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Abstract 

Introduction 

Low-voltage (LV) distribution networks are changing rapidly with the increasing penetration 

of distributed energy resources (DERs), including rooftop PV, distribution-level storage, and 

EVs, turning formerly passive feeders into complex active, bi-directional systems [1]. Utilities 

already maintain rich network models in geographic information systems (GIS), yet raw 

geospatial representations do not conveniently convey connectivity and topology at a glance. 

For this purpose, single-line diagrams (SLDs) remain the most intelligible tool, but manual 

drafting does not scale well to utility-sized datasets. This thesis addresses that gap by 

automating the generation of standard, orthogonal SLDs directly from heterogeneous GIS 

models. 

Prior work on automatic diagram generation either focuses on idealized radial trees, general 

graph drawings that ignore SLD conventions, or proprietary pipelines. There is currently no 

end-to-end available solution that, taking networks of variable complexity as an input, can 

automatically generate a single-line diagram of the underlying network. The objective of the 

thesis is, therefore, to establish an end-to-end automated pipeline that: (i) represents 

connectivity and key network information (keeping elements like switches, fuses, 

transformers), (ii) minimizes clutter by creating groups of consumers and simplifying network 

sections, and (iii) runs fast enough for interactive or near-interactive use.  

Project definition and methodology 

The thesis frames SLD generation as a graph transformation and visualization problem. It builds 

a graph equivalent of the underlying network, applies a simplification algorithm and computes 

a layered orthogonal graph layout through an adaptation of the Sugiyama framework [2], a 

widely adopted approach to generate layered graph layouts through the following phases: cycle 

removal, layer assignment, crossing minimization, and coordinate assignment. The crossing 

minimization phase is NP-hard, so a heuristic approach is necessary. 
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The methodology consists in a 4-phase modular pipeline which converts raw GIS data to 

orthogonal single line diagrams that represent the underlying topology of the network. The four 

phases are the following: 

1. Graph classification & simplification. Applies a set of classification rules to the nodes 

in the graph guided by input adjustable parameters that allow to determine how the 

graph is simplified. The simplification algorithm then creates groups of consumers and 

adjacent nodes that do not convey topological information, while ensuring that key 

elements are retained in the final schematic (e.g. transformers, switches or fuses). 

2. Normalization. Enforces a standard node structure in the underlying graph that is 

compatible with the later layout and plotting algorithms. 

3. Layered layout. Algorithm built on the Sugiyama approach to generate a layered 

layout; employs a fixed layer assignment and iterative crossing minimization 

(barycenter/median) with randomized restarts to escape local minima. After the crossing 

minimization, nodes in the graph are assigned discrete grid positions to meet the 

orthogonality requirements. 

4. Plotting & export. Assigns standard single-line symbols based on the positions 

calculated in the layout and exports in SVG format. 

This modular pipeline design allows individual stages to be modified or replaced while 

preserving a working end to end solution. This ensures that the solution can be fitted to data 
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with different characteristics and to produce schematics with different styles or format. A 

diagram describing the process can be observed in Figure A. 

Results 

The pipeline has been tested on eight different networks of Scottish Power Energy Networks 

distribution grid data, with significantly different characteristics, both in size, measured by the 

number of nodes, and meshedness, measured by the number of nodes with two predecessors in 

the equivalent graph. The input set of parameters was kept constant across all tests to ensure 

comparability among results, and several metrics were measured to benchmark the algorithms 

performance. These metrics include algorithm runtime (in seconds), k the number of crossings 

in the final layout, N_iter, the number of iterations of the naïve layout algorithm it takes to find 

the solution with least crossings, and NL, the number of nodes in the final layout. The results of 

the case study can be observed in Figure B. 

 Input Results 

 NNODES M k N_iter NL 
Runtime 

(s) 

Case Study 1 69 0 0 1 13 0.1 

Case Study 2 145 1 0 1 15 0.13 

Case Study 3 239 2 0 1 36 0.58 

Case Study 4 611 2 0 1 67 1.57 

Case Study 5 1126 5 0 4 64 5.07 

Case Study 6 1233 4 2 20 90 6.43 

Case Study 7 2282 11 8 77 127 21.18 

Case Study 8 1810 7 0 27 643 17.87 

Figure  B: Summary of case studies results. 

The resulting schematics were considered valid only if the underlying graph layout had no 

crossings, as the existence of these crossings causes elements to overlap; generating invalid 

connectivity information and therefore making the schematics unsuitable for operational use.  

The results show that the algorithm generated valid schematics for 6 of the 8 networks tested, 

and for the two that it did not, the fixed layer assignment, which caused non-level-planar 

structures in the underlying graph, that the crossing minimization algorithm was not able to 

resolve. Runtime was only ~0.1 to 1.6 seconds for the simpler networks, but it increased 

significantly for the more complex ones. Figure C shows the resulting single line diagram from 

one of the case studies. 
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Figure  C: Example output single line diagram 

Additionally, the results include an analysis of how tuning input parameters affects the 

characteristics of the final schematic and whether those effects match expectations. The layout 

algorithm’s ability to minimize edge crossings in complex networks was also benchmarked by 

progressively increasing the number of maximum naive iterations and measuring the resulting 

runtime growth. The findings show that the parameters offer useful, though not perfectly 

precise, control over the output, and that additional naïve iterations of the layout algorithm were 

effective in helping the algorithm help escape local optima and reach lower crossing solutions, 

at the cost of higher computational effort. 

Conclusions 

This project delivers a reproductible pipeline to translate LV distribution grid data into standard, 

readable single line diagrams while preserving the network’s topology and its key elements. By 

separating graph simplification, layout and schematic plotting, the approach is modular and 

tunable via input parameters to match desired diagram detail. Applied to eight diverse real 

networks, it produced six valid diagrams, and the two failures aligned with level-planarity 

violations caused by the fixed layer assignment. Future potential improvements to the pipeline 

include solving the level-planarity problem through either a joint MILP formulation to co-

optimize layers and horizontal layout, or another heuristic approach to layer assignment; and 

optimizing parts of the process so that runtime does not scale as significantly with network 

complexity. 
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Resumen del Proyecto 

Introducción 

Las redes de distribución de baja tensión (LV) están cambiando rápidamente con la creciente 

penetración de recursos energéticos distribuidos (DERs), incluyendo generación distribuida, 

almacenamiento a nivel de distribución y vehículos eléctricos, convirtiendo redes anteriormente 

pasivas en sistemas activos y bidireccionales [1]. Los operadores de la red ya mantienen 

modelos de red detallados en sistemas de información geográfica (GIS), pero las 

representaciones geoespaciales en bruto no transmiten de manera eficaz la conectividad y la 

topología rápidamente. Con este fin, los diagramas unifilares siguen siendo la herramienta más 

inteligible, pero la elaboración manual no escala bien a conjuntos de datos del tamaño de una 

red de distribución. Este proyecto aborda esa brecha, automatizando la generación de diagramas 

ortogonales y estándar directamente a partir de modelos de GIS con diferentes características. 

Actualmente no existe una solución completa disponible que, partiendo de datos sobre redes de 

variable complejidad, pueda generar automáticamente diagramas unifilares de la red 

subyacente. El objetivo de la tesis es, por tanto, establecer un proceso automático completo de 

extremo a extremo que: (i) represente la conectividad y la información clave de la red 

(manteniendo elementos como interruptores, fusibles y transformadores), (ii) simplifique la 

información creando grupos de consumidores, y (iii) funcione con suficiente rapidez para 

implementarse a nivel interactivo o casi interactivo. 

Definición del proyecto y metodología 

Este proyecto aborda la generación de diagramas como un problema de transformación y 

visualización de grafos. En primer lugar, se construye un grafo equivalente de la red subyacente, 

sobre el que se aplica un algoritmo de simplificación y se calcula un dibujo del grafo ortogonal 

por capas mediante una adaptación del método de Sugiyama [2], un enfoque ampliamente 

utilizado para generar trazados de grafos por niveles a través de las siguientes fases: eliminación 

de ciclos, asignación de capas, minimización de cruces y asignación de coordenadas. Dado que 

la minimización de cruces es NP-completa, se recurre a un enfoque heurístico. 
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La metodología consiste en un proceso modular de cuatro fases que transforma datos GIS en 

bruto en diagramas unifilares ortogonales que representan la topología subyacente de la red. 

Las cuatro fases son: 

1. Clasificación y simplificación del grafo. Se aplica un conjunto de reglas de 

clasificación a los nodos del grafo, guiado por parámetros de entrada configurables que 

determinan cómo se simplifica. El algoritmo agrupa consumidores y nodos adyacentes 

que no aportan información topológica, garantizando que los elementos clave (por 

ejemplo, transformadores, interruptores o fusibles) se conserven en el esquema final. 

2. Normalización. Impone en el grafo una estructura de nodos estándar compatible con 

los algoritmos posteriores de diseño y trazado. 

3. Dibujo por capas. Algoritmo basado en el método de Sugiyama para generar un diseño 

por capas; emplea una asignación fija de capas y una minimización iterativa de cruces 

con reinicios aleatorios para escapar de óptimos locales. Tras la minimización, se 

asignan a los nodos posiciones discretas, equivalente a una disposición en rejilla para 

cumplir el requisito de ortogonalidad. 

4. Trazado y exportación. Asigna símbolos unifilares estándar en función de las 

posiciones calculadas y exporta el resultado en formato SVG. 

#1: Graph classification 
and simplification

Create simplified 
graph

Classification

Conversion to 
directed

#2: Graph normalization

Conversion to 
directed*

Process connection 
nodes

Process LV links

#4: Plotting the 
schematic

Generate output data 
structure

Schematic plotting

#3: Graph Layout
Layer Assignment

Create simplified bus 
graph

Iterative crossing 
minimization

Grid layout 
assignment

Max consumers 
per bus

Max consumers 
per group

Network graph G

Max iterations

Inputs

Directed G

Classified G

Si
m

pl
ifi

ed
 G

’

Directed G’

Processed conns. G’

Normalized G’

Layered G’

Layered G’

Bus graph Z

Relative order of buses 
inside each layer

La
ye

re
d 

G
’

N
od

e 
La

yo
ut

CSV Data Structure

SVG Schematic
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Este enfoque modular permite modificar o sustituir partes individuales manteniendo una 

solución funcional de extremo a extremo, lo que facilita la adaptación a datos con distintas 

características y la producción de esquemas con diferentes estilos o formatos. La Figura A 

ilustra el proceso. 

Resultados 

El algoritmo se ha evaluado en ocho secciones diferentes de la red de distribución de 

ScottishPower Energy Networks, con características significativamente distintas, tanto en 

tamaño, medido por el número de nodos, como en el grado de mallado, M, medido por el 

número de nodos con dos predecesores en el grafo equivalente. El conjunto de parámetros de 

entrada se mantuvo constante en todas las pruebas para garantizar la comparabilidad entre 

resultados, y se midieron varias métricas para evaluar el rendimiento del algoritmo. Estas 

métricas incluyen el tiempo de ejecución del algoritmo (en segundos); k, el número de cruces 

en el diseño final; N_iter, el número de iteraciones aleatorias del algoritmo de reducción de 

cruces que se requieren para encontrar la solución con menos cruces; y NL, el número de nodos 

en el diseño final. Los resultados del estudio pueden observarse en la Figura B. 

 Input Results 

 NNODES M k N_iter NL 
Runtime 

(s) 

Case Study 1 69 0 0 1 13 0.1 

Case Study 2 145 1 0 1 15 0.13 

Case Study 3 239 2 0 1 36 0.58 

Case Study 4 611 2 0 1 67 1.57 

Case Study 5 1126 5 0 4 64 5.07 

Case Study 6 1233 4 2 20 90 6.43 

Case Study 7 2282 11 8 77 127 21.18 

Case Study 8 1810 7 0 27 643 17.87 

Figura B: Resultados de los casos de estudio 

Los esquemas resultantes se consideraron válidos solo si el grafo subyacente no presentaba 

cruces, ya que esto provoca solapamientos de elementos en el diagrama, generando información 

de conectividad inválida y, por tanto, causando que los diagramas no sean aptos para uso 

operativo. Los resultados muestran que el algoritmo generó esquemas válidos para 6 de las 8 

redes probadas, y que en las dos en las que no lo hizo, la asignación fija de capas causó 

estructuras no planares por niveles en el grafo subyacente que el algoritmo de minimización de 

cruces no fue capaz de resolver. El tiempo de ejecución fue de ~0,1 a 1,6 segundos para las 
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redes más simples, pero aumentó significativamente para las más complejas. La Figura C 

muestra el diagrama unifilar resultante para una de las redes estudiadas. 

 

Figura C: Ejemplo de diagrama resultante del proceso 

Adicionalmente, los resultados incluyen un análisis de cómo el ajuste de los parámetros de 

entrada afecta a las características del esquema final, y si esos efectos se alinean con las 

expectativas. La capacidad del algoritmo de asignar posiciones para minimizar cruces en redes 

complejas también se evaluó, aumentando progresivamente el número máximo de iteraciones 

aleatorias y midiendo el aumento resultante del tiempo de ejecución, y el número de cruces en 

la mejor solución encontrada. Los resultados muestran que los parámetros ofrecen un control 

útil, aunque no perfectamente preciso, sobre el resultado, y que iteraciones aleatorias 

adicionales del algoritmo de minimización de cruces son eficaces para ayudar al algoritmo a 

escapar de óptimos locales y alcanzar soluciones con menos cruces, a costa de un mayor 

esfuerzo computacional. 

Conclusiones 

El proyecto propone un proceso reproducible para traducir datos de redes de distribución a 

diagramas unifilares estándar y fácilmente legibles, preservando la topología de la red y sus 

elementos clave. El enfoque es modular y el resultado configurable mediante parámetros de 

entrada para ajustarse al nivel de detalle deseado del diagrama. Aplicado a ocho redes reales 

diversas, produjo seis diagramas válidos; los dos fallos son causados por la asignación fija de 

capas en el grafo subyacente. Posibles mejoras futuras del proceso incluyen sustituir la 

asignación fija de capas por una formulación MILP conjunta para co-optimizar la asignación 

de capas y la reducción de cruces, u otro enfoque heurístico para la asignación de capas; así 

como optimizaciones de partes del proceso para que el tiempo de ejecución no escale de forma 

exponencial con la complejidad de la red. 
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1 Introduction 

1.1 Research Context and Motivation  

LV distribution networks are experiencing a significant shift due to the growing penetration of 

distributed energy resources (DERs), including rooftop PV, distribution level storage and 

electric vehicles, which are turning traditionally passive LV feeders into active bidirectional 

networks. The resulting behaviors (voltage instability, protection coordination challenges, 

switching network topology) call for necessary increased observability and the development of 

tools that help network operators and planning engineers to quickly understand network 

connectivity, topology, and system status information at a glance.  

