

### **GENERAL INFORMATION**

| Data of the subject |                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subject name        | Integrated Devices for Communications                                                                                                                                                                                                                                                                                                                                            |  |  |
| Subject code        | DEAC-MIT-527                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mainprogram         | Official Master's Degree in Telecommunications Engineering                                                                                                                                                                                                                                                                                                                       |  |  |
| Involved programs   | Máster Universitario en Ingeniería de Telecomunicación y Mást. Univ. en Administración de Empresolved programs  Máster Universitario en Ingeniería de Telecomunicación [First year]  Máster Universitario en Ingeniería de Telecomunicación y Máster en Ciberseguridad [First year]  Máster Universitario en Ingeniería de Telecomunicación + Máster in Smart Grids [First year] |  |  |
| Level               | Postgrado Oficial Master                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Quarter             | Semestral                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Credits             | 3,0 ECTS                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Туре                | Obligatoria                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Department          | Department of Electronics, Control and Communications                                                                                                                                                                                                                                                                                                                            |  |  |
| Coordinator         | Ignacio Herrera Alzu                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Office hours        | Upon request                                                                                                                                                                                                                                                                                                                                                                     |  |  |

| Teacher Information                                   |                            |  |
|-------------------------------------------------------|----------------------------|--|
| Teacher                                               |                            |  |
| Name                                                  | Ignacio Herrera Alzu       |  |
| Department of Electronics, Control and Communications |                            |  |
| EMail                                                 | iherrera@icai.comillas.edu |  |

### **DESCRIPTION OF THE SUBJECT**

# **Contextualization of the subject**

### **Prerequisites**

Basic knowledge about Digital Electronics, Analog Electronics and Radiofrequency.

### **Course contents**

#### **Contents**

# **Theoretical**

### Topic 1: Introduction to Integrated Circuit Design

- Integrated Circuit historical evolution, concepts and terminology.
- Introduction to the different integrated circuit technologies, with emphasis on CMOS.
- Integrated Circuit complexity and physical limits of the technology.



- Integrated Circuit markets and applications: consumer, industrial, automotive, aerospace, medical, etc.
- · Microelectronics and VLSI technology trends.

#### Topic 2: Integrated Circuit Manufacturing, Packaging and Test

- Integrated Circuit manufacturing process.
- Photolithography and wafer processing.
- Die packaging process, dicing, bonding, SiP.
- Testing process, wafer level, package level.
- Chip manufacturing trends.

#### Topic 3: Design Flow for Digital Integrated Circuits

- Design abstraction levels, views and Hardware Description Languages (HDL).
- Requirements specification, design levels, logic simulation.
- Synthesis and Static Timing Analysis (STA).
- Physical/layout semi-custom design.
- Place and Route, power grid, clock tree.
- Design Rule Checking (DRC) and Layout Vs Schematic (LVS).
- Parasitic extraction and post-layout simulation.
- Power simulations.

#### Topic 4: Design Flow for Analog Integrated Circuits

- Requirements specification, schematic capture, electrical simulation.
- Physical/layout full-custom design.
- Design Rule Checking (DRC) and Layout Vs Schematic (LVS).
- Parasitic extraction and post-layout simulation.
- Power simulations.

#### Topic 5: Telecommunication Subsystems and Antennas

- Integrated devices for telecommunication subsystems.
- RF circuit and antenna design and integration.
- RF link design.

#### **Practical**

- Design of integrated devices and circuits from a requirements specification.
- Review of theoretical concepts about CMOS transistor-level, analog and digital design.
- Use of ECAD Open Source tools for Integrated Circuit design.
- · Schematic capture, layout edition, logic and electric simulation, design rule checking (DRC, ERC, LVS).
- Laboratory sessions and Final Project work.
- Timely submission of practical work assignments and Final Project.
- Oral presentation to class mates.

#### **EVALUATION AND CRITERIA**

without explicit permission in the assignment instructions, will be considered plagiarism and therefore subject to the University's General Regulations.

| Evaluation activities                                  | Evaluation criteria                                                                                                                                                                                                              | Weight |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <ul><li>Mid-Semester Exam</li><li>Final Exam</li></ul> | Evaluation of problem solving approach, methodology and numerical resolution. Even if numerical results may be incorrect, the methodology has to be consistent and the reasoning has to be logical.                              | 60     |
| <ul><li>Lab Sessions</li><li>Final Project</li></ul>   | Previous work awareness, work result completeness, quality of the results, ability to interpret and describe clearly the practical results, ability to link to theoretical concepts, teamwork, presentation skills, originality. | 40     |

## **Grading**

Acquisition of theoretical knowledge (60%):

- Mid-semester Exam (20%).
- Final Exam (40%).

Acquisition of practical knowledge (40%):

- Lab Sessions (25%).
- Final Project (15%).

