
Development of an Interactive Web-Based Platform
for Energy Network Trace Analysis and

Visualization
Álvaro Lastra Aragoneses

MEng Telecommunications & MSc Smart Grids
Universidad Pontificia Comillas and University of Strathclyde

Glasgow, UK

Supervisor: Bruce Stephen
Department of Electronic and Electrical Engineering

University of Strathclyde
Glasgow, UK

Abstract—This thesis presents the development of the NAVI
Trace Toolkit, a web-based platform designed to modernise trace
analysis workflows within energy distribution networks. Trace
analysis is a powerful technique to visualise and diagnose the
structure and behaviour of electrical grids. However, the lack
of a dedicated trace development environment has limited its
implementation at Scottish Power Energy Networks (SPEN).
Existing trace development workflows rely on executing manual
Python scripts, which lack real-time feedback, flexibility, and
accessibility for trace developers.

The NAVI Trace Toolkit integrates energy network analysis
with modern web software development and a user-centred
design approach to address these limitations. Built using Python,
Flask, HTML5, CSS3, and JavaScript, the platform provides
an interactive interface that supports real-time trace execution,
dynamic styling, and modular architecture. It allows the develop-
ers to load multiple subnetworks, customise visual outputs, and
develop trace logic using built-in functions within a responsive
and intuitive environment.

The theoretical foundation of the toolkit is based on Hoel
et al.’s trace framework, adapted to energy networks with
rich attribute metadata. This project contributes to the trace
framework by integrating a new function for identifying critical
paths using a custom weight function.

The Critical Installation Path (CIP) use case demonstrates a
DFS-based and a scalable Dijkstra-based approach, balancing
analytical depth with computational feasibility. This realistic
use case validates the platform’s capabilities and illustrates a
practical application of the critical path function.

The application runs locally, requires no administrative priv-
ileges, and reduces setup time to under five minutes. A user
experience evaluation assessed the platform’s efficiency, achieving
1.64 tasks per minute, and effectiveness, reaching 100% task
completion. User survey feedback from participants reflected
high customer satisfaction.

Index Terms—trace analysis, energy networks, smart grids,
geospatial visualization, software, user experience

I. INTRODUCTION

Scottish Power Energy Networks (SPEN) utilises the NAVI
platform to visualise the energy network and provide engineers
with insights. Among its various capabilities, one of the
most powerful is trace analysis—an analytical tool used to
understand, visualise, and diagnose the structure and behaviour
of the energy network. This involves highlighting nodes and
lines on the network topology to visually represent data, such

as tracing upstream from a given impedance to the source. This
process helps to determine the network’s path, components and
electrical characteristics.

Trace Analysis can be extended to various energy network
applications; however, SPEN lacks a dedicated trace devel-
opment platform. The current workflow for trace developers
relies on executing basic Python scripts locally, which is
time-consuming and does not have real-time feedback. This
particularly frustrates users when they want to make minor
changes and iterate quickly to refine the code, hindering
productivity and experimentation.

This master’s thesis aims to create the NAVI Trace Toolkit,
a web-based platform that enables data scientists and engineers
to develop and manage traces efficiently. This interdisciplinary
project combines novel energy network trace analysis ap-
proaches with software engineering principles and user expe-
rience design to create an innovative and practical application.

A. Scope and Outline

The work scope is focused on developing a web-based
platform that demonstrates how to build an application using
Python and JavaScript to enable trace developers to create
complex and specific energy network trace analyses. Although
the application is built on SPEN’s NAVI platform, it is
designed to be replicable, allowing any person or organisation
to build the platform for their own trace development needs.

The platform provides a flexible, developer-friendly envi-
ronment that supports the creation and management of trace
logic. The application ultimately bridges the gap between
rigid commercial GIS software and overly generic network
graph libraries, offering a custom solution for energy network
analysis.

Security hardening is considered beyond the scope of the
thesis. Although the platform is web-based, it is intended to
be executed locally; therefore, advanced security measures are
not a priority of this project. As such, server deployment is
also excluded from the scope of the project; however, the
web design is modular and extensible, allowing for future
deployment on a server if required.



II. LITERATURE REVIEW AND THEORETICAL
BACKGROUND

A. Trends and Importance of Analysis Tools in Distribution
Networks

The evolution of distribution grids—driven by decentralisa-
tion, digitalisation, and decarbonisation—has led to a growing
need for advanced analytical tools to support network optimi-
sation and decision-making [1]. These tools are essential for
integrating Distributed Energy Resources (DER), Electric Ve-
hicles (EVs), and Smart Grid technologies, while maintaining
grid reliability, efficiency, and resilience. [2]

IEEE literature highlights the importance of new analytical
tools for tasks such as load forecasting, protection, electric
power quality, and power factor improvement [2]. Networks
are evolving from passive, radial configurations to more dy-
namic and bidirectional networks. Traditional manual or static
analysis methods may no longer be sufficient.

Furthermore, new privatisation trends and deregulation of
the distribution grid have increased the risk of the electrical
grid becoming uncompetitive in a new market that can no
longer rely on regulatory protection. In this new context, in-
novative tools are required to remain competitive, and making
better use of spatial data is key to achieving efficiency in a
capital-intensive market. [1]

B. Web Technologies in Electrical Grid

Bui et al. present a new paradigm for energy networks in
which the Smart Grid (SG) benefits from internet technologies
to become more interoperable and accessible [3]. The paper
highlights the importance of referencing internet standardisa-
tion bodies such as the Internet Engineering Task Force (IETF)
and the World Wide Web Consortium (W3C).

The IETF created the Constrained RESTful Environments
(CoRE) working group to develop a RESTful protocol for
constrained environments, resulting in the Constrained Appli-
cation Protocol (CoAP) [4]. Other working groups in the IETF
and W3C also developed standards to ease the integration of
web-based protocols into the smart grid. 6LoWPAN working
group efforts were focused on delivering IPv6 internet con-
nectivity to constrained WPAN devices [5]. Meanwhile, the
W3C’s Efficient XML Interchange (EXI) worked on XML data
compression, achieving up to 90% storage reductions [6].

Bui et al. developed a proof of concept for IoT web
visualisation developed using Java and Google Maps, in which
they present the network topology of connected devices. This
work demonstrates the scalability and interoperability of web-
based solutions. Similarly, Eren et al. present a web-based dis-
patcher information system for the electrical grid, YTBS (Yük
Tevzi Bilgi Sistemi) [7]. This real-time, centralised monitoring
platform presented by the TSO validates the viability of web-
based platforms in grid operations.

