Additionally, experiments were conducted with two to nine subnetworks loaded simultaneously 

to assess network trace scalability performance. The subnetwork() function was selected for the 

experiment because it traverses the entire subnetwork, exploring all nodes and edges. The 

results show that the execution time increases exponentially with the number of subnetworks. 

Despite this performance, the NAVI Trace Toolkit is still more efficient than the previous 

implementation with one subnetwork, even when handling up to 9 subnetworks. This 
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improvement in multi-network rendering and loading times is attributed to the modular 

architecture of this project, as well as the use of efficient algorithms and high-performance 

modules such as ujson. 

 

 

Figure 10 - Average Trace Execution Times vs Number of Loaded Subnetworks 
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6.3.5. EXECUTION TIME SUMMARY 

Table 7 – Execution Time Comparison Between the NAVI Trace Toolkit and Previous Implementation 

Scenario Average Time (s) Standard Deviation (s) 

Current Trace Execution (1 subnetwork) 1.25 0.27 

Current Subnetwork Loading 3.92 0.55 

Previous Workflow (1 subnetwork) 10.73 1.28 

Current Trace execution (9 subnetworks) 6.28 1.04 

 

6.4. USER STUDY RESULTS AND EVALUATION 

6.4.1. TASK-BASED PERFORMANCE EVALUATION 

A user test was conducted with five SPEN engineers to evaluate the usability and efficiency of 

the NAVI Trace Toolkit. The engineers were asked to complete the initial setup and five 

additional tasks in the app. The five tasks were: 

• Task 1: Add or Remove Subnetwork SSIDs. 

• Task 2: Change All Node and Line Colours. 

• Task 3: Add Colour and Size to Dist_Transformer Nodes 
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• Task 4: Locate the Code Documentation 

• Task 5: Run a Trace from an Example in the Code Documentation. 

Each participant had 30 minutes to complete the setup and the five tasks. ISO 9241 defines 

usability of the users based on effectiveness and efficiency metrics [31]. On one hand, 

effectiveness measures how wholly and accurately the users achieve their goals. This will be 

calculated as the percentage of completed tasks per user. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠
100 

On the other hand, efficiency measures the time expended in relation to the results. It will be 

calculated through the overall efficiency metric, which gives the tasks per minute the user can 

do in our application. The formula is expressed as: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑ ∑ 𝑛𝑖𝑗

𝑁
𝑖=1

𝑅
𝑗=1

∑ ∑ 𝑡𝑖𝑗
𝑁
𝑖=1

𝑅
𝑗=1

 

Where: 

• R: Number of users. 

• N: Number of tasks. 

• 𝑛𝑖𝑗: result for tasks 𝑖 by the user 𝑗. 

o = 1 If the task is completed. 

o = 0 If the task is not completed. 

• 𝑡𝑖𝑗: time spent by the user 𝑗 to complete 𝑖. 

o If the task is not completed, time is measured until the user gives up. 
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Initial setup took an average of 5.05 minutes with a standard deviation of 0.64 minutes, 

indicating a consistent and streamlined onboarding process. 

The effectiveness of the user test was 100%, meaning all the users could achieve all the tasks 

within 30 minutes. The effectiveness of the test was calculated to be 1.64 tasks per minute, 

demonstrating that the users could complete the tasks efficiently and reliably. These results 

confirm that the NAVI Trace Toolkit offers a high-level, intuitive interface that supports both 

rapid task execution and successful task completion. 

6.4.2. COMPARATIVE SETUP TIME ANALYSIS 

In contrast, the previous toolkit implementation required significantly more time to set up: 

• 40% of the users reported setup times between 1 and 1.5 hours. 

• 40% required between 30 and 60 minutes. 

• 20% completed setup between 15 and 30 minutes. 

The time reported by developers using the previous toolkit highlights the substantial reduction 

in time with the updated NAVI Trace Toolkit, from an average of one hour to just over five 

minutes. 

6.4.3. SURVEY-BASED UX EVALUATION 

A structured user experience survey was conducted using a 1-5 Likert scale (1 = Strongly 

Disagree, 5 = Strongly Agree). The survey was designed to cover nine key dimensions of 

usability and performance. Evaluation sent to the engineers comprised the following nine 

statements: 

1. The toolkit helps me complete trace-related tasks efficiently. 
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2. The interface is clear and easy to navigate. 