### **Ordinary**

Ordinary Grading (Nord) is computed as follows:

• Nord = Nexa\_inter \* 0,2 + Nexa\_final\_ord \* 0,4 + Nprac \* 0,25 + Nproy \* 0,15

#### Where:

- Nexa\_inter: mid-semester exam score.
- Nex\_final\_ord: ordinary final exam score.
- Nprac: lab session average score.
- Nproy: final project score.

### **Extraordinary**

Extraordinary Grading (Nextraord) is computed as follows:

• Nextraord = Nexa\_inter \* 0,1 + Nexa\_final\_extraord \* 0,5 + Nprac \* 0,25 + Nproy \* 0,15

Where:



- Nexa\_inter: mid-semester exam score.
- Nex\_final\_extraord: extraordinary final exam score.
- Nprac: lab session average score.
- Nproy: final project score.

### **Class attendance**

Class attendance is mandatory, according to article 93 of the ICAI Academic Normative. The class attendance requirements will be applied separately to the theoretical and practical sessions:

- For the theoretical sessions, failure to fulfill this mandatory norm could prevent the student from taking the ordinary final exam.
- For the practical sessions, failure to fulfill this mandatory norm could prevent the student from taking the ordinary and extraordinary final exam. In any case, the non-justified absences will be penalized in the score.

### **WORK PLAN AND SCHEDULE**

| Activities                         |                                   | Date of realization                | Delivery date                |  |
|------------------------------------|-----------------------------------|------------------------------------|------------------------------|--|
| Schedule                           |                                   |                                    |                              |  |
| Week Class Part 1 Class Part 2     |                                   | Class Part 2                       |                              |  |
| 1                                  | Course Info / Introduction to IDT | Introduction to IDT                |                              |  |
| 2                                  | CMOS Technology                   | CMOS Technology                    |                              |  |
| 3                                  | CMOS Manufacturing                | CMOS Design Basics                 |                              |  |
| 4                                  | Lab1 - Transistor                 | Lab 1 - Transistor                 |                              |  |
| 5                                  | CMOS Digital Design I             | Lab 2 - Inverter                   |                              |  |
| 6                                  | CMOS Digital Design II            | Lab 3 - Oscillator                 |                              |  |
| 7                                  | Problem Resolution                | Lab 4 - Full Adder                 |                              |  |
| 8                                  | Mid-semester Exam                 | Mid-semester Exam                  |                              |  |
| 9                                  | CMOS Analog Design I              | Lab 5 - Current Mirror             |                              |  |
| 10                                 | CMOS Analog Design II             | Lab 5 - Common Source<br>Amplifier |                              |  |
| 11                                 | Chip Design                       | Problem Resolution                 |                              |  |
| 12                                 | RF Devices Basics                 | RF Devices Basics                  |                              |  |
| 13                                 | Antenna and RF Links              | Problem Resolution                 |                              |  |
| 14                                 | Ordinary Final Exam               | Ordinary Final Exam                |                              |  |
| Study of the theoretical contents  |                                   | After each class                   |                              |  |
| Problem resolution                 |                                   | Weekly                             |                              |  |
| Lab work and assignment submission |                                   | Weekly                             | Before following lab session |  |
| Preparation for Mid-semester Exam  |                                   | February                           |                              |  |



| Preparation for Ordinary Final Exam          | April     |                            |
|----------------------------------------------|-----------|----------------------------|
| Final Project work and assignment submission | April-May | Before Ordinary Final Exam |

#### **BIBLIOGRAPHY AND RESOURCES**

#### **Basic References**

#### Basic:

- N. Weste, D. Harris: "CMOS VLSI Design: A Circuits and Systems Perspective". Addison Wesley/Pearson, 4th Ed., 2011.
- J.M. Rabaey: "Digital Integrated Circuits A Design Perspective". Prentice Hall, 2nd Ed., 1996.
- R.J. Baker: "CMOS Circuit Design, Layout and Simulation". Wiley, 3rd Ed., 2010.

#### Complementary:

- B. Razavi: "Design of Analog CMOS Integrated Circuits". McGraw-Hill Edition, International Ed., 2001.
- T.C. Carusone, D.A. Johns, K.W. Martin: "Analog Integrated Circuit Design". Wiley, 2nd Ed., 2012.
- B. Razavi: "RF Microelectronics". Prentice Hall, 2nd Ed., 2012.
- D.M. Pozar: "Microwave Engineering". Wiley, 4th Ed., 2012.
- A. Sedra, K. Smith: "Microelectronics circuits". Oxford University Press, 2011.
- P.R. Gray, R.G. Meyer: "Analysis and Design of Analog Integrated Circuits". John Wiley & Sons, 3rd Ed., 1993.

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data that you have accepted on your registration form by entering this website and clicking on "download"

 $\underline{https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792}$