In summary, web technologies offer a compelling response
to the energy networks’ needs. CoAP and data compression
standards such as EXI highlight the efforts from the IETF and
W3C to enable efficient web technologies implementation in

energy grids. At the same time, applications like YTBS and the
IoT platform by Bui et al. demonstrate the practical viability
of web-based grid management platforms.

C. Traditional Approaches for Energy Network Topological
and Spatial Analysis

In the past three decades, topological and network analysis
of the grid have been performed using GIS, which private com-
panies typically develop. GIS platforms offer powerful tools
for managing and analysing spatial data, making them ideal
for visualising and operating complex energy infrastructures
[1].

SPEN adopted the NAVI platform, its GIS application to
visualise and operate its distribution network. NAVI supports
SPEN in making both business and technical decisions, ulti-
mately leading to more efficient grid management.

Among the various capabilities offered by NAVI, trace
analysis attracts attention as a particularly valuable tool. GIS
proprietary software platforms, such as ESRI ArcGIS [8]
or GE Smallworld [9], often include similar trace tools.
Trace analysis is applied across utility networks to better
understand their structure and behaviour; in the context of
energy networks, typical applications include finding the near-
est upstream protective device, calculating voltage drops, and
optimising the balance of power flows in the network.

These GIS platforms include trace functions like finding the
de-energised features and optimal switch configurations. The
ESRI ArcGIS framework is the most advanced tool available
for developing traces in proprietary software, which currently
has eight built-in functions for tracing utility networks [10].

D. Web technologies for GIS

Integrating web technologies into geospatial applications
has significantly transformed how networks are visualised and
analysed. Web GIS platforms are emerging as a solution in
the energy network management to enable dynamic map ren-
dering, collaborative user interaction, and data-driven decision
making.

Kuridža’s research about the benefits of web GIS appli-
cations highlights the advantages of web-based platforms,
including cross-platform execution regardless of the operat-
ing system, interface with external services, open standards,
simplicity, and ubiquity on top of the technologies [11].

Developers can define their architecture based on GIS
developer platforms (e.g., MapBox GL, CARTO), JavaScript
open-source libraries (e.g., Turf, Leaflet, OpenLayers), or a
combination of those tools. Own developed platforms include
server-side data handling and RESTful APIs for communica-
tion [11].

One of the most prominent JavaScript libraries is MapLibre
GL JS [12], an open-source tool for rendering vector maps
using WebGL. MapLibre is a fork of MapBox GL JS, which
is a proprietary software for developers that was once open
source. MapLibre is an appropriate solution for many appli-
cations, including energy networks, due to its:

1. Custom styling capabilities,



2. Integration with open standards like GeoJSON and Map-
box Style Specification, and

3. Interoperability with frameworks like React, Angular, and
maps like MapTiler and OpenStreetMap.

Fournier et al. developed an interactive decision support
tool based on web maps for equitable energy planning,
which was developed with stakeholders caring about social
and environmental justice [13]. This project demonstrates the
viability of web technologies for visualising energy networks
for DER deployment. The web mapping tool was able to report
imbalances between DER supply potential and grid capacity
limits, helping in energy transition efforts. The web mapping
platform used in this solution was ArcGIS Online, although
open-source web-mapping software was considered.

E. Limitations of Existing Tools

There is currently no solution in the market that offers the
flexibility to develop trace analysis tailored to specific cases in
the electrical grid, while also being compatible with SPEN’s
distribution network data format. Existing Python network
libraries are too generic to be applied to energy networks, and
commercial Geographic Information System (GIS) software
solutions are either too rigid to enable developers to create
custom traces or lack a trace analysis tool.

For example, ArcGIS, which has the best trace tool in the
market, is still constrained by the user interface, which has
no code panel [14]. It does not allow users to combine multi-
ple functions, preventing users from pipelining and creating
tailored traces. While the user interface may be accessible
to someone unfamiliar with trace development, it might limit
developers who want to implement a particular trace logic or
require a sandbox to experiment with it.

Commercial GIS platforms are mostly closed-source and
license-restricted, hindering their adaptability for research. In
many cases, their tracing functions are hardcoded and not
easily extensible. Aside from the Oliver and Hoel (Esri) frame-
work [15], there is currently no widely recognised theoretical
framework, and it is not currently implemented in an open-
source platform where developers can create traces upon those
functions.

Additionally, open-source libraries such as NetworkX [16]
or Graph-tool [17] provide powerful graph analysis functions,
including shortest path, predecessors’ retrieval, and cycles
detection. Nevertheless, these libraries are too generic for
direct application in electrical trace analysis. These libraries
lack specific electrical domain applications such as impedance
modelling and protective device behaviour. As a result, ap-
plying them to an energy network requires large amounts of
custom code.

Moreover, SPEN has already developed its trace analysis
tool in NAVI, eliminating the need for an external license plat-
form. The NAVI Trace Toolkit addresses these challenges by
building on SPEN’s existing NAVI infrastructure. This project
is based on SPEN NAVI developers’ current Python scripts
for trace development. Updating the script-based workflow is
a logical step to enhance usability, accessibility, and long-term

maintainability, since the current toolkit implementation lacks
a unified trace framework and a user-friendly interface. A web-
based implementation can provide an intuitive graphical inter-
face that simplifies interaction with trace functions, reduces the
learning curve for non-trace developers, and supports modular
development.

In conclusion, existing commercial GIS platforms like Ar-
cGIS offer built-in tracing functions; however, they are limited
by rigid user interfaces and closed-source architectures. Open-
source Python libraries like NetworkX and Graph-tool offer
strong capabilities for graph analysis; however, they do not
include the specific features needed for trace analysis in energy
networks. These limitations prevent SPEN engineers and data
analysts from innovating and customising traces.

F. Theoretical Background: Modelling Energy Networks for
Trace Analysis

The theoretical background is based on Hoel et al.’s trace
framework for utility networks [15], which is the only formal
theoretical framework for trace analysis. Their framework will
be adapted to the energy networks domain for the NAVI Trace
Toolkit.

The energy network can be formally defined as a graph
U = (J,E), where:
J are the junctions representing physical components such as
transformers, switches, fuses, meters or intersection points of
lines. Each junction j ∈ J has a geospatial coordinate (x, y)
in a Euclidean plane.
E are the physical connections between junctions, i.e., the
electric lines. Each edge e ∈ E is modelled as a pair (u, v)
connecting junctions u and v.