3. The visual design helps me understand the trace results and the energy network. 

4. The toolkit loads quickly and responds promptly. 

5. The interface works well on my screen resolution and setup. 

6. It is faster than the previous version. 

7. It is more intuitive than the previous version. 

8. I prefer the new toolkit because it provides built-in trace functions. 

9. Overall, I prefer the new toolkit over the previous one. 

The average ratings of each question are plotted in Figure 11. 

 

 

Figure 11 - Average Likert Scores for User Experience Question 
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All dimensions in the survey were highly rated, averaging over 4.  Key findings from the results 

are: 

1. Efficiency: Users reported they could complete all the tasks efficiently. 

2. Interface and Design: The interface was reportedly intuitive and easy to navigate. Trace 

results were displayed efficiently and clearly. Question 3 received the highest rating, 

emphasising the platform's intuitive interface for helping users understand trace 

operations. 

3. Performance: The toolkit was perceived to respond quickly. 

4. Resolution and compatibility: Users found that the application performs well on their 

screens based on question 5. 

5. New Features: Built-in trace functions were positively rated. 

6. Overall preference: Most users reported a better experience using the new toolkit 

version. 

6.4.4. OPEN-FEEDBACK AND FEATURE RECOMMENDATIONS 

An anonymous open-ended feedback question was included in the user survey to gather 

suggestions for future improvements. This evaluation offered valuable insights into current user 

needs and expectations. The most common features that the users want to be included in the 

NAVI Trace Toolkit can be summarised as follows: 

• Onboarding for new trace developers: New users might find it challenging to understand 

what traces are and what they are used for. Since trace-based workflows represent a 

novel analytical technique, the users do not understand the benefits and practical 

applications of using trace analysis in energy networks. An onboarding module or 

tutorial could improve accessibility for non-trace developers. 
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• Import/export feature: Users expressed interest in a feature to save and share trace 

Python scripts efficiently, enhancing collaboration among engineers. This improvement 

might be added along with code tabs, which enable the user to work with multiple scripts 

in the same session. 

• Export trace data structure: The users would like to export the resulting graph data 

structure after the trace analysis. For instance, users might want to export subnetworks 

created during mini-island grid simulations to assess their self-sufficiency. The users 

suggested a CSV export file, which can be extended to other data file formats. 

• Minor feature details: Some users suggested that initial zooming should fit all 

subnetworks loaded upon launch. Others suggested that the code panel be resizable, not 

only hideable, to improve the coding experience on small screens or multi-monitor 

setups. 

These suggestions highlight the users' strong interest in implementing collaborative capabilities 

and lowering the bar for new users. Incorporating these features in future iterations would 

enhance the user experience and broaden the toolkit’s applicability. 

6.5. USE CASE 

In energy distribution networks, maintaining the integrity and reliability of infrastructure is 

crucial. As these networks age, the likelihood of faults and safety hazards increases [32]. The 

components of the distributed energy network deteriorate over time, making proactive 

identification and intervention essential for preventing failures. Traditionally, energy 

distribution companies have relied on periodic inspections or reactive maintenance after 

problems occur; however, these methods can be costly and risky. 
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To analyse the age of the network using data traces, we introduced the concept of the Critical 

Installation Path (CIP). This data-driven metric helps identify the most vulnerable path within 

the network. The CIP is defined as the electrical path composed of the oldest and longest 

connected lines, calculated by multiplying the age of each line (years since installation) by its 

length (meters). The CIP weight metric serves as a proxy for infrastructure exposure, capturing 

both the temporal degradation and the spatial extent of the network. The age of the lines 

indicates how components degrade and become obsolete over time, while the length of the lines 

represents their physical footprint and the potential area affected by any failures. Therefore, 

older and longer lines are more likely to disrupt service continuity. 

6.5.1. FIRST APPROACH: DEPTH-FIRST SEARCH (DFS) FOR LONGEST 

WEIGHTED PATH 

In the initial method for computing the CIP, a custom Depth-First Search (DFS) algorithm was 

implemented to traverse the network and identify the longest simple path with the highest 

cumulative CIP weight. The DFS algorithm explores all possible simple paths starting from 

each node in the subnetwork. The largest CIP is tracked through the iteration and updated when 

a path with a higher CIP is found. After the DFS algorithm is run with all the nodes, the most 

critical installation path is highlighted using a continuous colour gradient based on age. The 

code implementation of the Dijkstra-based CIP is provided in Appendix C. 