Distribution system operators (DSOs) typically maintain comprehensive network databases 

based on geographical information systems (GIS) which contain information about network 

assets and their location. However, due to their scale and vast amount of data, representations 

of this raw data do not intuitively provide easily graspable connectivity and topology 

information. 

Single line diagrams are better suited for representing network connectivity and its underlying 

topology in an easier to process way for operators. However, the traditional approach of 

manually drafting the single line diagrams is slow and therefore impractical for visualizing 

distribution networks, which may contain millions of elements. This creates both a need and 

opportunity, to develop automatic methods to generate single line diagrams leveraging the large 

GIS databases maintained by DSOs.  

1.2 Problem Statement and Objectives 

There is currently no open, reproducible end-to-end workflow that converts heterogeneous GIS-

based LV network models into standard, orthogonal, single-line diagrams at scale. Existing 

approaches are either partial or proprietary; academic work often targets either radial trees or 

generating general graph drawings not focusing on single line diagram conventions. Crossing 

minimisation on layered, meshed graphs is challenging; under fixed layer rankings, non-level-

planar substructures make zero-crossing layouts impossible without re-ranking. 

Therefore, the goal of the thesis is to implement a pipeline that generates standardized 

orthogonal single line diagrams from GIS data, ensuring that the algorithm: 
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• Preserves topology and elements connectivity information (switches, fuses, 

transformers, etc.). 

• Minimizes visual clutter, grouping consumers and displaying only essential topological 

information. 

• Runs fast enough for interactive or near interactive use on average personal computing 

hardware. 

The thesis is implemented on distribution network GIS data from Scottish Power Energy 

Networks (SPEN). 

1.3 Thesis Structure 

The thesis is divided into the following chapters: 

• Chapter 2, Background and literature review. Surveys DER-caused LV challenges, 

power-system visualization (geographical, topological and hybrid), graph-based 

modelling, GIS in electric utilities, and automatic diagram generation.  

• Chapter 3, Foundations of graph theory. Introduces several graph theory concepts 

and layout algorithms that are used in the methodology. 

• Chapter 4, Methodology and implementation. Formalizes the problem, details the 

pipeline and implementation choices from data input to plotting/export.  

• Chapter 5, Case studies. Applies the pipeline to eight networks of increasing size and 

meshing, documents inputs and outputs.  

• Chapter 6, Results and discussion. Summarizes the case studies results and analyzes 

the performance of the layout algorithm on complex networks.  

• Chapter 7, Conclusions and future work. Reflects on contributions and outlines next 

steps. 
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2 Background and Literature Review 

2.1 DER Integration and Challenges in LV Networks 

The drive to decarbonize energy systems, and transition to a renewable-based generation has 

spiked the development of renewable energy technologies over the past 20 years. Along with 

the construction of large, centralized solar and wind power plants, the growth of small-scale 

renewable generation at the distribution level, like rooftop PV and wind, has also contributed 

significantly to the decarbonization of the energy mix in developed economies. According to 

Gordon et al [1], by 2022 the installed distributed generation capacity was 35% of the total 

installed capacity in Great Britain. 

 

In addition to distributed generation, the adoption of residential battery storage systems and 

battery electric vehicles has also grown significantly over the past 20 years. In the United 

Kingdom, battery electric vehicles comprised 19% of all new car registrations in 2024 [3]. This 

trend causes distribution grid-level demand to rise significantly, and smart charging and vehicle 

to grid technologies can potentially cause significant shifts in the demand curve. 

2.1.1 Technical challenges on LV networks 

This evolution has fundamentally transformed distribution grids, which were initially designed 

for one-way power flow, from substations to consumers. Traditionally passive radial feeders 

now experience bidirectional power flows, dynamic voltage fluctuations and more complex 

protection requirements due to DER power injections. In essence, the distribution system has 

become an active network, which introduces new operational paradigms and challenges. 

One of the major impacts of high DER penetration is the effect it has on voltage stability and 

power quality. For example, rising voltage in LV feeders during periods of high solar irradiance 

 Figure 2-1: Distributed generation share of total installed generation in the UK, 2022 [1]. 
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has become a major source of concern. When several small-scale PV systems export power into 

the same sections of LV feeders, the resulting overvoltage can damage customer equipment and 

cause phase imbalances [4]. 

Another significant challenge lies in protection coordination and safety. Traditional protection 

systems rely on the fact that power flows run exclusively in one direction, from the substation 

to the consumers, and consider fault current magnitudes based on this. High DER penetration 

however alters these assumptions, reverse currents can feed faults from the far end, blinding 

upstream protection, and making it impossible to isolate the fault, if proper distributed 

generation protection systems are not put in place. The magnitude of fault currents provided by 

distributed generations are comparatively low, so traditional overcurrent protection systems 

might fail to respond, requiring the review of fuse and relay settings, or introducing 

bidirectional relays and advanced protection systems, like adaptive or transfer trip relays. 

Another significant risk is unintended islanding, which may occur when a portion of the grid is 

electrically isolated, and the DERs in that area keep feeding local loads, creating an island. 

Preventing and detecting those islands is a critical task in modern day systems, and a major area 

of research and development of new standards (IEEE 1547) [5], [6]. 

2.1.2 Need for observability and monitoring 

One of the biggest problems related to high DER integration is the lack of observability over 

LV and MV distribution networks. Historically, there was no need to monitor LV feeders in real 

time, a handful of sensors in MV substations that monitored loads were sufficient as networks 

were passive. With the introduction of DERs, the limited visibility is a major problem, 

monitoring the real-time output of intermittent distributed generation, and the active power 

flows at the distribution level is essential to avoid system failures due to over-voltage, phase 

imbalance or thermal overload. However, it is not operationally practical nor economically 

feasible to fit thousands of LV lines with sensors, so DSOs must rely on innovative solutions, 

like system state estimation (to infer unmeasured voltages and currents) from data provided by 

advanced metering infrastructures (AMI) and weather forecasts, for example. 

A recent event in the UK that highlighted the significant weaknesses of the system caused by 

DER integration and poor observability was the August 9th, 2019, low frequency event. A single 

lightning strike led to a cascading failure that caused the largest power disruption in the UK in 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

BACKGROUND AND LITERATURE REVIEW 

 

5 

over a decade, affecting more than 1.15 million customers. This incident involved the 

disconnection of two major generators, Hornsea offshore wind farm and Little Barford gas 

plant, which totalled a loss in generation of 1,378 MW, but more critically, also led to the 

disconnection of around 1,500 MW of distributed generation (caused by the disconnection of 

rate of change of frequency (RoCoF) protection). When the low frequency demand response 

subsequently tried to shed 892 MW of demand to stabilize frequency, only 350MW of net 

reduction was observed, as 550MW of distributed generation (which was unmonitored) also 

was disconnected. Subsequent analysis showed that retaining only 150 MW of that distributed 

generation could have kept frequency within critical thresholds and therefore avoided the 

further shedding of demand [1].  

This event, along with several other incidents, highlights the importance of efficient and 

scalable visualization methods for LV and MV grids. System operators and planning engineers 

require readily intelligible data to make informed critical decisions, both for real-time 

operations, which require decisions within seconds and for infrastructure planning and handling 

connection requests, for which a clear topological view of the grid is crucial to make well-

informed decisions. With the increased operational challenges in LV grids already discussed, 

enhancing these visualization and observability capabilities is necessary for effective, modern 

smart-grid management. 
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2.2 Visualization of Power System Data 

2.2.1 Evolution of visualization systems in power grids 

Power grid visualization has undergone a significant transformation, from simple analog 

displays used in the early 20th century, to sophisticated systems that handle massive streams of 

data in real time. The focus of this research section is to reveal how technological evolution has 

fundamentally changed how utilities monitor, control and optimize their increasingly complex 

electrical infrastructure. 

The first systems related to visualization started being used in the 1920s, with rudimentary 

SCADA systems where operators relied on dials, indicator lights and hand switches to monitor 

and control high-voltage substations. These early analog devices provided visual feedback on 

system status, and were often overlaid on boards featuring physical diagram drawings of the 

grid layout. Orders to field personnel were transmitted via engine telegraphs, reflecting the 

earliest stages of grid control and coordination [7]. 

The 1960s marked one of the most important transition periods when digital computers began 

replacing legacy analog systems. Early digital SCADA systems emerged that were built on 

costly hardware and proprietary networks, with limited scalability. However, some years later, 

the introduction of remote terminal units (RTUs) around the 1970s significantly improved the 

scalability and functionality of these systems. The 1980s decade also marked the introduction 

of the term intelligent electronic devices (IEDs), which laid the foundation for more automated 

grid operation. It was also over these decades that cathode ray tube (CRT) displays started to 

be used along computerized systems, which revolutionized the display of information [7]. 

The 1990s represented another breakthrough period, with the introduction of internet protocols, 

and graphical user interfaces (GUI). TCP/IP protocols allowed previously isolated SCADA 

networks to transition into interconnected interoperable platforms, allowing seamless control 

between different substations and control centers. The widespread GUI adoption also 

revolutionized how information was presented, enabling a more responsive and operator 

friendly environment. 
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2.2.2 Geographical vs topological references 

Contemporary grid observability architectures, including SCADA, GIS, ADMS and related 

applications, rely on two complementary spatial frameworks: geographical, which maps data 

and grid elements onto their precise locations, and topological, which models the networks 

connectivity independent of geography. Each of these approaches is more suitable for different 

applications, as each has its own advantages and disadvantages depending on the system’s 

characteristics and the data displayed. Additionally, there exist hybrid approaches that try to 

capture advantages of both [8]. 

Geographical reference: based on geographical information systems (GIS), system elements 

and their associated data are displayed anchored to their physical location. This approach is 

useful when the location of the information shown is relevant, and it can help pinpoint the 

geographical coordinates of a source of information, which is especially useful for example 

when determining fault locations in transmission lines, or supporting street level maintenance 

planning, easing the process of dispatching field crews. However, it might struggle to represent 

information in an organized and structured manner, failing to convey information effectively 

when a significant zoom is necessary in areas like dense urban networks, where information 

might be too cluttered otherwise, while the opposite occurs in rural areas, where information 

might be excessively sparse [8]. 

Topological reference: focuses on displaying electrical connectivity rather than physical 

geographical distance. This helps to identify the relationships between different elements of the 

network, like separating different voltage levels, and how system dynamics in an area of the 

grid might spread to neighboring grid elements, or how a local power outage could spread to 

adjacent areas and what switches could be potentially operated to isolate it. Single-line diagrams 

remain the industry standard for this purpose, thanks to their ability to express bus-branch 

relationships in a compact format, scaling from substations to interconnections [8].   
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Figure 2-2: Substation’s topological single-line diagram from GE's ADMS [9] 

Hybrid reference: for increasingly large and complex networks, purely topological references 

do not scale well, as losing the geographical reference altogether might be unpractical when 

visually processing large areas of the system. For this reason, a combination of geographical 

and topological references is likely the most useful approach when representing system 

information of large-scale grids. This is the approach used to represent grid elements in most 

SCADA systems, which contain diagrams that retain some information about relative 

geographical positions, and distance proportionality is sometimes preserved. However, some 

judgement is required about whether to prioritize physical distance or electrical distance, and 

up to what extent, which makes the automation of generation of these visualizations 

complicated and non-trivial [8].  

2.2.3 Overview of current approaches to display grid data 

Sources of information to be represented in power system visualizations can come from a 

variety of sources including sensor data (voltage, current, temperature, etc.), simulations, like 

power flow calculations, or external data providers like weather forecasts, between other 

sources. These sources of data constitute the information backbone from which operators and 

planners obtain situational awareness of the grid. 

Integrating and displaying all the collected data is however a challenging process, valuable 

representations must ensure that the data is intelligible and easy to process. Currently, a wide 

range of approaches to display power system information exist, from traditional single line 
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diagrams with overlaid data like power flow results to significantly more complex 

visualizations [8]. 

Line flow visualization  

Line flow visualization consists in overlaying the real-time flows and percentage loading of the 

various transmission and distribution lines. It can be applied to both geographical and 

topological reference frames. This can however become challenging for large scale systems, 

and it is more practical to apply this to a reduced number of lines, so that information is easier 

to interpret and represent. Power flow through lines is usually represented with arrows over 

them, showing directionality and that can vary in size and/or color to show the relative loading 

of lines. Animations can further enhance the information presented, providing a clearer view of 

the direction of power flow, for example [9].  

 

Figure 2-3: Line flow visualization of the US transmission system [9]. 

Contouring:  

Single-line diagrams with numerical displays next to each bus have been used for decades to 

display system variables. This method has the advantage of representing highly accurate values 

on precise locations of the grid. However, if it is desired to observe values at a significant 

number of buses simultaneously, this is not a practical approach as it does not allow to observe 

large-scale patterns. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

BACKGROUND AND LITERATURE REVIEW 

 

10 

A solution to this is to use contouring, which consists in overlaying a colored contour graph 

(similar to a heat map), that represents a continuous variable like voltage. These variables are 

commonly not spatially continuous, as they might only exist at buses. It is therefore necessary 

to create virtual values that span over the entire contour region. The resulting graph contains a 

color code and a legend to indicate what range of values each color represents. The resulting 

graph is then overlaid on the corresponding representation of the grid, which can be either 

geographical (most commonly) or topological [8], [9]. 

Some typical values commonly represented by contouring traditionally include bus voltage or 

temperature. However, several other variables can be represented through this method, provided 

they are continuous. An approach which is popularly used in electricity markets consists in 

representing locational marginal prices over the grid, as in the example shown in Figure 2.4. 

 

Figure 2-4: Contour of locational marginal prices in New England [9]. 

Contouring can also be applied to line data, to create similar visualizations to the line flow 

visualizations discussed before.  Contouring however has the advantage of allowing to represent 

the variation of continuous variables along a single line or a succession of them, which is 

especially useful along long transmission lines, to represent for example, voltage drop over the 

length of the line [9]. 

Another useful visualization enabled by line contouring is power transfer distribution factor, 

which, for an increase in the power flow between a specific source node and sink in the grid, 

measures what percentage of that power flow increase would flow through each line in the 

network [9]. An example is shown in Figure 2.5.  
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Figure 2-5: Line contouring representation of power transfer distribution factor [9]. 

Other innovative approaches to visualization 

There are many other different approaches for overlaying information over grid representations, 

and the methods used by different TSOs and DSOs to effectively represent data can vary 

significantly.  

GDV 

An additional example is Geographic Data Visualization GDV, a technique introduced by 

Overbye et al.[10] that allows for representation of a wide variety of variables or system 

characteristics in a highly customizable way. The technique consists of representing information 

derived from a power system model using geographical information, in dynamic displays that 

can be easily customizable. This allows to create visualizations like the one shown in Figure 

2.6, in which the rectangles represent generator reactive power reserves, with the size 

representing the generator’s capacity, and the color indicating its reactive power reserves [10]. 
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Figure 2-6: GDV displaying power reserves in the US [10]. 