This graph abstraction allows efficient trace analysis by
leveraging graph algorithms. The model’s connectivity defines
whether two features are logically connected, regardless of
geometric coincidence. For example, a transformer does not
directly touch a line but is connected. Two logically connected
junctions may not be traversable if, for example, a protective
device is open, or a line is disabled due to a fault condition.

Each junction and edge carries a dictionary of network
attributes; nullable numeric, string, or Boolean values rep-
resenting real-world properties such as: conductor material,
cross-sectional area, impedance, reactance, entity id, OpenDSS
simulation outputs, and installation metadata.

Attributes are used to compute metrics for analysis or
to control traversability—whether electricity can flow in a
path between connected features. For example, the ENABLE
line attribute set to zero is not traversable. The protective
device NORMALPOSITION [A—B—C] attribute indicates if
it is closed. If the normal position attribute is set to one,
it is closed and traversable; if set to zero, it is open and
not traversable. Additionally, if the breakpoin phase[a—b—c]
attribute is false, no breakpoint (i.e., open or fault condition)
is present on any phase, thus not blocking traversal. The same
attributes work at other junctions, such as switches and fuses,
which are also normally closed.



The barriers are specific locations B ⊆ U where traversabil-
ity must terminate, they are based on physical device types or
logical state constraints.

Finally, the filters are applied after traces are executed; thus,
they do not affect traversability. They allow the subnetwork to
be discovered. The filters can consist of a set of barrier nodes
or categories.

PROBLEM FORMULATION AND STATEMENT

The core problem in trace analysis of energy networks can
be formalised as follows:

Given:
An energy network U = (J,E), where:

• J is the set of junctions (e.g., transformers, protections,
switches, fuses)

• E is the set of edges (i.e., electric cables or logical
connections)

• Each j ∈ J and e ∈ E have associated network attributes
(e.g., status, voltage rating, type)

• A set of starting points s ∈ S from which the trace begins
the analysis.

• A set of barriers b ∈ B that restricts traversability at
determined locations.

• A traversability expression T , which stops the traversal
based on a barrier function Boolean expression.

• The analysis function type (e.g., upstream, downstream,
loops).

Find:
The subnetwork U ⊆ U ′ that is reachable from S

under the abovementioned constraints and the traversability
definition.

TRACE TYPES

The trace framework supports multiple trace types and
allows configurable and scalable trace analysis on energy
networks. The main trace types developed by Hoel et al. are:

• Shortest path trace, which finds the shortest path between
two starting points.

• Loops trace detects loops in the network and helps detect
redundancies.

• Subnetwork trace extracts all traversable lines and devices
from a subnetwork controller.

• In distribution energy networks, controllers are the trans-
formers or the substations, the network’s energy source.

• A subnetwork SN ⊆ U is defined as a connected
subset of the network that includes at least one network
subnetwork controller. All junctions and edges in the
subnetwork must be traversable, and subnetworks may
overlap.

• Subnetwork controller trace, which identifies the con-
trollers of the subnetwork.

• Upstream trace, which finds all controllers supplying
power to a location.

• Downstream trace, which identifies all features receiving
power from a location. It results from all reachable
junctions and edges not belonging to the upstream trace.

TRACE CONFIGURATION EXAMPLE

To configure traces for tailored operations, we must include
control over traversability, starting points, barriers, filters, and
functions. Here is a brief explanation on how to configure a
trace for calculating the grid and the number of customers
affected by an electric fault:

• First, we need to define the fault location. That would be
the starting point S.

• Then we set the barriers B to include open switches,
faulted lines or any device that blocks traversal due to
the fault or its state.

• For this operation, we run a downstream trace to identify
all the junctions that are no longer reachable due to
the fault. It simulates the propagation of the fault and
identifies the disconnected areas.

• Finally, a filter is applied to get the junctions represent-
ing the customer nodes, and we count the number of
customers based on the customer nodes’ attributes.

This fault trace example can be applied to many business
cases. It can be used for fault response prioritisation depending
on the number of high-priority customers (e.g., hospitals).
It can improve customer communication and transparency
by informing affected customers about expected restoration
times and service updates. The fault trace map can help
maintenance teams to identify affected areas and prioritise
restoration efforts quickly. This trace operation can simulate
the impact of a fault or a planned maintenance, assisting
engineers in assessing which customers will be affected.

THEORETICAL BACKGROUND: DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm is a foundational method in graph
theory and network optimisation for finding shortest paths
from a single node in a network. It is a node labelling and
greedy algorithm that only works with non-negative edge
weights.

Dijkstra’s algorithm progressively selects the node with the
smallest tentative distance from the source and updates the
distances of its neighbours. Each node is assigned a label
consisting of two attributes (d(i), p(i)), where d(i) is the
current shortest known distance from the source to the node i,
and p(i) is the predecessor node of the current shortest path
to the node i.

The step-by-step algorithm for finding the shortest paths
from the starting node s to all other nodes in the network is
defined as follows [18]:

• Assign an initial tentative upper bound length to each
node. Initially, the source node is assigned a distance of
zero d(s) = 0, and infinity to the rest of the nodes d(i) =
∞ ∀i ̸= s. Label node s with (0,−).

• Assuming cij is the weight between the two nodes i and
j, select the labelled node i with d(i) minimum. Node i
is now scanned, and scanned nodes can never be labelled
again. For each edge with weight cij , compute d(j) =
min{d(j), d(i)+cij}. Each neighbour node of i is marked
as labelled.



• Repeat step 2 until all nodes are scanned, not labelled.
The correctness of the algorithm assumes that all weights

are non-negative, meaning that once a node is scanned, the
shortest path cannot improve any further.

Its time complexity is O(E + J log J) when implemented
with Fredman and Tarjan’s Fibonacci heap priority queue,
making it suitable for large-scale graphs [18]. This algorithm
is presented because it will be utilised for the critical path
function.

III. NAVI TRACE TOOLKIT CONTRIBUTIONS

A. Trace Development Demonstrator

Proof-of-concept application showing how web technolo-
gies (HTML5, CSS3, JavaScript, Python Flask, MapLibre GL
JS) can support trace development.

B. Python-Based Trace Framework

The backend extends Hoel et al. framework with a critical
path function, functions tailored to the needs of SPEN, a mod-
ular trace logic for scalability and specific implementations for
electrical utilities.

C. UX Evaluation

A usability study with SPEN developers measured: interface
clarity, ease of configuration. effectiveness & efficiency, and
overall satisfaction.

D. Use Case Demonstration

Critical Installation Path (CIP) prioritises maintenance tasks
and prevents faults, validating the toolkit in practice.