This approach provides a global view of the subnetwork’s longest CIP infrastructure chain, 

which may require attention. However, since DFS explores all possible paths, it is 

computationally intensive in large or densely connected networks. Additionally, it does not 

account for energy network logic, which is relevant in real-world energy distribution scenarios. 
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Figure 12 - Critical Installation Path (CIP) Trace with First Approach (DFS), with Transformers Highlighted in 

Black 

 

Let 𝐽 be the number of junctions and 𝐸 the number of edges, the time complexity of this DFS 

approach is: 

• Overhead complexity due to computing the weights of each edge adds a linear time 

complexity 𝑂 (𝐸). 

• Standard DFS has 𝑂 (𝐽 + 𝐸) time complexity. However, in this approach, the DFS is 

not used to traverse the graph, but to explore all possible simple paths from every node. 

A simple path is a path that does not repeat any nodes. 

• In an undirected graph with 𝑉 nodes, the number of simple paths can be up to 𝑂 (2𝐽). 

• Since the algorithm runs a DFS simple path search on every node, the total time 

complexity becomes: 𝑂 (𝐽 2𝐽). 
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This approach is not scalable for large and dense networks. It serves as a conceptual baseline 

but requires a computationally feasible and operationally relevant reformulation. 

6.5.2. SECOND APPROACH: DIJKSTRA WITH CUSTOM WEIGHT FUNCTION 

Identifying the longest path in a network is a well-known NP-hard problem; that is, the 

computational effort increases exponentially with the size of the network. In the context of 

energy distribution, where networks can have thousands of nodes and edges, using an 

exhaustive search method, such as Depth First Search (DFS), to find the longest weighted path 

becomes impractical. 

To address this, we introduced constraints grounded in energy network logic. During initial 

testing, we observed that some paths identified as critical (high CIP) did not represent 

vulnerable customer connections. For instance, if a transformer lies in the middle of a path 

(Figure 12 - Critical Installation Path (CIP) Trace with First Approach (DFS), with 

Transformers Highlighted in Black, transformers in black), a fault on one side may not impact 

customers on the other side due to protective devices that isolate the faulted section. This insight 

led to a more realistic formulation of the problem: instead of searching globally, we define 

an energy source point, typically a transformer or network controller, and trace outward 

using Dijkstra’s algorithm. 

Although Dijkstra is designed to find shortest paths, not longest ones, it becomes useful when 

we reinterpret the problem: we are not seeking the longest path overall, but rather the critical 

path from an energy source to a customer. We first compute with Dijkstra the shortest path for 

each customer, then look for the longest path among the shortest.  

If a customer can be reached via multiple paths—one with high CIP and another with low CIP—

the presence of the low CIP prevails over the high CIP because it ensures resilience. If the high 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIONES 

 

RESULTS 

63 

 

CIP fails, the low CIP remains functional; therefore, the chance of a customer not being served 

represents the probability of both CIPs failing. However, although combining both CIPs would 

more accurately represent the probability of a customer not being served, we consider only the 

low CIP for this analysis. This is because it is less likely to fail and represents the most reliable 

path available.  

Given the previous assumption, the lowest CIP is the most significant for each node, which 

makes Dijkstra's algorithm appropriate for solving this problem. Consequently, the focus is not 

on the longest path within the subnetwork, but on identifying the most vulnerable customer—

specifically, the one whose shortest path to the controller has the highest CIP. 

 

Figure 13 - Critical Installation Path (CIP) Trace Using Second Approach (Dijkstra), with Transformers 

Highlighted in Black 

This approach dramatically reduces computational complexity by avoiding exhaustive path 

calculation, leveraging Dijkstra’s efficiency for shortest path computation, and filtering only 
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customer nodes to assess risk. It also aligns with energy network principles, where hierarchy, 

redundancy and fault tolerance are built into the topology. By focusing on reachable customers 

and their minimum critical shortest path, we balance computational feasibility and operational 

relevance, making the NAVI Trace Toolkit a practical solution for ageing infrastructure 

analysis. The code implementation of the Dijkstra-based CIP is provided in Appendix C. 