GreenGrid 

GreenGrid is a graph-based transformation algorithm that, using a layout algorithm, creates 

visualizations that transform geographic views into pseudo-topological layouts in which the 

line lengths are distorted proportionally to their impedances and elements are moved closer or 

further depending on either voltage or phase metrics. It is used to identify clusters visually that 

might indicate, for example, voltage-angle stress, islanded areas, or overloads, which can all be 

computed in near-real time. This visual geometry approach can be especially useful when 

observing the behavior of very large systems (the original paper showcases the solution on a 50 

000 bus model). Figure 2.7 shows the results of applying the algorithm on a section of the 

WECC grid, in western USA [11].  

 

Figure 2-7: GreenGrid's output (right) for a section of the WECC grid (left) [11]. 
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GreenCurve 

Another solution, proposed by the same researchers as GreenGrid, is GreenCurve, which rather 

than creating a graph layout based on the original, completely abandons the graph 

representation, and uses a fractal, space filling Hilbert curve, that respects electrical distance 

and in which every node is represented by a single pixel. The color of each pixel is then adjusted 

based on underlying system variables like voltage, temperature or phase, in a visual 2d grid, 

similarly to a contour graph. Similarly to GreenGrid, this approach is suitable for observing 

pattern changes in very large systems, where observing the values of individual buses would 

not be practical. Figure 2.8 contains the algorithm’s output for the same WECC power grid 

section as used in Figure 2.9, displaying phase angle [12]. 

 

Figure 2-8: GreenCurve output for a section of the WECC grid, displaying phase angle [12]. 

The authors argue that the two techniques can be applied to obtain synergistic near-real time 

analysis of the grid, as each will succeed in highlighting different patterns and relationships 

between variables over the grid, with GreenCurve providing breadth (multivariate coverage), 

and GreenGrid providing depth (structure-aware focus), making a substantive and innovative 

contribution to the state of the art in power grid visualization [12]. 

2.2.4 Innovative approaches 

In the 5-year window from 2020 to 2025, AI and machine learning capabilities for the utility 

sector have advanced rapidly and are now integrated into widespread applications and solutions 

that system operators rely on. These developments aim to optimize grid operations, improve 

efficiency, and address the added complexities introduced by the growing penetration of 
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distributed energy resources (DERs). Deep neural networks, for instance, are increasingly 

deployed to forecast variable generation with high accuracy, an essential capability as the 

renewable share in the energy mix, as well as distributed generation keeps increasing [13]. 

Parallel progress is taking place in the field of visualization, where increasingly sophisticated 

tools are reshaping real-time decision-making [14].  

A standout example in this field is ChatGrid, a commercial application developed by PNNL, 

which enables the use of natural language queries to produce tailored grid visualizations, that 

dynamically overlay large amounts of data, including generation, power flow, load, and other 

network information. By integrating natural language processing (NLP) and on-demand visual 

synthesis, the platform improves operational efficiency, accelerates situational awareness, and 

helps operators keep pace with the growing volume and complexity of real time grid data. 

Figure 2.9 contains a snapshot of the application, and an example visualization created through 

NLP [15]. 

 

Figure 2-9: ChatGrid dynamic visualization created through NLP [15]. 

2.3 Modelling LV Networks as Graphs 

Due to their inherent network structure, electric networks can be naturally modelled as graphs. 

In this mathematical abstraction, electrical components and connection points are represented 

as nodes, while cables, including transmission and distribution lines are represented as edges. 

This representation provides a powerful mathematical framework for analysing and visualizing 
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complex electrical networks, thanks to the application of well-studied graph algorithms [16]. 

Commonly, these power system graphs consist of: 

• Nodes: representing buses, substations, transformers, generators, loads, cable joints, and 

other electrical equipment. 

• Edges: representing transmission lines, distribution feeders, cables and other electrical 

connections between components. 

 
(a) 

 

 
(b) 

 

Figure 2-10: (a) GIS view of an LV feeder (b) Corresponding graph representation. 

2.3.1 Applications of Graph Theory in Power Systems 

The graph-theoretic framework enables numerous applications in power system analysis and 

operation. Some of these applications include: 

Topology Processing: graph algorithms efficiently identify network connectivity, perform 

efficient and fast adjacent component checks, and potentially network-scale state estimation. 

Depth-first search and breadth first-search (BFS) algorithms enable the detection of energized 

sections and trace power flow paths. This has a wide range of applications in power systems 

like detecting islands and meshed or radial network sections [17]. 

Power-flow and optimization: graph formulations can enable algorithms that directly operate 

on the graph structure to solve optimization problems, including optimal power flow, loss 

minimization or voltage regulation. Othman [Power Flow Solution] (2022) proposed a “Flow-

Augmentation PF” replacing the traditional Newton-Raphson iterative method, and achieving 

70% faster solves on the IEEE-118 network. Additionally, unsupervised GNNs have been 

demonstrated to directly approximate OPF solutions four orders of magnitude faster than 

traditional solvers, thanks to acting on a nodes path and neighbors rather than on the full 

admittance matrix [13]. 
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State estimation: graph modelling provides state estimation algorithms with two important 

advantages. First, modifications in the incidence matrix can be calculated on the fly from the 

adjacency list, so topology changes (like a switch opening/closing) can be reflected instantly 

without having to rebuild large Jacobian matrixes. Second, topological observability tests are 

reduced to purely path checks through DFS, much faster than numerical rank calculations for 

every estimator operation [17]. 

Network Reconfiguration and service restoration: for strictly radial distribution systems, any 

switching plan must leave the network cycle-free. From a graph theory approach, this can be 

approached as an optimization problem, that finds a tree that minimizes losses subject to certain 

operational constraints. Solving this optimization problem can be fundamental in choosing a 

switching plan to restore service after faults [18]. 

Visualization: widely studied graph layout algorithms can be applied directly to graph 

representations of power networks, creating useful visualizations of the underlying graph 

topology and characteristics. Some implementations, for example, include the use of force-

directed layouts that allow representing large grids in pseudo-geographical positions that avoid 

overlapping between nodes(substations) and edges (HV lines) [19]. 

2.3.2 Advantages of Graph-Based Modelling 

Modelling power systems as graphs offers several advantages for power system analysis: 

Computational efficiency: graph algorithms generally have well-studied computational 

complexity, enabling scalable solutions for large networks. Many power system problems can 

be reformulated as classical graph problems with already established efficient solutions [17]. 

Modelling and simplification: graphs can be used to model complex electrical behavior into 

topological relationships, making it easier to understand network structure and develop intuitive 

visualizations, for example. A useful example is how graphs allow encoding directionality in 

their edges, which can be used to model relationships specific between components which 

might have a restricted power flow direction, like transformers or HVDC converters, or the 

intended single-direction of power flow in radial networks [16].  

Algorithm reusability: thanks to extensive research in the field of graph theory, a wide of 

algorithms are available to be adapted to power system applications. From shortest path 
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algorithms for fault location to graph layout algorithms for visualization, many established 

techniques can be useful for power network applications [19]. 

2.3.5 Challenges and Considerations 

Although graph modelling provides numerous benefits, several challenges must also be 

considered and addressed when using graph representations of power systems: 

Loss of electrical detail: pure topological representation can potentially overlook important 

electrical characteristics. For instance, two electrically distant buses might appear adjacent in a 

graph visualization, potentially misleading operators about electrical adjacency. Using 

impedance-based weights for edges and considering weights for creating the layout or 

employing layered hierarchical layouts can help create visualizations that mitigate these issues 

[16]. 

Dynamic behavior: static graphs cannot capture time-varying features of power systems. 

Dynamic graph representations or several graph snapshots are required to capture switching 

operations, protection actions, and varying load conditions, which could potentially make graph 

implementation approaches more complex in specific applications. 

Scalability vs detail: as networks grow larger, the trade-off between comprehensive 

representation and visual/computational practicality becomes critical. This motivates network 

simplification approaches, where intelligent graph reduction preserves essential connectivity 

while improving visualization clarity [16]. 

  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

BACKGROUND AND LITERATURE REVIEW 

 

18 

2.4 Geographic Information Systems in the electric power sector 

Geographic Information Systems (GIS) are integrated frameworks of software, data and 

hardware designed to capture, manage and analyse spatial (geographical) information. In simple 

terms, a GIS links data to specific locations on maps, allowing users to visualize and interpret 

data with a geographic context [20]. This allows to map features on the earth’s surface, from 

roads and terrain to infrastructure and demographic data, which enables analysis and better 

decision-making. 

In the electric power sector, GIS provides digital mapping and locations of the electric grid 

infrastructure and components, serving as a foundation for many operational and planning 

activities. Combining geographic maps and asset databases and analytical tools, GIS allows 

utilities to keep track of where their assets are located and store specific attributes (e.g. status, 

age…) for each of them [20]. 

2.4.1 GIS in electric distribution networks 

At the distribution level, GIS has significant impact. Distribution networks are vast and 

complex, comprised by thousands of miles of feeders and a wide variety of electrical equipment 

spread across neighborhoods. Utilities have adopted GIS to create digital maps of these 

distribution grids, mapping every asset in a spatial database. 
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Figure 2-11: GIS Representation of a SPEN LV Feeder. 

This geospatial network model is fundamental for daily operations; it allows utilities to 

visualize the entire electrical network geographically and trace how every customer is 

connected. By maintaining an up-to-date GIS database of network assets, utilities can easily 

access information on the location and attributes of equipment, improving situational awareness 

and asset management. 

 GIS integration has significantly improved the efficiency and accuracy of power system 

analysis and operations. These efficiency improvements have translated into significant 

operational savings over the past 20 years for utilities compared to traditional manual methods. 

Currently, GIS serves as the digital backbone of advanced grid applications in the power sector, 

essential for the daily operations for utilities, including ADMS, DER management and real-

time outage restoration [21]. 

One of the most relevant formats used for the exchange of data between GIS and other utility 

web-based applications is GeoJSON. GeoJSON is an open-standard geospatial data exchange 

format specified by the IETF in RFC7946. It is built on ordinary JavaScript Object Notation 

(JSON) and represents spatial objects along with user defined attribute fields. Many commercial 

and open-source GIS platforms read and write GeoJSON natively [22], [23] 
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2.4.2 Key applications of GIS in power utilities 

GIS supports a wide range of applications for electric utilities, from operational activities to 

strategic planning. Some of them include: 

Asset and network data management: GIS is used by utilities as a comprehensive asset 

registry and mapping platform. This enables utility staff to locate equipment, monitor asset 

attributes, and plan maintenance activities with geographical context. GIS also enables digitally 

updating the network model dynamically, registering new changes instantly, which was not 

possible with manual physical maps. This dynamic updating also can include attributes linked 

with the data, which can be sourced from other enterprise systems, like billing, or SCADA [20]. 

Outage management and emergency response: GIS is essential for handling power outages 

and improving reliability. Outage management systems (OMS) are built on the connectivity 

model information provided by GIS. When a fault occurs, the OMS uses the GIS model to 

determine the most likely fault location. Dispatchers can observe the affected area in real time 

in a map and quickly deploy field teams to the right location, which significantly improves 

outage response and reliability indices [24]. 

System planning and network expansion: planning engineers rely on GIS to make informed 

decisions about how to expand and reinforce the grid. GIS provides spatial context for 

infrastructure planning through load growth forecasting. For example, planners can visualize 

load growth on a map and identify areas that will need capacity upgrades. Common applications 

also involve using GIS for finding optimal routes for new transmission lines, feeder expansions 

or substation placement, based on variables like capacity requirements and terrain topology, for 

example. 

2.4.3 GIS as a foundation for grid modernization 

GIS has played a key role in the modernization of grids over the past 30 years, thanks to the 

digitalization of network data. This digitalization has enabled utilities to transition from paper 

maps to dynamic digital twins of the grid, a digital foundation that supports enhanced analytics, 

automation, and data-driven decision making. Due to the increased complexity in LV/MV grids 

caused by DER integration, a solid digital foundation is increasingly necessary, and therefore 

utilities must clean and refine their GIS datasets to adopt new smart grid systems. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

BACKGROUND AND LITERATURE REVIEW 

 

21 

In conclusion, Geographic Information Systems provide an essential platform for electric power 

utilities. It enables them to manage their networks proactively and more efficiently, supporting 

the evolution towards a smarter, more resilient power grid [20]. By leveraging GIS, the electric 

power sector can better meet the challenges of grid modernization, integrating the large volumes 

of real-time data from current distribution networks, to ensure safe, optimized and reliable 

power delivery. 
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2.5 Automatic Schematic Generation of Single Line Diagrams 

Power system visualization through diagrams has undergone fundamental transformations from 

manual paper-based and hand drawn diagrams, to sophisticated digital solutions. Traditional 

single line diagrams, as defined by IEEE 315, represent electrical circuits using single lines and 

graphic symbols to show system topology and component relationships. The manual creation 

process was time consuming and inefficient for large network sections, driving the need for 

automated solutions. 

2.5.1 Evolution of automatic diagram generation 

Automatic diagram generation refers to algorithms and systems that produce simplified 

abstracted diagrams, which can include diagram maps, circuit diagrams or network 

representations, from raw or structured data. Applications span geography (e.g. transit 

diagrams, orthogonalized maps), circuitry, and engineering networks (e.g. power systems, 

water distribution networks), for example [25]. 

Some early applications of automated diagram generation include the creation of metro-style 

maps for large transit networks. These applications targeted readability criteria, such as 

octolinearity (orthogonal and 45º oriented lines), even spacing and minimal crossings, while 

preserving topology and user recognisability. In early approaches, some methods used for 

satisfying these constraints included optimization approaches, based on simulated annealing 

and gradient descent [26]. 

These optimization approaches are however susceptible to converging to poor local optima, in 

which the quality of the resulting diagram is strongly dependent on grid spacing, initial 

positions and the number of iterations [27]. Some more recent approaches include the use of 

mixed-integer programming formulations, which has the trade-off of significantly higher 

computational cost and difficulty adding new aesthetic criteria [27]. 

Schematic generation for electronic circuits has also been explored across multiple design 

levels, from logic netlist RTL diagrams to circuit layouts. Earlier approaches levered heuristic 

methods, that relied on placements and routing strategies with value-propagation 

techniques[28]. More recently, machine learning approaches have become the standard, with 

solutions incorporating graph neural networks to learn topology and component placement for 

analog circuits.[29] 
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The evolution towards power distribution automatic single line diagrams combines aesthetic 

requirements from geographical network diagrams (like transit systems) and topological 

orthogonal line routing, as well as diagram component placement requirements from circuit 

design.  

2.5.2 Generation of single line diagrams 

The automatic generation of single line diagrams has been researched since the late 1970s, with 

various approaches developed to address the complexity of modern electrical networks. Several 

topological and aesthetic constraints and objectives must be achieved in the generation of 

diagrams for LV/MV grids including minimizing edge crossings, avoiding component overlap 

and maintaining layout clarity. 