E. Industrial Relevance

• Local Python app, deployable in SPEN’s IT environment.
• Setup under 5 minutes.
• Independent of external tools.

IV. METHODOLOGY

The methodology combines user-centred design, agile de-
velopment, and testing in a corporate environment with trace
developers. The process was divided into four key phases:

A. Requirements Gathering and Domain Exploration

The project began with researching the traces domain and
exploring the business necessities. This phase of the project
involved:

• Researching trace development: learning about current
trace analysis tools in the market and realising there was
no platform for trace development.

• Deciding that the NAVI Trace Toolkit would be built on
the foundations of the D. Hoel et al. framework.

• Reviewing current trace development workflow in SPEN:
understanding current Python scripts and NAVI platform.

• Conducting informal interviews: identifying pain points
in the current trace development workflow.

From the interviews, several usability pain points were
identified:

• Manual script editing for repetitive tasks: users must
modify Python scripts to define traces and set SSID sub-
networks. Locating and modifying the correct parameters
is often confusing.

• Lack of real-time UI feedback: there is no graphical
interface with real-time feedback of trace results.

• Monolithic architecture: the running shell script executes
all Python scripts simultaneously, even when only one
task is needed. This is time-consuming and reduces
flexibility.

• Error-prone scripts: users reported many errors during
NAVI Trace initial execution (e.g., curl request failing,
map loading issues).

• Accessibility: non-developers struggled to engage with
trace development due to technical barriers. For example,
the shell running script was not executable for Windows
users, requiring a Linux terminal environment. Linux
terminal environment installation required an IT request,
delaying onboarding.

This phase helped to define the main functional require-
ments of the platform:

• UI SSID: the application must include a UI input where
users can load a subnetwork by introducing its SSID. The
application must support several SSID handling.

• Real-time execution and feedback: the application must
provide real-time feedback when the user runs a
trace—for example, notifying the user when trace logic
is loading, showing error traceback, or displaying traces
on a map when loading is finished.

• UI for repetitive tasks: the UI must have a section for
changing the size and colour of nodes and lines by type.
It should also allow the user to configure the features of
default nodes and lines.

• Python code execution: the application must support real-
time Python execution code. It should allow the user to
input trace scripts, execute them, and view output (i.e.,
errors and results).

• Trace framework: the application must provide functions
that allow the user to write trace scripts efficiently. It
must give comprehensive documentation with examples
to help understand the functions.

B. Wireframing and initial proposal

Once requirements were gathered, wireframes were created
to get the application’s visual representation and illustrate
the intended user flow. These wireframes were presented to
the stakeholders, including the manager, for feedback and
approval. The wireframes served as a graphic tool to refine
scope, align expectations with stakeholders before develop-
ment began, and as a roadmap to guide the development
toward the final product.

Figure 1 shows the wireframe proposal developed using
Figma [19]. This user interface aims to fulfil user requirements
while providing a great user experience. Besides the map, the
UI comprises four main elements that the user can interact
with:



• Map: the interactive map on the background is the pri-
mary visualisation canvas of the traces, enabling intuitive
interaction. When the user hovers over the traces, infor-
mation about the nodes and lines is displayed to facilitate
the understanding of the network.

• Subnetwork input: a search bar is included at the top,
where the user can input an SSID to load the subnetwork
on the map. The user can load as many subnetworks as
they want.

• Features panel: the features panel enables the user to
configure basic nodes and lines settings.

• Code panel: this panel will include a Python code editor
for script editing. Code highlighting and editor function-
alities are crucial, since the user needs a smooth coding
experience that does not hinder their performance.

The buttons positioned along the bottom of the two panels
allow the user to hide the panels, providing a bigger and
cleaner view of the map.

Fig. 1. Wireframe proposal.

C. Agile development process

The application’s development followed an agile method-
ology, with 2-week sprint cycles for continuous refinement
of features based on feedback. This phase was characterised
by regular check-ins, incremental implementation of features
based on priority, and updates to the requirements based on
user input and technical feasibility. This user-centred approach
ensures user involvement on the platform and responds to real
user needs. Agile methodology kept the criteria aligned with
SPEN’s operational context.

D. User Testing and Evaluation

Once the application was fully operative and the core
functionality was implemented, the application was tested by
five SPEN engineers and trace developers. The evaluation
consisted of three categories:

• Quantitative task-based testing: users were asked to com-
plete tasks (e.g., installing the app, launching it, running
a trace), and completion times were recorded.

• Quantitative feedback survey: a questionnaire with a
Likert scale was conducted to assess user experience
on usability and performance. Users were also asked to
report the time spent running the previous Python scripts
for trace development.

• Qualitative feedback: users provided open feedback on
the usability, interface aesthetics, and overall experience.

The evaluation was conducted on SPEN corporate comput-
ers to ensure the platform’s operation in corporate settings.

V. IMPLEMENTATION

The NAVI Trace Toolkit was implemented as a modular
web application tailored for SPEN’s operational environment.
It uses a Flask Python backend and a responsive HTML/CSS
frontend, with MapLibre GL JS for map rendering. Subnet-
works are visualised using GeoJSON layers, and trace logic is
executed in real time via a built-in Ace Editor. The backend
exposes RESTful endpoints for trace execution, subnetwork
loading, and user guidance, and integrates a custom trace
library based on Hoel et al.’s framework.

Fig. 2. The NAVI Trace Toolkit System Architecture

A. Front-end Implementation

The front-end was developed using standard web technolo-
gies—HTML and CSS—providing a clean and responsive
interface. It allows the user to interact with network data and
run trace logic.

1) Map: The interactive map is implemented with MapLi-
bre GL JS, using OpenStreetMap as the source of map tiles.
Traces are displayed on the map using MapLibre GL JS
layers. The layers are rendered using GeoJSON sources; each
subnetwork has a GeoJSON associated with it. Two layers are
created for each subnetwork: one for junctions, using Point
GeoJSON geometry, and another for lines, using LineString
GeoJSON geometry. If the user wants to display a message
on the map with the Python script, a new layer is created for
messages.

2) Code Editor: The code panel is implemented using the
Ace Editor, an embeddable, lightweight, and highly customiz-
able code editor written in JavaScript. It provides features
commonly found in plain-text native editors, such as Sublime
Text or Vim. Key features of the Ace Editor are syntax
highlighting and editing capabilities such as line wrapping,
line numbering, multiple line editing, and tab spacing control.