The step-by-step breakdown describing the CIP analysis using the Dijkstra function is: 

1. Define the custom weight function, similarly we did with the previous approach, the 

metric for CIP calculation is the age multiplied by the length. 

2. Using the previous custom weight function, we run the critical_path() function with  

Dijkstra’s algorithm from a controller node. This computes the shortest paths to all 

nodes based on the last weight. Then, it identifies customer nodes by filtering only those 

representing customers and gets the customer with the maximum CIP value. This return, 

the customer is most exposed to the ageing infrastructure and its path. 

3. Highlight the critical path, with edges coloured using a gradient based on age. 

This algorithm avoids NP-hard complexity using efficient shortest-path computation and 

focusing on energy network logic. The time complexity of this algorithm is: 

• Dijkstra’s algorithm has a time complexity of 𝑂(𝐸 +  𝐽  log  𝐽) when using a Fibonacci 

heap priority queue [25], where 𝐽 is the number of junctions and 𝐸 is the number of 

edges. 

• The custom weight function is computed once per edge, adding a linear overhead of 

𝑂(𝐸). 

• Filtering the customer nodes and finding the maximum CIP among them is 𝑂(𝑉) as we 

need to pass through all the nodes. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIONES 

 

RESULTS 

65 

 

• Therefore, the resulting total complexity is: 𝑂(𝐸 +  𝐽  log  𝐽). This is polynomial time, 

making it highly scalable and suitable for large energy networks. 

 

This second approach is more efficient and realistic; it avoids the NP-hard path algorithm by 

not searching for all possible paths and respects network logic based on hierarchical control. 

The pseudocode of the CIP second approach is defined as follows: 

Input: 

• A network graph with metadata (installation date, length) 

• A defined source node (i.e., transformer or controller) 

• A set of customer node types (e.g., LV_MSP, Unmetered_SP) 

Output: 

• The shortest path to the customer with the highest CIP value 

• Visual highlights of the path and its components 

 

Table 8 – Dijkstra-Based CIP Trace Pseudocode with Custom Weight Function 

1  Define CIPWeight(edge): 

2      installDate ← get installation date from edge 

3      length ← get physical length from edge 

4      age ← compute age from installDate using current date 

5      return age × length 
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6  filters ← CustomersEntityTypes 

 

6  sourceNode ← predefined transformer or controller 

7 (Distance, Path) ← critical_path(graph, sourceNode, weightFunction = CIPWeight, 

filters=filters) 

 

8   for each consecutive edge (u, v) in criticalPath: 

9       age ← compute age from edge installation date 

10     color ← map age to gradient colour 

11     highlightEdge(u, v, color = color, size = medium) 

 

12  return criticalPath 

 

6.5.3. USE CASE DISCUSSION 

The CIP use case showcases the NAVI Trace Toolkit’s ability to go beyond traditional 

topological tracing and demonstrates a critical_path function application. This use case 

demonstrates the capabilities of the platform to build tailored traces. This trace developer tool 

transforms traces from a spatial logic into a multi-dimensional trace tool. 

The key capabilities demonstrated in the use case are: 

• Attribute-driven edge weighting, allowing flexible schemes that can be extended to 

other applications. For example, weights could be based on load capacity, fault 

frequency, maintenance cost based on the ground and material, etc. 

• Critical_path() custom algorithm tailored for energy network. This function enables 

scalability across large networks. 
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• Visual feedback mechanisms, such as colour gradients based on age, enhance 

interpretability for operations and maintenance crews. This colour gradient helps to 

prioritise older lines over newer ones. 
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7. CONCLUSION AND FUTURE WORK 

The NAVI Trace Toolkit marks a transformative step in energy network trace development, 

evolving from a rigid, script-based workflow into a modular, interactive, and user-friendly 

platform. By incorporating a user-friendly web interface, real-time Python execution, and 

integrated tracing functions, the toolkit enables engineers to conduct intricate trace analyses 

with enhanced efficiency and accessibility. 

The toolkit now includes support for multi-network analysis, a previously unavailable feature. 

Quantitative performance benchmarks indicate significant improvements over the previous 

implementation, with subnetwork loading times reduced from 10.73 seconds to 3.92 seconds, 

and trace execution times reduced to 1.25 seconds. User testing confirmed high usability, with 

a 100% task completion rate and an average efficiency of 1.64 tasks per minute. Survey results 

further validated the platform’s intuitive design, responsiveness, and preference over the legacy 

system. 