Early approaches and foundations 

Some early approaches include pioneering work presented by Canales-Ruiz et al.[30] in 1979, 

proposed an automatic drawing algorithm for one-line diagrams. Their approach formulated the 

problem as a layered graph ordering algorithm, in which every node represents a bus in the 

diagram, and the layer for each bus is assigned based on a longest path algorithm. The algorithm 

then takes an iterative greedy switch approach to swap the edges in each layer of the diagram 

until it finds a solution with no crossings. This underlying graph is then represented graphically 

by assigning strictly vertical lines to buses and horizontal lines to connections between buses, 

as shown in figure 2.12: 

  
Figure 2-12: (a) Underlying Graph and (b) Equivalent representation proposed by Canales-

Ruiz et al.[30]. 

Other approaches have built on this foundation, treating the diagram representation of Power 

Systems as a graph layout problem. These approaches can be based in several different layout 

algorithms that, depending on the constraints and characteristics of the input data, make some 

more suitable than others. Widely explored algorithms include: 
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Tree algorithms: some examples like the Reingold Tilford algorithm, are used to represent 

graphs as rooted tree, useful if the underlying network is completely radial thanks to its 

simplicity. A rooted tree layout was proposed by Nagendra Nao et al. [31] in 2003, which 

generates a layered tree layout given a power system radial feeder, and then converts the layout 

into an orthogonal bus structure representation. 

 

Figure 2-13: (a) Rooted tree layout, and (b) resulting bus structure proposed by Nao et al. 

[31]. 

Force directed and spring-based approaches: Useful algorithms that have gained popularity for 

their ability to handle the layout of graphs with large numbers of nodes. These layout algorithms 

model the graph as physical system in which nodes repel each other, and edges act as springs 

pulling nodes together. This method allows to optimize crossings and space out the nodes in the 

graph over the laid-out space. Birchfield and Overbye [19](2018) used a force directed method 

to model a layout of a synthetic transmission network with 25000 substation cables with the 

objective of minimizing overlap and lines crossing over substations. Although these approaches 

are intuitive and can handle diverse topologies, they do not generate the orthogonal and layered 

layouts often desired in one-line diagrams; nor do they yield geographically faithful 

representations. 

Integer linear programming and MILP formulations 

More sophisticated approaches emerged that treat diagram generation as a constrained 

optimization problem. Mixed- Integer Linear Programming formulations have been proposed 
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that guarantee optimal solutions for objectives such as crossing minimization or area 

minimization [32]. Some constraints that these models can include are: 

• Orthogonality requirements. 

• Minimum separation distances between components. 

• Bus alignment and orientation. 

• Hierarchical (layered) structure. 

Lin et al. [33] combined a mixed integer linear program to simultaneously assign rows and 

columns to the connections of urban substation diagrams. This allowed to represent the 

connections as orthogonal lines with no crossings inside the substation diagrams. 

ILP can deliver high quality reproducible diagrams, with tailored constraints for each for each 

use case, but their computational complexity grows exponentially with network size, making 

them impractical for generating diagrams for large scale networks. 

Hybrid and Heuristic methods 

To address scalability issues, research has been developed on hybrid approaches combining 

exact algorithms for local optimization with heuristic methods for global layout. For example, 

Sen et al. [34] proposed an automated generation and incremental update method specifically 

for distribution networks with rings. Their approach uses a trunk and branch model, where the 

main feeder is first identified and drawn as a straight line, followed by lateral placement of lines 

using weight calculations. This method allows creating representations for radial distribution 

network layouts, in which it is desirable to view the main feeder as a single line from which 

other connections branch out, and dynamically update those branches as new elements are 

connected, or older disconnected from the network [34] 

Another approach, by Zhou et al. [35] uses a genetic algorithm inside a hierarchical layout 

engine to position ring cabinets, while penalising crossings. This allows to maintain a 

hierarchical structure, typical in distribution network diagrams, while minimizing edge 

crossings and other adjustable flexible optimization criteria. 

Machine learning and AI based approaches 
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Thanks to the most recent advances in machine learning, some applications for single line 

diagram schematic generation have been developed, which leverage deep learning of layout 

patterns from existing diagrams [36]. These approaches can capture implicit design rules and 

aesthetic criteria that are difficult to code into linear programming algorithms. These methods 

however face significant challenges: 

• Limited training data of power system diagrams available 

• Topological fidelity constraints might not be satisfied 

• Scalability issues 

Liu et al. [36] (2025) managed to successfully train a neural network to predict layer 

assignments and bending points from raw network graphs, producing cleaner layouts. 

2.5.3 Commercial landscape and industrial implementations 

The most widely extended commercial application featuring automatic single line diagram 

generation for power systems is DIgSILENT’s PowerFactory, which integrates an automated 

diagram generator for visualizing power systems. There is not abundant information available 

about this tool, however, according to their developer, the tool features: “Automated drawing 

of Site and Substation Diagrams”, “Diagram Layout Tool for auto-drawing or assisted drawing 

of full or partial network, feeders, protection devices (CTs, VT, relays), branches, site and 

substation diagrams as well as auto-expansion of diagram” and “User-definable symbols and 

composite graphics”  [37]. 

 

Figure 2-14: DIgSILENT's PowerFactory diagram layout [37]. 
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Although no other commercial widely available tools that automatically generate diagrams 

from input raw network data are available, some other solutions implement small-scale layout 

features. For example, ETAP’s Electrical Line Diagram “Auto-Build” [38] feature allows 

dynamically creating single line diagrams by simply selecting elements to include in the 

diagram, while the tool automatically and dynamically creates a diagram layout. PSSE’s 

Diagram Builder offers a similar functionality, aiding the user in creating single line diagrams 

by automatically arranging the components being added [39]. 

2.5.4 Current research gap 

Although innovative solutions and useful applications have been developed over the past 4 

decades, the field of automatic diagram generation is still largely undeveloped. Most 

contributions target very specific problems that cannot be generalised broadly to provide useful 

standardized single line diagrams. Some of the current obstacles in this underdevelopment in 

the field include: 

Lack of an end to end open-source tool chain: existing commercial applications like 

PowerFactory embed proprietary routines, and no peer-review study, provides a reproductible 

step-by-step implementation of a solution that integrates the whole pipeline from raw network 

data to standard orthogonal single-line diagrams.  

Algorithmic bias towards radial or weakly meshed topologies: most academic research with 

the objective of producing single line diagrams assumes radial networks, while research in 

meshed networks is not specifically focused on the generation of standardized orthogonal single 

line diagrams, but rather on producing generic graph drawings, like through force-directed 

layouts. 

Underdeveloped treatment of network simplification: research on network simplification is 

disconnected from the generation of diagrams. Some approaches implement clustering to create 

a simplified visualization of the network, but do not focus on developing a diagram on the 

simplified data. A streamlined pipeline of generating simplified graphs and creating diagrams 

based on the simplified graphs is not available, although reducing the node count to isolate the 

key connectivity information in the network before laying it out can potentially provide 

significant value. 
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Lack of heuristic implementation on generating crossing free graphs for meshed 

networks: scalability is essential for real network data, which can have significantly meshed 

characteristics. However, beyond small instances solvable by integer linear programming, there 

is a lack of published work on scalable heuristic crossing reduction algorithms that can render 

large, meshed distribution networks without visual clutter.  
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2.6 Summary 

This chapter has established the context for this project, linking the project’s motivations to the 

current challenges in LV grids, that, due to the increasing penetration of distributed energy 

resources, calls for improved observability and visualization; and providing a state of the art in 

current visualization technologies, their evolution, and more specifically, automatic single line 

diagram generation; as well as explaining the role of GIS, as a digital backbone for electricity 

utilities worldwide. 

Representing LV networks as graphs is another fundamental foundation of this project, and a 

wider base for graph theory concepts relevant to the project will be explored in the next chapter, 

before outlining the approach followed for the automatic generation of single line diagrams. 
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3 Foundations of Graph Theory 

This chapter lays out the mathematical and algorithm groundwork that the methodology in 

Chapter 4 will refer to. It covers several graph theory concepts, from basic definitions to graph 

layout algorithms. These concepts are defined beforehand to avoid repetition in the explanation 

of the approach. 

3.1 Fundamentals and Core Concepts 

Note: all the explanations in this section have been based on the definitions and content of the 

book Introduction to Graph Theory (fourth edition) by ROBIN J. WILSON [40] and the 

Dictionary of Algorithms and Data Structures [online] by Paul E. Black [41]. 

3.1.1 Basic concepts 

Definition 3.1 (graph): A graph is formally defined as a pair G =  (V, E)  where:  

• V is a non-empty finite set of vertices (will be referred to as nodes throughout this paper)  

• E is a finite set of pairs of V, called edges: E ⊆  {{u, v} | u, v ∈  V} 

Figure 3.1 represents a simple 3-node graph, with three edges, connecting all nodes with each 

other. 

 

Figure 3-1: Simple 3-node graph. 

Depending on whether each edge has an orientation (meaning it is an ordered or unordered pair 

of edges), a graph can be directed or undirected. 

Definition 3.2 (undirected graph): An undirected graph is a graph whose edges have no 

orientation. Each edge is represented by an unordered pair of vertices, with each edge {𝑢, 𝑣}  

connecting vertices u and v bidirectionally, meaning: {𝑢, 𝑣}  =  {𝑣, 𝑢}. Figure 3.1 represents an 

undirected graph. 
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Definition 3.3 (directed graph): A directed graph, on the contrary, is a graph whose edges have 

direction. Each edge is represented by an ordered pair of vertices (𝑢, 𝑣), meaning there is a 

connection from 𝑢 to 𝑣 and (𝑢, 𝑣) ≠ (𝑣, 𝑢).  

An example of a directed graph with 3 nodes and 3 edges can be observed in Figure 3.2: 

 

Figure 3-2: Directed graph with a looped edge. 

In general graph theory, an edge may connect a node to itself (illustrated by node C in figure 

3.2). However, simple graphs, which are the subject of study for this project, explicitly exclude 

looped edges and multiple edges (more than one edge connecting the same pair of nodes). These 

restrictions are imposed to ensure that each edge represents a unique non-redundant connection 

between a certain pair of nodes. 

In most applications and algorithms, time complexity scales linearly with the number of nodes 

and edges, so a common approach is to isolate the section of the network relevant to the task in 

hand. This isolated section is referred to as subgraph 

Definition 3.4 (subgraph): For any given graph G =  (V, E), a graph G′ =  (V′, E′) is called a 

subgraph of G, written G′ ⊆  G, when: 

• V′ ⊆  V, and 

• E′ ⊆ E ∩ {{u, v} ∣ u, v ∈ V′}  

Meaning that a subgraph G′ contains a subset of G’s nodes and edges. Additionally, G′ is 

denominated induced subgraph if E′ = {{u, v} ∈ E ∣ u, v ∈ V′}: i.e. all edges in G between 

nodes V’ are preserved in the subgraph. If the subgraph contains all nodes in G, V = V′ but 

omits some edges, G’ is denominated a spanning subgraph of G. 
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3.1.2 Graph representations 

While visualizing a graph as a diagram of points (nodes) connected by lines (edges) is often the 

most intuitive form of representation, such a layout is not the most efficient or rigorous for 

computational purposes. For mathematical analysis and algorithmic manipulation, graphs are 

represented and stored using formal data structures, such as an edge list, an adjacency matrix 

or an incidence matrix. 

An edge list, or an adjacency list, is a data structure that contains a collection of all the edges 

in a graph, with each being recorded as a pair of the nodes that it connects. This format is 

compact and most suitable for sparse graphs, where the number of edges is significantly less 

than the squared number of nodes. Edge lists are commonly stored in unordered structures, like 

dictionaries. Figure 3.3 shows the edge list for a simple graph 

 

           𝐸𝑑𝑔𝑒 𝐿𝑖𝑠𝑡: 

(

 
 

{𝐴, 𝐵}
{𝐴, 𝐶}
{𝐴, 𝐷}

{𝐵, 𝐷}
{𝐶, 𝐷})

 
 

  

 

An adjacency matrix is a two-dimensional array in which the rows and columns correspond to 

nodes. The entry at position (𝑖, 𝑗) indicates the presence of an edge between nodes 𝑖  and 𝑗. This 

representation allows for time-efficient edge existence queries but requires 𝑂(𝑛2) space; 

making it suitable for dense graphs, with a significant number of edges compared to the squared 

number of nodes. 

In an incidence matrix, the rows correspond to nodes and the columns to edges. The entries in 

each column indicate which nodes are incident to each edge. For undirected graphs, entries are 

typically binary (0 or 1), while directed graphs may use -1 or 1 to represent directionality. This 

representation is beneficial when analyzing relationships between edges and vertices, 

particularly in linear algebraic formulations of graphs. 

Figure 3.4 shows an example of a graph and its adjacency 𝐴 and incidence 𝑀 matrices 

representations: 

Figure 3-3: Edge list. 
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𝐴 = [

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

]      𝑀 = [

1 1 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

] 

 

 

3.1.3 Graph properties 

Definition 3.4 (degree): The degree of a node is the number of edges connected to it, which is 

equivalent to the number of its neighboring nodes. By extension, a neighbor of a node is any 

other node directly connected to it by an edge. 

In directed graphs, neighbors can be broken down in two categories, predecessors and 

successors, and degree into in-degree and out-degree. 

Definition 3.5 (predecessor, successor): in a directed graph, a predecessor of a node 𝑣 is any 

node 𝑢 such that there exists a directed edge from 𝑢 to 𝑣, denoted as (𝑢, 𝑣). On the other hand, 

a successor of a node 𝑢 is any node 𝑣 such that there exists a directed edge from 𝑢 to 𝑣, denoted 

as (𝑢, 𝑣). Additionally, in contrast to total degree, in-degree is the number of predecessors of a 

node, and out-degree is the number of successors. 

In Figure 3.2, node A is the only predecessor of both B and C, and B and C are successors of A. 

Definition 3.7 (path): A path P from node u to node v is a finite sequence of nodes 

(𝑣0, 𝑣1, . . . , 𝑣𝑘) such that 𝑣0 = u, 𝑣𝑘 = v, and for every 𝑖 ∈ {0, . . . , k − 1},  the pair  (𝑣𝑖,𝑣𝑖+1) ∈

E, meaning there exists an edge between each consecutive pair of nodes in the sequence. The 

length of the path is the number of nodes it traverses, k. 

In undirected graphs, as edges do not have orientation, the direction of traversal along the path 

is not constrained. However, in directed graphs, the path must follow the direction of the edges. 

    Figure 3-4: Adjacency (left) and incidence (right) matrices. 
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Therefore, for a sequence (𝑣0, 𝑣1, . . . , 𝑣𝑘) to be a valid directed path, each edge (𝑣𝑖,𝑣𝑖+1) must 

be a directed edge, pointing from 𝑣𝑖 to 𝑣𝑖+1. 