3) Other front-end implementations: A hiding functionality
was implemented in both panels to enhance user interaction
and optimise screen map view, combining CSS transitions,
JavaScript, and local storage management (Figure 3). This
solution provides a smooth and persistent user experience. The
sliding function is encapsulated in a JavaScript function, which
selects the element, retrieves the current state, and uses the
CSS translateX function to change the panel’s position. To
improve data exploration, listeners were added to the map to
detect when the user hovers over the lines and nodes of the
network. Upon hover, a function that displays the element’s
information is triggered (Figure 3).

Fig. 3. Panels Hidden with Node Data Displayed on Hover

Local storage is implemented to persist the user-defined
configurations and session data: node and lines UI configu-
ration, SSIDs of the loaded subnetworks, Python script, and
the hiding state of the panels. This approach retains user
preferences and session context, providing a more personalised
user experience.

B. Back-end Implementation

The back-end system was developed using Flask, a Python
framework for web development. The back-end serves as the
front-end interface’s computational engine and data orchestra-
tor. Its main tasks are handling front-end user requests, parsing
from the NAVI API fetched data to the NAVI Trace Toolkit
data format, executing trace logic, and generating geospatial
outputs for visualisation.

1) API REST Endpoints: The API exposes multiple REST-
ful endpoints that support data retrieval and custom trace
execution. The endpoints are designed to be stateless and
modular, enabling seamless integration with the front-end and
scalability. The backend has five endpoints described below:

1) / (Index Route): It loads the main HTML interface using
Flask’s render template function. This route does not
process data and is only used for initial page load.

2) /subnetwork (GET/POST): This route handles requests
to load specific subnetwork data based on its SSID. If the
corresponding file does not exist locally, it fetches it on
the NAVI SPEN API, stores it, and processes it using the
execute trace() function. The trace result is formatted
to GeoJSON using the create geojson() function and
returned to the front-end for rendering. This endpoint
supports code customisation and node and line styling,

so that when the user loads the subnetwork, it has the
user-configured styling.

3) /code (POST): This endpoint executes user-configured
styling and Python code across one or multiple sub-
networks. It reads the graph data from local storage
and applies the user-configured styling and code us-
ing the execute trace() function. It generates a Geo-
JSON file for each subnetwork. The output of the
user’s code execution is captured using Python’s con-
textlib.redirect stdout, allowing the endpoint to return
the code output and trace result. Additionally, messages
for map display are handled through helper functions.

4) /delete-ssid (POST): This route removes cached graph
and GeoJSON files associated with an SSID. This end-
point handles proper data lifecycle management and
maintains a clean work environment.

5) /user-guide (GET): This endpoint dynamically renders
a Markdown-based user guide into HTML using the
markdown Python library.

Fig. 4. Backend architecture and Flow

2) Trace Engine: The backend uses a custom trace library
(navi_trace_lib), encapsulating the energy network trace
analysis logic. Key helper functions used by the REST API
are:

• read_json_file(): Parses from JSON format to
NetworkX graph.

• execute_trace(): Executes the trace algorithm
based on the user’s code and configuration.

• create_geojson(): Converts trace results into Geo-
JSON format suitable for front-end MapLibre GL render-
ing.

• frontend_messages and clear_messages():
Manage displayable messages on MapLibre GL.

The trace library includes built-in functions that support
advanced energy analysis and visualisation, making the de-
velopment of new traces more efficient. These functions are
based on the theoretical framework proposed by Hoel et al.
They fall into four categories:

• Trace Styling: Functions that allow users to customise
the visual representation of network elements.

• Messaging: Functions that support user map annotation,
e.g., send_message() displays text labels on the map
at specified coordinates.

• Utilities: Functions such as
get_color_gradient_continuous() for
gradient colour schemes and get_node_by_id() or
get_entity_id() for entity lookup.



• Network Exploration: Functions that implement trace
algorithms for interactive network exploration. The
trace() function provides a unified interface to:

– Upstream and downstream tracing
– Loop detection
– Shortest path computation
– Subnetwork extraction and control

Additionally, a custom critical_path() function com-
putes the shortest path from a source to each node, including
filtering by entity type. Pseudocode:

TABLE I
CRITICAL PATH FUNCTION PSEUDOCODE USING WEIGHTED DIJKSTRA

TRAVERSAL

Input: ctx: TraceContext object with the network graph
source node id: ID of the starting node
weight func: Function to compute edge weights
filters: Set of entity types to filter

Output: max distance: Maximum shortest-path weight among filtered nodes
path nodes: List of nodes forming the critical path

1 Initialize an empty weighted graph G’
2 For each edge (u, v) in the original graph:
3 Try:
4 Compute weight ← weight func(u, v, edge data)
5 Catch error:
6 Set weight ←∞
7 Add edge (u, v) with weight to G’
8 Run Dijkstra’s algorithm on G’ from source node id
9 Store shortest path distances and paths: lengths, paths
10 Initialize max distance ← 0
11 Initialize max node ← null
12 For each node in the original graph:
13 If node.entity type ∈ filters:
14 If node is reachable (node ∈ lengths):
15 If lengths[node] > max distance:
16 Update max distance ← lengths[node]
17 Update max node ← node
18 Retrieve path nodes ← paths[max node]
19 Return (max distance, path nodes)

C. Libraries

The NAVI Trace Toolkit uses Python libraries to support its
capabilities:

• Markdown [20]: Render Markdown to HTML.
• Requests [21]: Retrieve network graph from NAVI API.
• Ujson [22]: Efficient JSON parsing/manipulation for

GeoJSON.
• NetworkX [16]: Store subnetworks and implement trace

algorithms.
• Flask [23]: Web framework for routing, endpoints, and

HTML rendering.

D. Setup and Application Launcher

Two .bat files allow users to install and launch the toolkit
without command-line interaction:

• install.bat: Creates Python environment and installs
required libraries.

• run.bat: Launches the application within the environ-
ment.

A user guide supports setup, including Python installation,
executing install.bat, and running run.bat.

VI. VISUAL RESULT AND INTERFACE DESCRIPTION

The NAVI Trace Toolkit provides a rich, interactive interface
(Figure 5) that comprises geospatial visualisation, trace styling
configuration, and trace scripting capabilities. The visual out-
put includes the main components designed in the wireframe
phase: the map display, the SSID loader, the feature sidebar,
and the code editor panel.

The central element of the interface is the dynamic map
rendered using MapLibre GL. The map visualises the energy
network, with nodes and edges styled according to parameters
defined by the user.

On the left side of the interface, a configuration panel
enables the user to define the properties for nodes and lines.
In Figure 5, default nodes are turned off by setting their size
to 0, while transformers are highlighted in black. Lines are
displayed in blue. This styling capability enhances the clarity
of the network representation and aids in exploratory analysis.