The Critical Installation Path (CIP) use case demonstrates the toolkit's real-world analytical 

capabilities. The initial DFS-based approach, while correct and conceptually valuable, was 

computationally intensive. The refined Dijkstra-based method offers a scalable, practical 

solution that aligns with energy network principles. It enables targeted assessments of 

infrastructure risk based on the age of the lines. This method also includes the custom 

critical_path function to help developers compute additional critical paths, enhancing 

replicability and scalability. 
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Overall, the NAVI Trace Toolkit delivers a robust, scalable, and user-centric solution for energy 

network analysis, laying the groundwork for future innovation in trace development and 

infrastructure management. 

7.1. FUTURE WORK 

Several proposed areas for future development aim to enhance the NAVI Trace Toolkit and 

expand its applicability. One key direction is the introduction of onboarding modules to assist 

new users in understanding trace concepts and their practical applications. Since traces are a 

novel analytical technique, educating engineers about their value and application is essential. 

Testing the platform with students could also be a valuable initiative, allowing them to learn 

about trace analysis while providing feedback on usability and learning outcomes. 

Additionally, the user feedback and recommendations outlined in section 6.4.4 should be 

considered for the continued development of the platform. These suggestions, such as adding 

export options, multi-tab traces, and enhancing collaborative features, reflect user needs and 

guide future iterations. 

Expanding the trace function library is another critical area of focus. By introducing new trace 

analytical tools, the toolkit can better assist developers and increase its utility across multiple 

operational scenarios. This includes enhancing the critical path function by incorporating more 

accurate probabilistic failure models. Instead of selecting the shortest CIP when a node has 

multiple paths, future work could explore a modified Dijkstra algorithm where the CIP is 

computed as a weighted combination of all CIPs. This approach may yield a more accurate 

representation of network reliability, especially under partial failure scenarios. 
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Integrating with external systems would greatly expand the platform's capabilities. In addition 

to its connection with NAVI, the platform can interface with SCADA and other energy 

management systems. The toolkit could adopt data source formats like the Common 

Information Model (CIM) to facilitate data exchange and interoperability with industry 

standards. 

These future developments will help position the NAVI Trace Toolkit as a comprehensive and 

scalable energy network analysis solution, supporting operational decision-making and 

educational outreach.  
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9. APPENDIX A: ALIGNMENT WITH SUSTAINABLE 

DEVELOPMENT GOALS (SDGS) 

This project aligns with several United Nations Sustainable Development Goals (SDGs), 

focusing on grid digitalisation, infrastructure, and decarbonisation. The NAVI Trace Toolkit 

contributes to the energy sector's digital transformation, supporting smarter, more resilient, 

and more inclusive energy systems. 

SDG 7 – Affordable and Clean Energy 

By improving trace analysis tools, this project enhances the optimisation of electrical 

distribution networks, leading to more efficient energy delivery and better integration of 

Distributed Energy Resources (DERs). Trace analysis is critical for enabling DER 

deployment, decarbonising the grid, and transitioning to low-carbon energy systems. 

SDG 9 – Industry, Innovation, and Infrastructure 

The project enhances infrastructure management by modernising outdated workflows 

through web-based technologies. It facilitates the digitalisation of the energy sector, 

contributing to developing a smarter grid and a more resilient and adaptable infrastructure. 

SDG 11 – Sustainable Cities and Communities 

Reliable and efficient power distribution is essential for sustainable urban development. The 

NAVI Trace Toolkit facilitates accurate and accessible analysis of distribution networks, 
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making it a valuable resource for supporting smart grids and meeting the demands of 

evolving urban environments. 

SDG 13 – Climate Action 

The platform promotes the integration of low-emission technologies into the grid, indirectly 

leading to the grid's decarbonization. Conducting proper trace analysis offers more profound 

insights into network behaviour, helping to identify imbalances between distributed energy 

resource (DER) generation and grid capacity. This information contributes to more informed 

planning and operation of sustainable energy systems. 
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10. APPENDIX B: DFS-BASED CIP ANALYSIS CODE 

from datetime import datetime 

 

current_year = datetime.now().year 

 