In figure 3.5, a highlighted directed path of length = 2 between nodes C and B can be observed: 

 

Figure 3-5: Directed path between nodes C and B. 

A graph is said to be connected if, for every pair of nodes u and v in the graph, there exists a 

path from u to v, meaning that there is no isolated node and it is possible to reach every single 

node through a sequence of edges. For undirected graphs, connectivity simply requires the 

existence of edges that create a path; however, for directed graphs a distinction is made: 

• A graph is said to be strongly connected if for every pair of nodes u and v, there exists 

a directed path from u to v and from 𝑣 to 𝑢. 

• If a directed path does not exist for every pair of nodes in the graph, the graph is said to 

be weakly connected if the equivalent undirected graph is connected. 

Figure 3.6 shows simple examples of unconnected, weakly connected and strongly connected 

graphs (respectively) 

   
 

Figure 3-6: Unconnected, weakly connected and strongly connected graph (respectively). 
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Definition 3.8 (Cycle): A cycle is a special type of path where the starting and ending nodes 

are the same, and all intermediate nodes are different. Formally, a cycle is a path (𝑣0, 𝑣1, . . . , 𝑣𝑘) 

where 𝑣0 = 𝑣𝑘 and 𝑣𝑖 ≠ 𝑣𝑗  for all  i ≠ j, 0 < i, j < k. Cycles can occur in both directed and 

undirected graphs, with the requirement that edge directions are respected in directed graphs.  

The strongly connected graph shown in Figure 3.6 shows a graph containing a cycle, as there 

exists a path to and from B, that goes through A and D. 

 

3.1.4 Graph traversal algorithms 

Graph traversal algorithms are the foundation for many graph operations, that include for 

example, connectivity testing, cycle detection or path computation. Two graph traversal 

algorithms are the most widely used, breadth first search (BFS) and depth first search (DFS). 

Both of these algorithms have a time complexity of O(V+E), as they are guaranteed to visit 

each node exactly once, and each edge at most twice (examined once per endpoint) 

Breadth first search (BFS):  

BFS explores the nodes of a graph in increasing order of their distance (in number of nodes) 

from a given starting node, meaning that it visits every node at a distance k, before visiting any 

nodes at a distance k+1. 

Algorithm 3.1 shows how the algorithm performs this process, using a queue into which the 

unvisited neighbors of each node being visited are added. This example constructs a parent 

array, that after execution contains the identifier for every node in the graph, explored in the 

BFS order; however, any other operation that involves visiting all the nodes in this order can be 

performed. 
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Figure 3.7 shows how a BFS algorithm visits a 7-node graph, with the already visited nodes 

highlighted in green and starting with node A. 

 
Queue: [D, E, F, G] 

 

Figure 3-7: BFS algorithm. 

The algorithm starts by visiting node A, after which it is marked as visited and its neighbors B 

and C get added to the queue. Then, node B, the first in the queue is visited, adding its unvisited 

neighbors (D and E) to the queue while being marked as visited. The next node in the queue is 

C, so its unvisited neighbors (F and G) get added to the queue, and node C is marked as visited. 
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The next node that would be visited by the algorithm would be D, the first in the queue. Marking 

the nodes as visited when adding them to the queue is crucial, as not doing so is a common 

pitfall that can result in the same node being added to the queue several times. 

One of the most relevant applications of BFS algorithms is, for example, finding the shortest 

path between two nodes, as the first discovery through BFS of a valid path from nodes u to v 

yields the shortest possible path between the two. 

Depth-first search (DFS): 

DFS explores the nodes of a graph as far as possible along each branch before backtracking. It 

prioritizes deeper unexplored paths first before returning to explore other branches closer to the 

root node. 

The algorithm works in a similar way to BFS, but using a stack rather than a queue, so that the 

last elements added are popped first in later iterations. This is shown in Algorithm 3.2, which 

creates an array containing all the nodes in graph G, visited in DFS order. 

 

Figure 3.8 shows how a DFS algorithm visits a 7-node graph, with the already visited nodes 

highlighted in green and starting with node A. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

FOUNDATIONS OF GRAPH THEORY 

 

38 

 
Stack: [F, B] 

 

Figure 3-8: DFS algorithm. 

The algorithm starts by visiting node A, after which it is marked as visited and its neighbors B 

and C get added to the stack. Then, node C, the first in the stack is visited, adding its unvisited 

neighbors (F and G) to the stack and being marked as visited. Then, the algorithm visits the last 

node added to the stack G, and marks it as visited. The algorithm would then proceed with 

visiting node F, as it was added the last to the stack before G. 

A common application of depth-first search algorithms is cycle detection. DFS is well suited 

for this task because it explores individual paths deeply, making it more efficient at identifying 

back-edges, compared to breadth-first search. 

Definition 3.9 (back edge): a back edge is an edge connecting a node to one of its predecessors. 

Formally: 𝑒 =  {𝑢, 𝑣}  ∈  𝐸 𝑖𝑠 𝑎 𝑏𝑎𝑐𝑘 𝑒𝑑𝑔𝑒  ⇔   (𝑢 ≺ 𝑝𝑟𝑒𝑑(𝑣))  ∨  (𝑣 ≺ 𝑝𝑟𝑒𝑑(𝑢)). 

Meaning that e is a back edge if u is a predecessor of v and v is also a predecessor of u. 

The existence of back-edges indicates the existence of a cycle.  

3.1.5 Directed acyclic graphs 

A directed acyclic graph (DAG) is a directed graph that contains no cycles, meaning that there 

is no sequence of directed edges that starts and ends at the same node, while respecting edge 

direction. If a graph G is a DAG, it means that there exists a topological ordering for that graph, 

and that DFS on G produces no back edges. 
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Definition 3.10 (Topological order): a topological order of a DAG  𝐺 = (𝑉, 𝐸) is a linear 

ordering of its nodes that satisfies that for every directed edge (u, 𝑣)  ∈  𝐸 , u appears before v 

in the ordering. 

 
 

 
 

Figure 3-9: DAG and cycle-containing directed graph (respectively). 

Figure 3.9 shows two similar graphs, however the left graph is a DAG, while the graph on the 

right is not because it contains a cycle. Edge (A,B) is swapped between the two examples, so 

while on the left graph, there is no path connecting a node in the graph to itself, in the right 

graph there is. These are the same example graphs used in the connectedness section. 

Graphs that contain cycles and therefore are not DAGs, can potentially be converted to DAGs 

by either one of these two approaches: 

• Swapping the direction of one or several edges: although this is not a viable solution in 

all applications, sometimes, if the edge direction is not constrained by a property that 

must not be reinterpreted, some edges may be reversed to eliminate cycles. This is a 

viable solution for graphs whose underlying directionality is not explicitly constrained, 

which for example can allow the use of hierarchical layout algorithms. 

• Removing a minimal set of edges so that the remaining graph is acyclic. Again, the 

resulting graph will not retain all the properties of the original one, but this might be a 

necessary step in some scenarios. That minimal set of edges whose removal makes the 

graph acyclic is called feedback arc set (FAS). 

Finding a minimum FAS is a NP-complete problem. Therefore, exact solutions are generally 

unfeasible, so suboptimal solutions must be found through heuristic approaches, which can 

include greedy algorithms (for example, removing edges that participate in the most cycles), or 

removing all back-edges found when conducting DFS. 
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In figure 3.10, it can be observed that the FAS of the non-acyclical graph observed before would 

be edge (B,A) (although edge (D,B) would also be a valid solution), as removing it would cause 

the cycle to be removed, and the remaining graph to be a DAG. 

 

Figure 3-10: FAS of non-acyclical graph. 

 

3.1.6 Planarity 

A graph is planar if it can be laid out in a 2D plane such that no edges intersect each other except 

at their endpoints. In other words, if a graph is planar it can be drawn without any of its edges 

crossing. 

To check for planarity, there are two main alternatives: 

• Kuratowski’s theorem, which establishes that a finite graph is planar if and only if it 

does not contain a subgraph that is a subdivision of K5 or K3,3 (shown in Figure 

3.11).  

 

Figure 3-11: Evaluation of topological planarity and reliability for interference reduction in 

radio sensor networks. 

• Euler's formula: establishes that a graph 𝐺 = (𝑉, 𝐸) is planar if and only if it satisfies 

the following formula: 

𝑉 −  𝐸 +  𝑓 =  2 

Where: 
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V = number of nodes in the graph. 

E = number of edges in the graph 

F = number of faces. A face is a region enclosed by the edges in the graph, which 

includes the outer region. 

There are several algorithms that can test for planarity, achieving linear time complexity (O(n)), 

including for example the Hopcroft-Tarjan method (Path Addition Method) or the Boyer-

Myrvold method (Edge Addition Method), which is one of the most widely used algorithms 

currently thanks to its simplicity. 

However, even though checking for planarity is simple, finding a layout for a planar graph with 

the minimal number of crossings is not, and there is not a definitive solution that works on 

every case. This is actually an NP-hard problem that is generally tried to solve through 

heuristics  
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3.2 Principles of Graph Layout Algorithms 

 Graph layout algorithms have the objective of assigning 2D (or 3D) positions to each node and 

routing edges so that the drawing conveys structure clearly. The wide variety of graphs calls for 

different layout strategies, the goal of any layout algorithm is to make patterns immediately 

visible, failing to do so indicates poor performance of the layout algorithm generally. 

Common goals of different layout algorithms are: 

• Reduce visual clutter, (minimizing edge crossings, edge bends and node overlap). 

• Emphasize structure, (hierarchy, tree shape, flow direction, symmetry). 

• Aesthetic constraints (even spacing, alignment, balance). 

• Represent data attributes (colors, thickness of edges to represent weight, hierarchy 

layers…) 

There is a vast amount of different layout algorithms, each serving their own specific purpose 

and best suited for a certain type of graph in particular, including for example: hierarchical, 

tree, force-directed, circular, matrix-based or geographic. However, this chapter will be focused 

on two approaches in particular: Reingold-Tilford, a simple algorithm suited to represent radial 

trees, and the Sugiyama framework, used to represent hierarchical graphs. 

3.2.1 Reingold-Tilford algorithm 

The Reingold-Tilford algorithm produces tidy drawings of rooted trees, with even spacing, non-

overlapping and aesthetically centered predecessors above their successors. This algorithm is 

widely extended for simple radial graph visualizations. The algorithm was formulated in 1981 

in the paper called Tidier Drawings of Trees, by Edward M. Reingold and John S. Tilford [42]. 

It offers a computationally simple algorithm, which runs in linear time to the number of nodes 

and produces aesthetically pleasing results.  

The algorithm only works in acyclic rooted trees, in which every node only has one predecessor. 

Following the terminology used in the original paper, predecessors will be referred to as 

parents, successors as children and successors of the same node as siblings. 

The Reingold-Tilford algorithm aims to satisfy [42]: 

• No node overlaps 
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• Children are always drawn on a y level below their parent  

• Parent centered over its children’s span 

• Subtrees separated uniformly 

• Symmetry preserved, equivalent subtrees are drawn identically 

To obtain the desired layout, the algorithm assigns y coordinates to each node based on depth 

(distance from the root node), and x coordinates based on two traversals of the tree, to guarantee 

no overlaps and ensure every node is centered above its children. The process that this is done 

through is explained below: 

First, a rooted tree is taken, with each node having one parent and n number of children. The 

nodes in the tree can be processed in any order, as long as all the children of each node are 

processed before their parent. Figure 3.12 shows an example graph on which the algorithm is 

going to be demonstrated. For the example, the nodes will be processed in the alphabetical order 

shown; however, a different order would also be valid as long as every sibling was processed 

before their parent. 

 

Figure 3-12: Radial rooted tree [43]. 

First, through an initial traversal of the tree, initial x values are assigned based solely on the 

number of children of each. The first node of the children is assigned x=0 if it has no children 

itself, or the average position of its two children if it does (0.5 if it has two, 1 if it has 3, for 

example). The subsequent siblings are assigned incremental x values, with a displacement of 1 

between each other, for example, if the first sibling is assigned an x = 0.5, the second would be 

assigned an x = 1.5, and subsequently. 
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For nodes that do have children but are not the first sibling to be processed, their initial assigned 

x value would not match the middle point among its children, so another variable, called mod, 

is calculated. The value of mod for any node is later used to later displace the x positions of its 

children, ensuring every node is centered above its children. This value is calculated as: 

𝑚𝑜𝑑 = 𝑋𝑝𝑎𝑟𝑒𝑛𝑡 − 𝑋(𝑎𝑣𝑔 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) 

Figure 3.13 shows the resulting x and mod variables assigned to each node in the example 

graph. Nodes highlighted in red are nodes that require a displacement of their children by mod 

 

Figure 3-13: Radial rooted tree with mod and x assigned [43]. 

This node placement, however, does not ensure that different subtrees are prevented from 

intersecting with each other. For example, the positions of nodes f and k would cause an 

intersection between their edges, as f would be placed in x = 3 and k would be placed in x = 

2.5.  

To solve this, the algorithm also performs an overlap detection during its first pass using, what 

is referred to as in the paper, contour detection. This consists in, for every level and every 

subtree comparing the leftmost descendant of the right subtree, and the rightmost descendant 

of the left subtree. If the x position (initial x + mod) of the leftmost descendant of the right 

subtree is not higher than the x position of the rightmost descendant of the left subtree, a shift 

value is calculated to displace the whole right subtree, so that the overlap is solved. The value 

of shift is calculated as:   
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𝑠ℎ𝑖𝑓𝑡 = 𝑋𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡 𝑐ℎ𝑖𝑙𝑑 (𝑙𝑒𝑓𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒) − 𝑋𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡 𝑐ℎ𝑖𝑙𝑑 (𝑟𝑖𝑔ℎ𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒)  +  1. 