Above the styling panel, the user finds the SSID loader
to display multiple subnetworks. The SSIDs of these subnet-
works are shown below the SSID input. This feature enables
multi-network and comparative analysis, improving analytical
flexibility.

Fig. 5. The NAVI Trace Toolkit Application

The right side of the interface features the Python code
editor, where the user can write and execute trace scripts. The
Python editor supports the built-in functions developed in this
project for tailored trace development—such as trace(),
highlight_node(), and TraceContext(). The user
can execute traces, providing real-time updates directly on the
map by pressing the run button next to the right panel. In
Figure 5, a shortest path trace is executed between two nodes,
with styles applied to the results. Below the editor, the user can
find UI feedback, including trace outputs and error messages
(e.g., missing nodes).

A. Application comparison

1) User Flows: The NAVI Trace toolkit has significantly
enhanced user flows compared to the previous implementation.
The system now supports a modular, interactive, and user-
friendly interface that enables users to perform more flexible
and efficient trace analysis.



a) Current User Flow: The NAVI Trace toolkit’s current
flows allow the user to:

• Load subnetworks individually by selecting the SSIDs,
enabling the user to select multiple subnetworks within a
single session.

• Modify node and line features dynamically, depending on
their attributes and entity types.

• Run Python scripts using the code panel and the built-in
functions to execute trace logic and apply styling.

• Refer to the markdown documentation to understand how
to use the functions.

All these features are integrated into a web interface that
instantly displays results, without needing to refresh or reload
external files.

b) Previous User Flow: By contrast, the previous imple-
mentation had no user interface or modularity. Thus, the user
was required to:

• Execute all steps in a single shell script, which runs
all Python scripts, including data loading, styling, trace
execution, and HTML rendering.

• Refresh the static HTML file generated at the end of
execution to view the results.

• Limit analysis to one network at a time, constraining the
comparison and user flows across multiple networks.

• Operate without integrated documentation or examples,
depending solely on guidance from expert trace develop-
ers.

The previous workflow was functional but rigid and time-
consuming, only accessible to users with specialised trace
programming skills.

TABLE II
USER FLOW COMPARISON BETWEEN PREVIOUS IMPLEMENTATION AND

THE NAVI TRACE TOOLKIT

Feature Previous Implementa-
tion

NAVI Trace Toolkit
(Current)

Subnetwork
Loading

Manual, one at a time Interactive, multiple
SSIDs

Node/Edge
Styling

Script-based and static Dynamic, UI-driven or
scripted

Script
Execution

Full script required Modular, panel-based

Result
visualization

Refresh the HTML file Real-time map render-
ing

Documentation
Access

No formal documenta-
tion

Documentation with
new functions and
integrated with a
Markdown HTML
viewer

User Interface None Interactive web-based
UI

B. Execution Time Comparison

Performance experiments were conducted using a corporate
Dell laptop with an Intel i7 processor. Each test was repeated
100 times to ensure statistical reliability.

• Trace Execution: The average time to execute a trace
in the NAVI Trace toolkit on a single network is 1.25

seconds, with a standard deviation of ±0.27 seconds. This
metric reflects the time to run the trace logic and render
the result on the user interface.

• Subnetwork Loading: Loading and rendering of a single
subnetwork, i.e., input an SSID in the NAVI Trace
Toolkit, takes 3.92 seconds on average with a standard
deviation of ±0.55 seconds. This workflow comprises
retrieving the subnetwork from the SPEN NAVI server,
generating the GeoJSON, and rendering it in the applica-
tion. This metric compares the application performance
with the previous bulk implementation, which followed a
similar workflow but lacked a user interface.

• Previous Monolithic Workflow: The previous Python-
based workflow took an average of 10.73 seconds to com-
plete, equivalent to the current application’s subnetwork
loading workflow, with a standard deviation of ±1.28
seconds. This included all operations executed in a single
shell script.

Additionally, experiments were conducted with two to nine
subnetworks loaded simultaneously to assess network trace
scalability performance. The subnetwork() function was
selected for the experiment because it traverses the entire sub-
network, exploring all nodes and edges. The results show that
the execution time increases exponentially with the number
of subnetworks. Despite this performance, the NAVI Trace
Toolkit is still more efficient than the previous implemen-
tation with one subnetwork, even when handling up to 9
subnetworks. This improvement in multi-network rendering
and loading times is attributed to the modular architecture of
this project, as well as the use of efficient algorithms and high-
performance modules such as ujson.

Fig. 6. Average Trace Execution Times vs Number of Loaded Subnetworks

TABLE III
EXECUTION TIME COMPARISON BETWEEN THE NAVI TRACE TOOLKIT

AND PREVIOUS IMPLEMENTATION

Scenario Average
Time (s)

Standard
Deviation
(s)

Current Trace Execution (1 subnetwork) 1.25 0.27
Current Subnetwork Loading 3.92 0.55
Previous Workflow (1 subnetwork) 10.73 1.28
Current Trace Execution (9 subnet-
works)

6.28 1.04



C. User study results and evaluation

1) Task-based Performance Evaluation: The engineers
were asked to complete the initial setup and five additional
tasks in the app. Each participant had 30 minutes to complete
the setup and the five tasks. ISO 9241 defines usability of
the users based on effectiveness and efficiency metrics [24].
Effectiveness measures how wholly and accurately the users
achieve their goals:

Effectiveness (%) =
Number of completed tasks

Number of Tasks
× 100

Efficiency measures the time expended in relation to the
results:

Efficiency =

∑R
j=1

∑N
i=1 nij∑R

j=1

∑N
i=1 tij

Where:
• R: Number of users
• N : Number of tasks
• nij : result for task i by user j; 1 if completed, 0 otherwise
• tij : time spent by user j to complete task i (if not

completed, time measured until user gives up)
Initial setup took an average of 5.05 minutes with a standard

deviation of 0.64 minutes. The effectiveness of the user
test was 100%. The efficiency was 1.64 tasks per minute,
demonstrating high usability.

2) Comparative Setup Time Analysis: In contrast, the pre-
vious toolkit implementation required significantly more time
to set up: 40% of users reported setup times between 1 and
1.5 hours, 40% required between 30 and 60 minutes, and 20%
completed setup between 15 and 30 minutes.

3) Survey-Based UX Evaluation: A structured survey using
a 1-5 Likert scale (1 = Strongly Disagree, 5 = Strongly Agree)
evaluated nine dimensions:

1) The toolkit helps me complete trace-related tasks effi-
ciently.