# Step 1: Assign weights based on age × length (years * meters) 

for u, v, data in ctx.graph.edges(data=True): 

    install_date = get_attribute((u, v, data), 'SPINSTALLED') 

    length = get_linker_attribute((u, v, data), 'length') 

    length = float(length) 

    try: 

        install_year = int(install_date.split('/')[0]) 

        age = current_year - install_year 

        if length and length > 0: 

            weight = age * length 

        else: 

            weight = 0 

        ctx.graph[u][v]['weight'] = weight 

        ctx.graph[u][v]['age'] = age or 0 

        ctx.graph[u][v]['length'] = length or 0 

    except Exception: 

        ctx.graph[u][v]['weight'] = 0 

        ctx.graph[u][v]['age'] = 0 

        ctx.graph[u][v]['length'] = 0 

 

# Step 2: DFS to find longest weighted simple path 

def dfs_longest_path(graph, start, visited, path, total_weight, 

total_length): 

    visited.add(start) 

    path.append(start) 

    max_path = list(path) 

    max_weight = total_weight 
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    max_length = total_length 

 

    for neighbor in graph.neighbors(start): 

        if neighbor not in visited: 

            edge_data = graph[start][neighbor] 

            edge_weight = edge_data.get('weight', 0) 

            edge_length = edge_data.get('length', 0) 

            sub_path, sub_weight, sub_length = dfs_longest_path( 

                graph, neighbor, visited.copy(), path.copy(), 

                total_weight + edge_weight, total_length + edge_length 

            ) 

            if sub_weight > max_weight: 

                max_path = sub_path 

                max_weight = sub_weight 

                max_length = sub_length 

 

    return max_path, max_weight, max_length 

 

# Step 3: Try all nodes as starting points 

longest_path = [] 

max_total_weight = 0 

max_total_length = 0 

 

for node in ctx.graph.nodes(): 

    path, weight, length = dfs_longest_path(ctx.graph, node, set(), [], 

0, 0) 

    if weight > max_total_weight: 

        longest_path = path 

        max_total_weight = weight 

        max_total_length = length 

 

# Step 4: Highlight the critical path 

for i in range(len(longest_path) - 1): 

    u, v = longest_path[i], longest_path[i + 1] 

    age = ctx.graph[u][v].get('age', 0) 
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    color = get_color_gradient_continuous(age, min_age=0, max_age=125)  # 

Adjust max as needed 

    highlight_edge(ctx, (u, v, ctx.graph[u][v]), color=color, size=8) 

 

# Step 5: Compute average age 

average_age = max_total_weight / max_total_length if max_total_length > 0 

else 0 

print(f"Critical Installation Path (CIP) total weight (years*m): 

{max_total_weight}") 

print(f"Total length (m): {max_total_length}") 

print(f"Average age (years): {average_age:.2f}") 
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11. APPENDIX C: DIJKSTRA-BASED APPROACH CIP 

ANALYSIS CODE 

from datetime import datetime 

 

# Step 1: Custom weight function      

def age_times_length(edge): 

    # Parse install date 

    install_date_str = get_attribute(edge, 'SPINSTALLED') 

    length = float(get_linker_attribute(edge, 'length')) 

 

    try: 

        install_date = datetime.strptime(install_date_str, 

"%Y/%m/%d %H:%M:%S") 

        age_years = (datetime.now() - install_date).days / 365.25 

    except Exception as e: 

        age_years = 0  # Treat missing date as zero age 

 

    return age_years * length 

 

filters = ['LV_MSP', 'Unmetered_SP'] 

 

# Step 2: Run Dijkstra's algorithm from a controller 

length, path = critical_path(ctx, source_node_id=9085033, 

weight_func=age_times_length, filters=filters) 

 

 

# Step 3: Highlight edges with age-based color 

current_year = datetime.now().year 

for i in range(len(path) - 1): 

    u = path[i] 
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    v = path[i + 1] 

    edge_data = ctx.graph.get_edge_data(u, v) 

 

    install_date = get_attribute((u, v, edge_data), 'SPINSTALLED') 

    try: 

        install_year = int(install_date.split('/')[0]) 

        age = current_year - install_year 

        color = get_color_gradient_continuous(age, min_age=0, 

max_age=125) 

    except Exception as e: 

        color = "#999999"  # fallback gray 

 

    highlight_edge(ctx, (u, v, edge_data), color=color, size=8) 

     

highlight_nodes_by_type(ctx, "Dist_Transformer", color="#000000", 

size=11) 

 