The X value is calculated considering the mod values of each node’s parent, and considering 

any shift values already calculated for the left subtree. To maintain the constant relative spacing 

between the nodes at every layer, when shifting a node to avoid collisions, another shift must 

be applied to siblings of that node. The calculations for all shifts required to avoid the collision 

between k and f, and maintain constant spacing between siblings are: 

 𝑠ℎ𝑖𝑓𝑡1𝑛 = 𝑠ℎ𝑖𝑓𝑡𝑘 =  3 −  2 .5 + 1 =  1.5  

𝑠ℎ𝑖𝑓𝑡1ℎ = 𝑠ℎ𝑖𝑓𝑡1𝑛 ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ 𝑡𝑜 𝑛 =  1.5 ∗  1/2 = 0.75 

𝑠ℎ𝑖𝑓𝑡1𝑞 = 𝑠ℎ𝑖𝑓𝑡1𝑛 ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑞 𝑡𝑜 𝑛 =  1.5 ∗  3/2 = 2.25 

Another overlap can be observed when comparing the subtree of node q and the subtree of node 

n. The edges connecting nodes o and m would intersect before considering the previous shift as 

node o’s x position would be 4 and m’s x position would be 4.5. After the shift to fix the overlap 

between g and n subtrees, o and m would not overlap as their positions would be 6.25 and 6, 

respectively. This, however, violates the constraint of evenly spacing as siblings are normally 

spaced by 1, but o and m would only be spaced by 0.25, so this situation is solved similarly to 

an overlap, but with additional consideration, as shifting one of the subtrees would cause a 

shifting in the other one, to preserve the even spacing. Therefore, to calculate this relative shift 

necessary to ensure the spacing is at least 1 between nodes, the shift value must satisfy the 

following equation: 

( 𝑥𝑜 + 𝑠ℎ𝑖𝑓𝑡2𝑞  ) − (𝑥𝑚 + 𝑠ℎ𝑖𝑓𝑡2𝑞  ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛 𝑡𝑜 𝑞) ≥  1   

( 6.25 + 𝑠ℎ𝑖𝑓𝑡2𝑞  ) − (6 + 𝑠ℎ𝑖𝑓𝑡2𝑞  ∗  2/3) ≥  1   

𝑠ℎ𝑖𝑓𝑡2𝑞 ≥  2.25 

Which would lead to a necessary shift in g and n subtrees equal to: 

𝑠ℎ𝑖𝑓𝑡2ℎ = 𝑠ℎ𝑖𝑓𝑡2𝑞 ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ 𝑡𝑜 𝑞 =  2.25 ∗  1/3 = 0.75 

𝑠ℎ𝑖𝑓𝑡2𝑞 = 𝑠ℎ𝑖𝑓𝑡2𝑞 ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛 𝑡𝑜 𝑞 =  2.25 ∗  2/3 = 1.5 
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No more overlaps are present in the example graph, so after the calculation of these shifts, the 

first pass would be completed. Therefore, applying the sum of these shifts to their corresponding 

subtrees results in a layout that has no overlaps, that ensures that the nodes at each layer are 

each spaced with each other by at least 1, and that siblings are evenly distributed.  The final 

results of all variables calculated in the first pass can be observed in Figure 3.14: 

 

Figure 3-14: Radial rooted tree with mod, x and shift assigned [43]. 

After the value of initial x, mod and shift for each node are calculated, a second traverse of the 

nodes is performed to calculate each node’s x position based on these three variables. The 

resulting x position of some nodes could potentially be negative, as the mod variable can take 

negative values. If this is the case, the lowest x value would be recorded, and after completing 

the second pass, a third pass would be performed, to subtract that lowest negative value (or add 

its absolute value) from the x position of every node in the graph. The resulting x positions for 

this example can be observed in Figure 3.15: 
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Figure 3-15: Radial rooted tree with the resulting x positions [43]. 

    

 

 

 

3.2.2 Hierarchical layouts - The Sugiyama framework  

A hierarchical layout is a particular graph layout in which the nodes are placed at discrete y-

positions, called layers. Laying out graphs in a layered format is essential for visualizing flow-

based graphs, so that nodes are organized in discrete horizontal layers and edges generally point 

top to bottom. This allows viewers to easily understand the flow structure of the graph, trace 

paths quickly and perceiving source and sink nodes at a glance. These layered layouts are 

commonly used in applications like control flow graphs in compilers, dataflow diagrams, 

organizational charts, or circuit diagrams. 

Layered graphs and level planarity 

Definition 3.10 (Layered graph): a layered graph is a pair (G, ℓ) containing a graph G =

 (V, E) along with a set of layers ℓ: V → {1,… , k}, that fixes the vertical position (layer) of each 

node. A layout that assigns the x position of each node inside each layer is a hierarchical or 

layered layout. 
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Definition 3.10 (Level planarity): a layered graph is said to be level planar if there exists a 

graph layout 𝐿 = (G, ℓ), that for the given set of layers assigning y-positions, the layout 

contains no crossings between the edges of G. 

Detecting level planarity is a complex problem, and most approaches generally involve trying 

detecting planarity in the generated layouts, after having tried to minimize crossings, not 

checking planarity before calculating the layout [44]. Figure 3.16 shows a non-level-planar 

graph, as for the given layer assignment {A: 1, B: 2, C: 2, D: 3, E: 3}, there exists no layout that 

can avoid all crossings between layers 2 and 3. Generating a planar layout for this graph would 

require a different layer assignment. 

 

Figure 3-16: Non-level-planar graph. 

The Sugiyama framework 

The Sugiyama framework allows to generate hierarchical layouts for directed graphs using a 4-

step framework. It decomposes the problem of generating a layered visual representation of a 

directed graph into four modular phases: cycle removal, layer assignment, crossing 

minimization and coordinate assignment. The framework was introduced in 1981 in the paper 

Visual Understanding of Hierarchical System Structures, by Kozo Sugiyama et al. [2]. 

Common goals typically motivating the use of the Sugiyama framework include: 

• Consistent edge direction (top to bottom) 

• Uniform and compact layer distribution (avoid edges spanning over several layers) 

• Minimal edge crossings 
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Unlike tidy tree drawing algorithms, that take as inputs rooted acyclic trees with a single parent 

per node, the Sugiyama framework handles general directed graphs, including graphs with 

cycles and nodes of arbitrary in-degree and out-degree. However, many of the core problems 

addressed in the framework are solved through heuristics, as solutions like crossing 

minimization or cycle removal are NP-hard, and it is not possible to find exact solutions. 

For this reason, the framework might not always yield optimal layouts, some graphs might for 

example contain crossings in the layout, even if the input graph is theoretically planar. 

Increasing the number of iterations for some greedy algorithms involved in the framework may 

sometimes improve results, however this is often not practical, especially for large graphs. 

Different implementations of the framework can have significant variations, some might 

incorporate all the steps in the framework, while others might not (for example, requiring to 

input a DAG, instead of finding the DAG equivalent of any directed graph), and different 

algorithms can be used in each phase. However, the generic pipeline that Sugiyama et al. 

proposed and that most implementations integrate is the following: 

Step 1: Cycle removal  

Also referred to as feedback arc reduction, the objective of this phase is to convert a generic 

directed graph into a DAG, which is a requirement for next phases of the framework. As 

discussed in previous sections, finding a minimum feedback arc set is NP-hard, so practical 

tools rely on O(E) heuristics.  

Some implementations of Sugiyama, like Graphviz dot algorithm may include a conversion to 

directed graph before the cycle removal, allowing virtually any graph to be used as an input. 

On the contrary, there are also some implementations that do not incorporate this step, and 

therefore require directed acyclic graphs as inputs, like the SugiyamaLayout function in 

Graphistry. 

Step 2: Layer Assignment 

The objective of this phase is to assign each node to an integer layer, so that edges only go from 

higher layers to lower layers, (or mostly, if not possible). Objectives include minimizing edges 

with higher than 1-layer spans, bounding width per layer, or respecting chosen roots and other 

topological constraints. 
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Some algorithms that different implementations integrate include, for example, Longest Path 

(which ensures minimal layer count for DAGs), Network Simplex (integrated in Graphviz dot, 

minimizes edge lengths) or Coffman-Graham (restricts layer width). 

Most layer generation algorithms generally do not incorporate the constraint that the resulting 

layout must be level-planar, generating a level-planar set of layers is an NP-hard problem (as 

crossing minimization), and detecting if a given graph is level-planar is not as trivial as 

detecting general planarity. A solution to this problem can be approximated through heuristics, 

as an exact general solution does not exist [44]. 

This process might also include dummy node insertion, which helps later steps like crossing 

minimization by ensuring all edges span over exactly 1 layer, by inserting dummy nodes in 

between longer spanning edges. Modules like Graphviz dot handle this process internally, so 

that the dummy nodes are inserted before crossing minimization and removed after coordinates 

are assigned. 

Step 3: Crossing minimization 

Receiving as an input the layered graph, with the layering assignment created in step 2, this 

phase of the algorithm has the objective of swapping the relative positions of nodes inside each 

layer to minimize crossings. Exact minimization of crossings is NP-complete, so a heuristic 

approach is necessary. Two of the most common methods are the barycenter method and the 

median method.  

The barycenter method consists of iteratively placing each node on the barycenter (mean) X 

position of its neighbors in adjacent layers. The median method works in the same way, but 

using median positions instead of average. Generally, several bottom-up and top-down sweeps 

to optimize node positions. This process spreads nodes naturally and smooths layouts using a 

simple approach, but is prone to get stuck in local minima, especially for larger graphs, and 

therefore not be able to minimize all crossings.  

A way to improve the results is to introduce a naïve randomization of the input positions, then 

run the barycenter/median algorithm several times and keep the best solution. This increases 

the odds that the algorithm finds the optimal solution and is not stuck in local minima, but it 
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also exponentially increases time complexity of the algorithm when using a large number of 

iterations.  

If the layered graph received as an input is non-level planar, the crossing reduction section will 

not find a solution with zero crossings, so the effectiveness of the crossing minimization 

algorithms is always capped when dealing with non-level-planar graphs. 

Step 4: Coordinate assignment 

Once the relative position of each node in every layer is calculated, each node is assigned an x 

and y position based on different constraints, like minimal horizontal separation, straight line 

constraints, or parents centered above successors (like in the Reingold-Tilford algorithm). The 

original Visual Understanding of Hierarchical System Structures paper originally formulated a 

quadratic program, but more efficient linear-time methods followed and are implemented 

currently. One of the most popular algorithms is Brandes & Köpf (implemented in Graphviz 

dot), which balances edge lengths and straightens long edges. 
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3.3 Summary 

This chapter sets a base for the theoretical concepts that the methodology section relies on. 

From explaining basic concepts in graph theory, to graph traversal algorithms that constitute 

the base for several algorithms used in this project’s methodology, the definitions explained in 

this chapter are largely referred to over the remainder of the thesis. 

Building on that foundation, the chapter also explains graph layouts, and provides an in-depth 

examination of two key algorithms, the Reingold-Tilford algorithm, simple and most suitable 

for creating rooted tree layouts, and the more general, Sugiyama approach, that over its 4-step 

process can generate hierarchical layouts for more complex graphs. These layout algorithms 

are applied in the methodology section and constitute an essential step in the generation of 

single-line diagrams. 
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4 Methodology and Implementation 

4.1 Formal Problem Framing 

The automatic generation of single-line diagrams from GIS data can be formally defined as a 

graph transformation and visualization problem. The input network is defined as a spatial 

network graph G = (V, E, P, A)  where:  

• V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}  is the set of nodes representing network components. 

• E is a set of edges representing electrical connections between elements. 

• P: V → ℝ2 is a position function mapping each node to geographic coordinates. 

• 𝐴: 𝑉 is an attribute function mapping each node to a set of properties. Among these 

properties, is the component type, type𝑖. The set of all entity types in a graph is 

defined as 𝑇. 

The output is a diagram representation S = (G′, L, R), where: 

• G′ = (V′, E′)  is a simplified directed acyclic graph derived from G. 

• L: V′ → ℤ2 is a layout function mapping each node to a discrete grid position. 

• R: V′ → 𝑆 is a rendering function mapping nodes to diagram symbols 

 

4.1.2 Input Specification 

The algorithm takes as an input a GIS data structure containing a section of the LV distribution 

network section in graph format (nodes and edges) and a set of configuration parameters, that 

allow to adjust some desired characteristics in the final diagram. 

The network data file must contain: 

• Set of nodes {vi} representing elements and components in the network, with 

properties: 

o Unique identifier idi 

o Component type: typei 

o Other electrical properties: propsi 

• Set of edges {ej} either directed or undirected, with properties: 

o Source node: uj 
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o Target node: vj 

Configuration parameters: 

• τkey ⊆ T  : Set of key component types to avoid simplifying and therefore preserve in 

the final graph G′. 

• ρroot: entity type label that identifies root nodes. 

• λmax : Maximum consumers per bus threshold.  

• γgroup : Maximum consumers per group.  

• 𝑖𝑡𝑒𝑟𝑚𝑎𝑥: Maximum layout algorithm iterations.  

Each configuration parameter and its effect on the final diagram will be further explained over 

the following sections. 

4.1.3 Output Specification 

The algorithm generates: 

1. Schematic Data Structure: CSV file containing:  

o Discrete node positions: (x′𝑖, 𝑦𝑖
 ′) ∈  ℤ2

 
for each 𝑣𝑖 ∈  G′  

o Node types and rendering properties 

o Size values for buses and connectors 

2. Visual Representation: SVG file containing a render of the data structure with:  

o Orthogonal layout with discrete grid spacing 

o Standard electrical symbols for each component type 

o Hierarchical structure with clear bus-branch relationships 

 

4.1.4 Constraints and objectives 

The solution must satisfy the following invariant constraints and objectives: 

1. Topology Preservation: for every pair of nodes in the simplified graph G′, their 

connectivity must be preserved from the original network G:  

∀u′, v′ ∈ V′: path(u, v) ∈ G ⇒ ∃ path(u′, v′) ∈ G′ 
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2. Hierarchical Structure: The output graph must have a layered layout L: V′ that meets:  

o Elements with typei = ρroot are placed on the first layer 

o Buses can have multiple predecessors and successors; bus successors of each 

bus will be strictly placed on lower layers. 

o The buses are connected with each other through vertical lines. 

3. Key Component Preservation: All components in τkey must appear in the final 

diagram: 

∀v ∈ V, (type(v) ∈ τkey) ⇒ ∃ v′ ∈ V′ 

4. Orthogonality: All connections in L must be horizontal or vertical 

5. Crossing-free: the solution must minimize crossings in its underlying graph layout.  

min
𝐿
𝐶 (𝐿) = ∑ 1

(𝑒1,𝑒2)∈𝐸′×𝐸′, 𝑒1<𝑒2

[crosses𝐿(𝑒1, 𝑒2)] 

Although the algorithm treats this as a crossing minimization problem, the result will be 

considered invalid if the following constraint is not satisfied: 

∀e𝑖 ≠ e𝑗 ∈ E′: e𝑖 ∩ e𝑗 = ∅ 

6. Simplified representation: graph 𝐺′ must contain a smaller number of nodes than 

graph 𝐺  :     |V′|  <  |V|  
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4.2 Solution Overview 

4.2.1 Schematic structure and requirements 

The proposed solution generates orthogonal topological diagrams that follow standard electrical 

diagrams conventions, while ensuring clarity and readability. The output diagram has a 

hierarchical structure that allows to reflect the electrical distance and relationships between 

different buses. The diagram is organized as a layered graph where: 

• Horizontal lines represent buses, electrically equivalent connection points. 

• Vertical lines represent connections between buses at different. 

• Standard symbols (which are also laid out vertically) represent key network 

components, like transformers, switches, fuses, or consumers. 

The topmost layer contains the elements identified with parameter ρroot, which in the case of 

LV networks corresponds to distribution transformers. Subsequent layers show the distribution 

of buses in the network, and the elements connected to each, representing increased electrical 

distance from the root(s) for lower layers. 