2) The interface is clear and easy to navigate.
3) The visual design helps me understand the trace results

and the energy network.
4) The toolkit loads quickly and responds promptly.
5) The interface works well on my screen resolution and

setup.
6) It is faster than the previous version.
7) It is more intuitive than the previous version.
8) I prefer the new toolkit because it provides built-in trace

functions.
9) Overall, I prefer the new toolkit over the previous one.
The average ratings are plotted in Figure 7.
All dimensions averaged over 4, showing that tasks were

completed efficiently and the interface was intuitive and clear,
with Question 3 receiving the highest rating. The toolkit
responded quickly, displayed well on user screens, and the
built-in trace functions were positively rated. Overall, users
preferred the new toolkit.

Fig. 7. Average Likert Scores for User Experience Questions

4) Open-Feedback and Feature Recommendations: Users
suggested the following enhancements:

• Onboarding for new trace developers.
• Import/export feature for Python scripts and collaborative

workflows.
• Export trace data structure (e.g., CSV).
• Minor improvements: auto-zoom to loaded subnetworks,

resizable code panel.
These recommendations highlight interest in collaborative

features and improving accessibility for new users.

VII. USE CASE

In energy distribution networks, maintaining the integrity
and reliability of infrastructure is crucial. As these networks
age, the likelihood of faults and safety hazards increases [25].
The components of the distributed energy network deteriorate
over time, making proactive identification and intervention
essential for preventing failures. Traditionally, energy distribu-
tion companies have relied on periodic inspections or reactive
maintenance after problems occur; however, these methods can
be costly and risky.

To analyse the age of the network using data traces, we
introduced the concept of the Critical Installation Path (CIP).
This data-driven metric helps identify the most vulnerable path
within the network. The CIP is defined as the electrical path
composed of the oldest and longest connected lines, calculated
by multiplying the age of each line (years since installation)
by its length (meters). The CIP weight metric serves as a
proxy for infrastructure exposure, capturing both the temporal
degradation and the spatial extent of the network. The age
of the lines indicates how components degrade and become
obsolete over time, while the length of the lines represents
their physical footprint and the potential area affected by any
failures. Therefore, older and longer lines are more likely to
disrupt service continuity.

A. First Approach: Depth-First Search (DFS) for Longest
Weighted Path

In the initial method for computing the CIP, a custom Depth-
First Search (DFS) algorithm was implemented to traverse
the network and identify the longest simple path with the
highest cumulative CIP weight. The DFS algorithm explores



all possible simple paths starting from each node in the
subnetwork. The largest CIP is tracked through the iteration
and updated when a path with a higher CIP is found. After
the DFS algorithm is run with all the nodes, the most critical
installation path is highlighted using a continuous colour
gradient based on age.

This approach provides a global view of the subnetwork’s
longest CIP infrastructure chain, which may require attention.
However, since DFS explores all possible paths, it is compu-
tationally intensive in large or densely connected networks.
Additionally, it does not account for energy network logic,
which is relevant in real-world energy distribution scenarios.

Fig. 8. Critical Installation Path (CIP) Trace with First Approach (DFS), with
Transformers Highlighted in Black

Let J be the number of junctions and E the number of
edges. The time complexity of this DFS approach is:

• Overhead complexity due to computing the weights of
each edge adds a linear time complexity O(E).

• Standard DFS has O(J +E) time complexity. However,
in this approach, DFS explores all possible simple paths
from every node. A simple path is a path that does not
repeat any nodes.

• In an undirected graph with V nodes, the number of
simple paths can be up to O(2J).

• Since the algorithm runs a DFS simple path search on
every node, the total time complexity becomes: O(J2J).

This approach is not scalable for large and dense networks.
It serves as a conceptual baseline but requires a computation-
ally feasible and operationally relevant reformulation.

B. Second Approach: Dijkstra with Custom Weight Function

Identifying the longest path in a network is a well-known
NP-hard problem. In the context of energy distribution, where
networks can have thousands of nodes and edges, using an
exhaustive search method such as DFS becomes impractical.

To address this, we introduced constraints grounded in
energy network logic. During initial testing, we observed that
some paths identified as critical (high CIP) did not represent
vulnerable customer connections. For instance, if a transformer
lies in the middle of a path (Figure 8), a fault on one side
may not impact customers on the other side due to protective
devices that isolate the faulted section. This insight led to

a more realistic formulation: instead of searching globally,
we define an energy source point, typically a transformer
or network controller, and trace outward using Dijkstra’s
algorithm.

Although Dijkstra is designed to find shortest paths, not
longest ones, it becomes useful when we reinterpret the
problem: we are not seeking the longest path overall, but rather
the critical path from an energy source to a customer. We first
compute with Dijkstra the shortest path for each customer,
then look for the longest path among the shortest.

If a customer can be reached via multiple paths—one with
high CIP and another with low CIP—the presence of the low
CIP prevails over the high CIP because it ensures resilience.
Consequently, the lowest CIP is the most significant for each
node, which makes Dijkstra’s algorithm appropriate.

Fig. 9. Critical Installation Path (CIP) Trace Using Second Approach
(Dijkstra), with Transformers Highlighted in Black

This approach dramatically reduces computational complex-
ity by avoiding exhaustive path calculation and aligns with
energy network principles, balancing computational feasibility
and operational relevance.

The step-by-step breakdown describing the CIP analysis
using Dijkstra is:

1) Define the custom weight function: CIP = age× length.
2) Run the critical_path() function with Dijkstra’s

algorithm from a controller node. Compute the shortest
paths to all nodes, filter customer nodes, and identify
the customer with maximum CIP value.

3) Highlight the critical path with edges coloured using a
gradient based on age.

The time complexity of this algorithm is:
• Dijkstra’s algorithm: O(E + J log J) using a Fibonacci

heap priority queue.
• Computing the custom weight function: O(E).
• Filtering customer nodes and finding maximum CIP:

O(V ).
Total complexity: O(E + J log J), making it scalable for

large energy networks.