This hierarchical representation achieves several visualization goals: 

• Displaying electrical equivalence: elements connected to the same bus are easily 

identifiable as elements being connected to equivalent electrical points. The criteria to 

determine electrical equivalence is further explained in the next section. 

• Layers showing electrical distance: the vertical layering allows displaying the relative 

electrical distance between different elements in the network to the distribution 

transformer, providing an intuitive view of the network’s power flow hierarchy. 

• Special component relationship: the diagram depicts connectivity relations between 

elements in the network and special nodes like switches or fuses, through their relative 

positions and buses, allowing for example to clearly visualize which consumers get 

connected or disconnected when activating a switch. 

To achieve this structured visualization, the underlying graph must conform to a specific 

normalized pattern before the layout phase. This normalized structure ensures that: 
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• Every connection between buses is represented by exactly one node, which can be a 

simple line or a specific network element, like a bus or a switch. 

• Bus nodes are therefore alternated in a regular pattern: bus → connection → bus nodes. 

Bus nodes can have additional successors, or two connection node predecessors, but 

buses cannot. 

• No bus nodes are adjacent. 

• Each bus in the graph corresponds to exactly one diagram symbol. 

This normalized structure is essential because the diagram plotting module operates by: 

• Taking the nodes position as the top-most reference point. 

• Assigning each diagram symbol based on the node’s properties (mainly type). 

• Drawing connections implicitly through symbol placement, the module does not render 

edges. 

Therefore, the graph transformation phase must ensure that the graph meets this structure before 

the layout algorithm assigns each node’s positions, making normalization a critical requirement 

for successful diagram generation. 

Additionally, the resulting output must provide a simplified view of the network, helping 

visualize more clearly its topology than the underlying GIS representation, where excessive 

detail and large amounts of cluttered elements can obscure the essential connectivity and 

topological relationships. To achieve this, a set of classification and simplification rules is 

applied to ensure that the diagram output is a faithful but simplified representation of the 

underlying network. 

4.2.2 High level solution architecture 

The solution proposed takes a 4-step process to generate the final diagram representation from 

the underlying raw GIS data. This process can be observed in Figure 4.1: 
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Justification: 

The four-phase process (classification → normalization → layout → rendering) is adopted for six 

main reasons. 

1. Reduced complexity: handling tasks sequentially is fundamental to ensure all objectives are 

satisfied by evaluating each of them by their individual output. Dividing the task into separate 

phases lets each phase isolate one objective while preserving constraints; pursuing all objectives 

simultaneously would be impractical and inefficient. 

2. Scalable simplification. Real GIS data sections of LV/MV networks contain thousands of 

individual points. Grouping consumer nodes and connection points that reflect non-essential 

junctions can significantly reduce the node count of the networks being processed (by up to x10 

to x20 times, for the cases studied), significantly improving the algorithm’s efficiency. 

3. Layout-aware normalization. The layout must follow a strict set of constraints, as described 

before, which rely on the underlying structure of the graph. The normalization process enforces 

*Second conversion to directed considers special rule of predecessors to bus nodes 

Figure 4-1: Methodology diagram. 
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a bus → connection → bus node structure and converts cycles into DAG structures thereby 

ensuring compatibility with a standard layout generation engine that does not need to deal with 

several particular cases. 

4.Iterative crossing minimization. Inside the layout phase, the crossing minimization algorithm 

is iteratively run to maximize the probability of finding the optimal result. This process seeks 

to increase the odds of finding the optimal solution by broadening the search space via 

randomization. Feeding the algorithm a simplified graph with only the bus nodes information 

is an essential step in reducing the computational complexity of this iterative process. 

5. Layout assignment: the layout assignment phase assigns the coordinates to each node 

satisfying the constraints and objectives defined earlier. Taking as an input separately the 

relative order of buses in each layer, and the normalized graph to be laid out ensures it can focus 

on geometric placement without having to optimize all topological and crossing minimal 

requirements simultaneously. 

6. Modularity and versatility. Task separation also allows for a modular algorithmic pipeline, in 

which specific sections can be replaced to improve performance, handle data with different 

characteristics, or introduce small adjustments to tune the results. For example, decoupling 

positioning from symbol rendering allows integration with different applications by adapting 

styles, or output formats, without modifying the algorithmic base. 
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4.3 Implementation Details 

4.3.1 Development language and dependencies 

The language chosen to implement the pipeline is Python 3.13.1 [45], due to its versatility and 

wide range of libraries and pre-existing implementations, as well as to ensure compatibility 

with other SPEN network connectivity applications. Additionally, the following libraries and 

dependencies required: 

Core logic libraries: 

• Networkx 3.4.2: wide range of graph algorithm and functions required for the logic of 

the script, conveniently handling graph as classes, and performing operations like 

neighbour checks [46]. 

• Pandas 2.2.3: used for handling several data structures as dataframes [47]. 

• Graphistry 0.39.1: supplies a pre-built implementation of the barycentre heuristic used 

in the crossing minimization step, through the SugiyamaLayout.arrange() function [48]. 

• Numpy 2.2.0: several useful mathematical functions [49]. 

Visualization libraries: 

• Geopandas 1.1.1: used for handling geographical coordinates in dataframes to create 

GIS visualizations [50].  

• Folium 0.20.0: generates visualizations of GIS data, overlaid on maps [51]. 

• Plotly 5.24.1: used to create visualizations of graphs [52]. 

• Graphviz 0.20.3: generates the graph layouts for visualization (used in creating the 

Figures, not the actual diagram layout) [53]. 

• Svgwrite 1.4.3: used to generate the output rendered diagram on SVG format [54]. 

4.3.2 Data characteristics 

Although the proposed methodology constitutes a pipeline that can be used to generate 

topological diagrams for a wide range of input data structures, each with their own particular 

characteristics, in this project it has been implemented to produce diagrams for SPEN LV 

distribution grids data in particular. 
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The input data used for the implementation is read from GeoJSON files exported directly from 

SPEN’s GIS systems. These files contain LV network sections in a graph format, with nodes 

representing different network elements and junctions between cables; and edges representing 

the cables connecting those nodes.  

 

Figure 4-2: Example of an input LV network section. 

The list of properties contained in the raw data that have been used in the implementation can 

be found in Table 4.1. These properties serve several purposes, some are crucial for the 

algorithm’s logic, while others just reflect relevant information to be displayed in the final 

diagram. 

Table 4-1: Properties used in the implementation. 

id 
Unique identifier for each node, mapped to the 

already defined idi 

entity_type 
Indicates the type of element for each node, 

mapped to the already defined typei 

admd_max_sum 
Total contracted demand for each node in kW. 

Mapped for aesthetic representation in the final 

diagram 

circuit_id 
Identifier for every node that makes up each of 

a transformer’s feeders. Mapped for aesthetic 

representation in the final diagram 

 

Relevant entity types and their labels in the data include: 

• Dist_Transformer: MV/LV distribution transformer. 
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• LV_MSP: consumer(s). 

• LV_Link: low voltage link boxes. 

• LV_Fuse: fuses, connected downstream from distribution transformers. 

• LV_Joint: intersection between two cables. 

For representing LV network sections, the set of Key Nodes and root node label are therefore 

assigned to: 

τkey = {Dist_Transformer, LV_Link, LV_Fuse} 

ρroot = 𝐷𝑖𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 

LV links are nodes which constitute the terminals of LV link boxes, a LV element present in 

SPEN distribution networks, which have the role of rerouting feeders in LV grids, enabling 

maintenance works and service restoration. These nodes can be connected or isolated, and to 

ensure that the resulting diagram represents the connectivity properties faithfully for every LV 

link-box, a specific part of the process deals with these nodes in particulat. 

Consumers are identified as nodes with entity type = LV_MSP, which reflects service points to 

which one or several consumers are connected. 
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4.4 Model Development 

This section explains the methodology and implementation process in detail, explaining what 

each step in the algorithm aims achieve, as well as the rationale for its inclusion in the final 

pipeline. As mentioned before, the implementation has been tailored to the input data used, 

ScottishPower Energy Networks LV feeders, so some specific steps in the process might not be 

strictly necessary for implementations using data with different characteristics, while they 

might require specific adjustments or individual steps as well. 

For consistency among the current implementation explanation and the code and pseudocode 

sections, the parameters and variables mathematically defined in the previous sections will be 

referred to with the following labels and variable names: 

• ρroot: root_label. 

• λmax : max_consumers_per_bus.  

• γgroup : max_consumers_per_group .  

• τkey : key_labels. 

• 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 : max_iters. 

• idi : node_id. 

• typei : entity_type 

Additionally, the legend for the graph figures used in this section can be observed in 

Figure 4.3. The node types are further explained in the classification section. 

 

Bus node, represents horizontal electrically equivalent lines (buses) in the final 

diagram. 

 

Connection node, represents vertical lines connecting different buses in the final 

diagram. 

 

Consumer node, represents consumers in the final diagram. Before 

simplification, they also represent leaf nodes, non-consumer nodes with degree 1. 

 

Key node, represents relevant grid components in the final diagram. This 

category can include transformers, fuses or LV link boxes, for example. 

Figure 4-3: Node legend for graph figures 
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4.4.1 Graph classification and simplification 

Inputs: Raw input graph G, and parameters max_consumers_per_bus, 

max_consumers_per_group. Internally, for the current implementation, set of labels key_labels 

and root_label. 

Output: classified and simplified graph G’.  

 

Figure 4-4: Classification and simplification phase. 

The goal of the classification and simplification phase is to create a simplified subgraph G’ from 

the input graph G, reducing the number of nodes and grouping consumer nodes so that the 

resulting single line diagram representation contains only the key topological information of 

the underlying network. This process allows to reduce visual clutter, while also ensuring that 

the key connectivity information between all the elements in the network is preserved. 

The classification rules define which nodes should be retained in the final diagram and which 

serve only connectivity purposes and can therefore be simplified to reduce visual clutter. This 

decision is based primarily on each node’s entity_type property, its number successors and their 

respective classifications. The classification process assigns a “role” to each node, reflecting its 

function within the network whether it represents an electrically equivalent point (to be grouped 

into a single bus), a connection point between different buses, or a critical element such as a 

transformer or switch that must be preserved. Determining what elements are connected on the 

same bus relies on calculating the number of consumers a resulting bus would connect, if said 

number is higher than the input parameter max_consumers_per_bus, they are separated, so that 

in the final diagram they are represented as different buses. Furthermore, nodes with entity_type 
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labels contained in key_nodes, are considered essential elements that must be represented in the 

final diagram and are therefore not simplified. 

Given this classification, a simplification algorithm then creates groups, so that electrically 

equivalent points are represented with a single node (bus) in the final graph, and consumers 

connected to the same bus are also grouped, while the nodes that represent important elements 

in the original graph are kept. The resulting graph contains a significantly lower node count 

than the original graph and is therefore more suitable for representation in a topological 

diagram. 

Converting the graph to directed 

The classification algorithm runs from the leaves (single degree nodes) to the roots of the graph 

(distribution transformers for LV sections), as the classification of each node depends on the 

classification of its successors. However, the input graph is undirected, so to simplify the logic 

of the classification algorithm it is simpler to first convert the graph to directed and rely on the 

predecessor/successor logic to apply the classification rules. If the input graph is already 

directed, in a direction that follows the power supply path from transformers to consumers, this 

step is not necessary. 

The conversion to directed is simple, the algorithm takes as an input the root nodes (distribution 

transformers in the case of LV grids), and starting from these nodes, traverses the whole graph 

through BFS, converting the edges to directed pointing in the order of the traversal. 

This generates a directed acyclic graph, to which the classification rules can be applied. 

Node classification 

The classification algorithm assigns the role to each node in the graph, which determines how 

it is simplified and laid out in the following sections. As mentioned before, the algorithm 

determines whether each node is a bus node (adjacent bus nodes are considered electrically 

equivalent, and will therefore be grouped into a single node later), a connection node, that 

connects two or more buses, a consumer node (will be grouped with adjacent consumer nodes 

in the same graph), or a key node (will be represented in the simplified graph).The 

characteristics and criteria for classification are the following: 
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• Consumer nodes: these nodes represent the connection points for clients serviced by the 

distribution grid section and are identified using their entity type property. In the 

flagging process, they are also identified as part of a broader category, leaf nodes, a 

classification applied to every single-degree node (except for key nodes, explained 

below), and two-degree nodes connected to a leaf node (or nodes with n degree but n-1 

leaf node neighbors). This leaf node category is necessary to correctly perform the 

classification algorithm and identify bus nodes. 

• Bus nodes: represent electrically equivalent points in the network, that are represented 

as buses in the final diagram and serve as the connection points for consumers and other 

relevant elements in the network. These nodes are grouped with adjacent bus nodes by 

the simplification algorithm, to allow obtaining a faithful but less cluttered topological 

representation of the original network. 

• Connection nodes: these nodes connect the different buses in the network; their flagging 

is required to mark the boundaries for different electrically equivalent zones. They also 

ensure that the key topological features of the original network are preserved, for 

example main joints in the original graph which may connect several different main 

feeders in the real network are preserved by classifying nodes adjacent to three or more 

bus nodes as connection nodes. 

• Key nodes: these nodes represent key elements in the original network, that must be 

represented in the simplified graph and not simplified. They are identified by an input 

set of labels that are collected beforehand. For the LV networks studied, this includes 

transformers, switches, fuses and LV links (will be further explained in following 

sections). 

The criteria to determine whether adjacent nodes should be considered electrically equivalent, 

and therefore part of the same bus, is determined by the consumer_count, i.e. the number of 

consumers that are connected to the same bus (adjacent bus nodes are part of the same bus). In 

addition to the graph, the algorithm takes as an input the max_consumers_per_bus parameter, 

which determines the maximum number of consumers that adjacent bus nodes can have to be 

considered electrically equivalent. It also takes as an input the consumer label, as consumer 

nodes are identified by their entity_type property (in this case, LV_MSP, as explained earlier). 
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A simplified pseudocode describing the high-level logic of the classification process can be 

observed in Algorithm 4.1. The algorithm has a time complexity of O(2 ∗ n + e), as it does two 

traversals of the nodes in G (one through the leaves and another on the complete graph), and a 

single neighbor check, for every node in the graph, adding a complexity equal to the number of 

edges. 

This classification ensures several requirements. First, bus nodes are identified as electrically 

equivalent nodes adjacent to each other, based on whether their total consumer count is not 
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higher than the threshold specified. Second, connection nodes mark the boundaries for these 

electrically equivalent buses. Third, key nodes are correctly flagged, so that the simplification 

algorithm can identify them and not group or remove any of them. 

Groups of consumers bigger than the max_consumers_per_bus parameter can be connected to 

the same bus, but only if in the original graph they were connected at the same node (same 

electrical level), as the algorithm does not change this property and it will remain in the 

simplified graph. However, with a similar parameter used in the graph simplification algorithm, 

the maximum sizes of the consumer groups inside each bus can also be adjusted. 