VIII. CONCLUSION AND FUTURE WORK

The NAVI Trace Toolkit marks a transformative step in en-
ergy network trace development, evolving from a rigid, script-
based workflow into a modular, interactive, and user-friendly



TABLE IV
DIJKSTRA-BASED CIP TRACE PSEUDOCODE WITH CUSTOM WEIGHT

FUNCTION

Input: graph: Network graph with metadata (installation date, length)
source node: Defined transformer or controller
filters: Set of customer node types (e.g., LV MSP, Unmetered SP)

Output: critical path: Shortest path to the customer with the highest CIP
Highlighted edges: Visual representation of the path

1 Define CIPWeight(edge):
2 installDate ← get installation date from edge
3 length ← get physical length from edge
4 age ← compute age from installDate using current date
5 return age × length
6 filters ← CustomersEntityTypes
7 sourceNode ← predefined transformer or controller
8 (Distance, Path) ← critical path(graph, sourceNode,

CIPWeight, filters)
9 For each consecutive edge (u, v) in Path:
10 age ← compute age from edge installation date
11 color ← map age to gradient colour
12 highlightEdge(u, v, color = color, size = medium)
13 Return Path

platform. By incorporating a user-friendly web interface, real-
time Python execution, and integrated tracing functions, the
toolkit enables engineers to conduct intricate trace analyses
with enhanced efficiency and accessibility.

The CIP use case demonstrates the toolkit’s real-world an-
alytical capabilities. The DFS-based approach, while concep-
tually valuable, was computationally intensive. The Dijkstra-
based method offers a scalable, practical solution that aligns
with energy network principles and enables targeted assess-
ments of infrastructure risk.

Future work includes:
• Onboarding modules to assist new users in understanding

trace concepts.
• Expanding trace function library and enhancing critical

path functionality with probabilistic failure models.
• Integration with external systems, such as SCADA and

the Common Information Model (CIM), to improve in-
teroperability.

These developments will enhance the NAVI Trace Toolkit
as a comprehensive and scalable energy network analysis
solution.

REFERENCES

[1] P. A. Longley, M. F. Goodchild, D. J. Maguire and D. W. Rhind, Ge-
ographical Information Systems: Principles, Techniques, Management
and Applications, West, Sussex: Wiley Publishing Company, 1999.

[2] A. A. Sallam and O. P. Malik, Electric Distribution Systems, 2nd ed.,
Hoboken, NJ: Wiley-IEEE Press, 2019.

[3] N. Bui, A. P. Castellani, P. Casari and M. Zorzi, “The Internet of Energy:
A Web-Enabled Smart Grid System,” IEEE Network, vol. 26, pp. 39–45,
July 2012.

[4] Z. Shelby, K. Hartke and C. Bormann, “The Constrained Application
Protocol (CoAP),” 2014. [Online]. Available: https://datatracker.ietf.org/
doc/html/rfc7252. [Accessed Aug 2025].

[5] P. Thubert, C. Bormann, L. Toutain and R. Cragie, “IPv6 over Low-
Power Wireless Personal Area Network (6LoWPAN) Routing Header,”
2017. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc8138.
[Accessed Aug 2025].

[6] D. Peintner and R. Kyusakov, “Efficient XML Interchange (EXI) Format
1.0 (Second Edition),” 2014. [Online]. Available: https://www.w3.org/
TR/exi/. [Accessed Aug 2025].

[7] S. Eren et al., “A ubiquitous Web-based dispatcher information system
for effective monitoring and analysis of the electricity transmission grid,”
Energy, vol. 116, pp. 1044–1056, Oct 2016.

[8] Esri, “ArcGIS Geospatial Platform Overview,” 2025. [Online]. Available:
https://www.esri.com/en-us/arcgis/geospatial-platform/overview.
[Accessed Jul 2025].

[9] G. E. Vernova, “Geospatial Network Management (Smallworld
GIS),” 2025. [Online]. Available: https://www.gevernova.com/software/
products/geospatial-network-management-smallworld-gis. [Accessed
Jul 2025].

[10] Esri, “Configure a trace,” 2025. [Online]. Available: https://pro.arcgis.
com/en/pro-app/3.3/help/data/utility-network/configure-a-trace.htm.
[Accessed Jul 2025].

[11] B. Kuridža, “Potentials and Limitations of Web GIS in the Utility
Industry,” MSc in Geoinformatics, Aalborg University, Copenhagen,
2019.

[12] “MapLibre GL JS Documentation,” 2025. [Online]. Available: https://
maplibre.org/maplibre-gl-js/docs/. [Accessed Aug 2025].

[13] E. D. Fournier, F. Federico, R. Cudd and S. Pincetl, “Building an
interactive web mapping tool to support distributed energy resource
planning using public participation GIS,” Applied Geography, vol. 152,
p. 102877, Jan 2023.

[14] D. Oliver and E. Hoel, “Exploring the ArcGIS Utility
Network Trace Framework,” 2023. [Online]. Available: https:
//www.esri.com/arcgis-blog/products/utility-network/data-management/
exploring-the-arcgis-utility-network-trace-framework. [Accessed Jul
2025].

[15] D. Oliver and E. G. Hoel, “A Trace Framework for Analyzing Utility
Networks: A Summary of Results,” Redlands.

[16] A. Hagberg, D. Schult and P. Swart, “NetworkX,” 2025. [Online].
Available: https://networkx.org/. [Accessed Jul 2025].

[17] T. Peixoto, “Graph-tool,” 2025. [Online]. Available: https://graph-tool.
skewed.de/. [Accessed Jul 2025].

[18] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps And Their Uses In
Improved Network Optimization Algorithms,” in 25th Annual Sympo-
sium on Foundations of Computer Science, Singer Island, 1984.

[19] Figma, “Figma,” 2025. [Online]. Available: https://www.figma.com/.
[Accessed Aug 2025].

[20] Python-Markdown, “Python-Markdown — Python-Markdown 3.8.2
documentation,” 2025. [Online]. Available: https://python-markdown.
github.io/. [Accessed Aug 2025].

[21] K. Reitz, “requests · PyPI,” 2025. [Online]. Available: https://pypi.org/
project/requests/. [Accessed Aug 2025].

[22] UltraJSON, “Ultra fast JSON decoder and encoder written in C
with Python bindings,” 2025. [Online]. Available: https://github.com/
ultrajson/ultrajson. [Accessed Aug 2025].

[23] Pallets, “Welcome to Flask — Flask Documentation (3.1.x),” 2025. [On-
line]. Available: https://flask.palletsprojects.com/en/stable/. [Accessed
Aug 2025].

[24] International Organization for Standardization, “ISO 9241-11:2018,”
2018. [Online]. Available: https://www.iso.org/standard/63500.html.
[Accessed Aug 2025].

[25] L. K. Mortensen, H. R. Shaker and C. T. Veje, “Relative fault vulnera-
bility prediction for energy distribution networks,” Applied Energy, vol.
322, p. 119449, Jun 2022.