Creating simplified graph 

Taking as an input the classified graph, the simplification algorithm creates a new graph that 

contains a reduced number of nodes, by grouping bus nodes and consumer nodes. This process 

is performed based on the rules outlined in the previous section, to ensure that the resulting 

graph contains faithful topological information about the underlying real network, yet with a 

reduced number of nodes. 

Connection and key nodes are added to the simplified graph directly, with the same properties 

as they had in the complete graph. Then, adjacent bus nodes are grouped into a single node and 

connected to the intersection nodes that the boundary bus nodes of the group were connected 

to originally.  The consumer nodes adjacent to any of the grouped bus nodes are also grouped, 

in sizes equal to an input variable called max_consumers_per_group. Consumer nodes that are 

directly connected to connection nodes in the complete graph, also get grouped with adjacent 

consumer nodes and connected to their respective connection node in the simplified graph. 

The input variable max_consumers_per_group determines the maximum number of customers 

to group for every adjacent set of consumers. This parameter ensures that the size of the 

consumer groups does not exceed a determined value, and along with the 

max_consumers_per_bus variable provided in the classification algorithm, allows to adjust the 

level of detail that the graph displays about the underlying real network. 

If the max_consumers_per_group parameter is set equal to the max_consumers_per_bus 

variable, each bus node will generally only have one group of consumers, with size equal to 

both. However, if a smaller size for max_consumers_per_group is used, several groups of 
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consumers will be created per bus node. Special situations can occur where a bus has a higher 

number of consumers that the max_consumers_per_bus parameter, which are caused by several 

consumers connected to the same node in the complete graph, so if it is desired that only one 

group of consumers is connected to each bus node, a higher max_consumers_per_group should 

be used. The effect of adjusting these parameters on the resulting diagram is explored in the 

case studies section. 

The edges created to generate the simplified graph do not consider the original direction of the 

edges in the complete graph and are added as undirected edges. This is done for two main 

reasons: 

1. Checking for directionality for every node in the complete graph implies a 

computational time complexity proportional to the size (n nodes) of the graph, O(n), 

however converting the graph to directed once it has been simplified requires a single 

traversal of the graph through BFS, which also has O(n) time complexity, but the 

simplified graph has fewer nodes, so it is more efficient to convert the graph to directed 

again after the simplification. 

2. The logic for directing the graph after its nodes have been classified and simplified is 

not the same, as after the classification, only bus nodes will be allowed to have more 

than two predecessors. The logic and reasoning behind this will be further explained in 

the following sections. 

Figure 4.3 contains a graphical representation of a classified graph’s section, input to the 

algorithm, the simplified graph G’ output. The key node in Figure 4.4 is also classified as a 

connection node, as its degree is equal to 2. As it can be observed, the algorithm groups all the 

adjacent bus nodes, and the consumer nodes connected to them, and connects the resulting bus 

node group to the connection nodes that the original group of bus nodes were connected to. 

(a) 
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(b) 

 

Figure 4-5: (a) Classified graph G input (b) Simplified graph G’, output of the simplification 

algorithm. 

Once the simplified graph has been generated, it must be processed because it may contain 

some undesirable structures in the graph, like several connection nodes adjacent to each other, 

or consumer nodes adjacent to connection nodes directly; and, as mentioned before, the graph 

must have a normalized structure of bus-connection-bus nodes to be laid out and subsequently 

plotted. 
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4.4.2 Graph normalization 

Input: Simplified graph G’. 

Output: Normalized graph G’, bus-connection-bus nodes.  

 

Figure 4-6: Graph normalization phase. 

The objective of this phase is to ensure the simplified graph follows the normalized bus-

connection-bus node structure that is required by the layout algorithm and to plot the final 

diagram. The steps involved in the normalization process are complementary to the 

classification and simplification process, as the node classification sets the base for the graph 

structure, and the normalization phase simply ensures this structure is consistent.  

This need for normalization arises from the specific requirements and constraints imposed about 

maintaining specific elements from the complete network graph (key nodes) and some 

connection nodes, and the need to generate an structure that can actually be laid out in the shape 

of an diagram and retains the topological characteristics of the network. These requirements 

prevent the classification algorithm to generate a structure that complies with the bus-

connection-bus requirements as, for example, two key nodes might be adjacent. 

The post processing algorithm takes as an input the undirected simplified graph and transforms 

it into a DAG that meets that all its nodes follow the bus-connection-bus node structure 

explained earlier. To ensure this, several specific scenarios need to be considered, and specific 

repeating structures in the graph addressed, which include: several adjacent connection nodes, 

key nodes connected directly to each other, and demand nodes connected directly to connection 
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nodes, among others. It is ensured that the graph resulting from the transformations in this 

section meets that: 

• Connection nodes have only one predecessor and one successor, both bus nodes. 

• There are no bus nodes adjacent to each other.  

• Demand and key nodes are successors to bus nodes. Connection key nodes have a 

predecessor bus node and a successor bus node. 

Meeting these conditions is necessary to ensure the graph can be successfully laid out and 

plotted. 

Another requirement is that the normalized structure must be achieved without modifying the 

basic underlying topology of the network. All the rules and algorithms applied ensure that the 

nodes retain their relative position with the key nodes in the original graph, and that the buses 

created in the classification and simplification section are maintained, so that no consumers are 

moved upstream or downstream after the post-processing. 

Note: this section is largely adjusted to the characteristics of SPEN’s data. Using networks with 

different structures may require adjusting some of the algorithms applied in this phase. 

However, the general pipeline of removing adjacent connection nodes, and inserting bus nodes 

where required should be appliable to any given starting graph, while retaining the essential 

topological characteristics.  

Re-conversion to directed 

As mentioned in the graph simplification section, the simplified output graph is undirected, as 

making it directed while it is simplified would further complicate the logic for that function, 

while converting the graph to directed once it has been completely simplified requires just a 

single traversal of the network. 

The function to convert the graph to directed is the same as the one used in the previous section, 

but with an additional consideration, the requirement that only bus nodes can have more than 

one predecessor. 

To ensure this, during the BFS process the algorithm must consider whether the node to connect 

downstream already has a predecessor. If it does, then the node type is checked, if it is a feeder 
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node then the algorithm continues directing the rest of the graph as normally, but if it not, either 

of the preceding edges to that node must be reversed. If either of the preceding nodes is a bus 

node, one of the edges is simply reversed, but if neither of them is, edges are reversed upstream, 

up to the previous bus node. During this process, it is necessary to ensure that no cycles are 

created, if reversing either of the paths creates a cycle, the other predecessor’s path is reversed 

instead. 

After this process, it is ensured that only bus nodes have more than one predecessor, so every 

key node and bus node have a single predecessor After all the edges have been redirected, the 

resulting directed acyclic graph can be processed by next step, which consists in processing 

connection nodes. 

Processing connection nodes 

The simplification algorithm takes as a base the connection nodes in the complete graph to re-

create the simplified version of the complete graph, as these nodes preserve the core topology 

information about the real network. Therefore, any adjacent connection nodes in the original 

complete graph would result in adjacent connection nodes in the simplified graph. This is not 

desirable, as the structure of the graph must follow the bus-connection-bus node explained 

earlier, so adjacent connection nodes must be processed to ensure that this does not occur in the 

final graph. 

Additionally, connection nodes are guaranteed to only have one predecessor at this stage (as 

described in the converting to directed section), though they might have several successors. In 

the final normalized structure, however, every connection node must be linked to exactly one 

upstream and one downstream bus node. 

To solve both problems, a two-step algorithm is applied. The first step consists in “splitting” 

connection nodes, by creating a copy of the original connection node for every successor. The 

resulting copies are each connected to the original predecessor of the connection node, and to 

one of its successors. The original node is removed, but each of the copies has the same 

properties as it had. 

In the second step, every connection node that has either a connection node predecessor or 

successor is removed. The successor and predecessor of the removed node are then joined. Each 
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of these steps is applied recursively, to ensure that no multi-successor or adjacent connection 

nodes remain. The complete high-level process is outlined in Algorithm 4.2. 

This two-step algorithm is computationally simple and generalizable, as it allows to simplify a 

wide range of scenarios effectively without specifically creating a matching algorithm for every 

particular case. For instance, if the adjacent connection nodes removal process was done 

independently before splitting the connection nodes, the successors to each connection node to 

be removed would have to be checked to ensure that after removing the connection node, no 

restrictions like connecting directly two bus nodes would be violated. By first ensuring that 

every connection node only has a single predecessor and successor node, the logic is 

significantly simplified. Also, since connection nodes would still have to be split afterwards, 

this algorithmic order minimizes complexity and allows generalization. 

Non-single-degree key nodes, which are also flagged as connection nodes, are not modified by 

this algorithm, as creating copies of them would incorrectly reflect non-existing elements in the 

final diagram, and removing any of them would violate one of the key requirements of this 

process, which is to preserve the topological accuracy of the resulting diagram. 
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Processing LV Links 

This function deals with the specific LV link nodes present in SPEN’s data, so this section of 

the methodology is unique to this project’s implementation. However, it can be used to deal 

with network elements with similar characteristics, like switches or breakers, where the two 

terminals of a single element are represented by two separate nodes.  
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The basic logic for processing LV links is very similar to the logic for processing other 

connection nodes. However, there are several considerations specific to LV Links that require 

that they are processed independently: 

• First, processing them as regular connection nodes could cause some LV Links to be 

deleted in the adjacent connection nodes removal process. 

• Second, LV link nodes are not split if they have more than one successor, as this would 

lead to incorrectly representing more LV links in the final diagram that actually exist in 

reality. This particular case is explained in the following section, creating synthetic 

buses 

• Third, LV link nodes that represent an open LV link in real life are reflected in the graphs 

as independent, disconnected nodes. However, as in reality they are part of the same 

link box, a dedicated algorithm checks for these cases and joins the nodes so that they 

can be represented as a single element in the final diagram, showing which two buses 

they would join if they were closed. 

LV links can be opened or closed, and that property can be inferred by their degree in the graph. 

If they are single degree nodes it means the LV link is open, as it does not connect different 

elements in the network. If their degree is higher, it means that they are closed.  

   

Figure 4-7: Connected LV links normalization (yellow nodes). 

In the original data, no LV link has a higher degree than 2, and closed LV links are represented 

by several LV link nodes adjacent through a connection node. Therefore, after processing the 

connection nodes, upstream LV links will be connected to several other LV link nodes, as shown 

in Figure 4.7. These adjacent LV links must then be simplified to represent them as a single 

node, necessary for the layout logic, that requires that LV links are connection nodes with a bus 

node upstream and another one downstream.  
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These nodes are processed like regular connection nodes, the upstream link node is removed, 

and the downstream link nodes are connected to the bus node that the upstream node was 

connected to (if the upstream node was an intersection node it would have been removed by the 

connection nodes processing). A property is added to the remaining nodes, that reflects that they 

represent closed LV links. In the rare case that there are non-LV link nodes connected to the 

upstream LV link (which could be caused by non-LV link nodes being connected to the original 

intersection node), the upstream LV link node is not removed, and instead it is connected only 

to the remaining non-LV link nodes. 

 

Figure 4-8: Disconnected adjacent LV link nodes. 

Unconnected single degree LV link nodes can either be standalone, or adjacent nodes that are 

part of the same LV link but are disconnected and therefore represented as independent nodes 

in the graph. As a result, it is not possible to determine whether such nodes are part of the same 

LV link just based solely on their neighbors, but it is desirable that the diagram represents that 

relationship, by reflecting what bus nodes would the LV link connect if it were closed.  

To identify LV link nodes that are part of the same element even if they are disconnected, it is 

necessary to perform a search by the node ids. Adjacent LV link nodes have consequent node 

ids even if they are not connected, so this property can be leveraged by checking whether other 

standalone LV link nodes have IDs adjacent to a given standalone node.  

If a match is found, a distance algorithm is used to check the minimum distance between the 

nodes in the graph, and it is checked whether that distance is higher than 2 or 3 nodes. If it is, 

an edge is added connecting both LV link nodes. The distance check is done to avoid adding an 
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extra edge to single degree LV link nodes that are already connected. Figure 4.9 shows an 

example where this case would happen.  

 

Figure 4-9: Single degree LV link nodes with adjacent IDs. 

If the input graph corresponds to a fragmented network (two or more unconnected subgraphs), 

and the adjacent id search algorithm returns a pair of LV link nodes that return an error to the 

distance search function because no path exists, this implies that the pair of LV links represent 

a link in the real network between their unconnected sections. Therefore, these nodes can be 

joined, and the unconnected subgraphs are converted into a single graph. 

After two disconnected LV link nodes are joined, one of the nodes is removed like all regular 

connected LV link nodes are, and the resulting node, which connects the two bus nodes that 

were adjacent to each standalone node, is flagged as a connection node. 

Creating and processing bus nodes 

Depending on the topological characteristics of the network section being represented, mainly 

caused by the placement of key nodes and nodes with degree > 3 inside that network, some 

deviations from the normalized structure of bus-connection-bus nodes may occur, even after 

simplifying adjacent connection nodes and LV links. These situations include adjacent key 

nodes, and connection nodes directly joined to consumer nodes or single degree key nodes. 

For example, in the source data, each distribution transformer node is connected directly to one 

or more fuses, which are then connected to the rest of the graph, as shown in Figure 4.10. Since 

both the transformer and fuse nodes are identified as key nodes, they are directly represented in 

the final diagram. However, to comply with the required bus-connection-bus structure, essential 
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for the layout and plotting logic, a bus node is necessary above the fuses and below the 

distribution transformer. 

 

Figure 4-10: Adjacent key nodes, requiring an additional bus node (Represents a distribution 

transformer and its connected fuses). 

To satisfy the structural requirement, additional bus nodes are created and added at the specific 

points in the network. Adding these nodes does not modify the basic topology of the network, 

as they only serve as auxiliary nodes that help achieve a normalized node structure, but the 

basic connectivity between every element in the network is retained.  

There are two main cases that require the insertion of bus nodes. First, when key nodes are 

adjacent. In this case the upstream node may have several key node successors, but it is 

guaranteed to only have one predecessor by the convert-to-directed algorithm. Second, when 

connection nodes (either key or non-key) have a consumer or single degree key node successor. 

In this case, connection nodes will always have degree two. 

In the first case, a bus node is inserted, and linked between the upstream key node, and all 

original successors of the key predecessor node are connected downstream from the bus node. 

For the second case, the new bus node is simply connected between the connection node and 

its successor. 
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Figure 4-11: Two scenarios requiring additional bus nodes (left), and the resulting structures 

after adding the bus nodes (right). 

Additionally, the connection nodes simplification algorithms can lead to single-degree bus 

nodes being created. The situation will only occur if a bus node with no successors has two 

adjacent connection nodes, as shown in Figure 4.12. This is also a deviation from the 

normalized node structure, as the purpose of bus nodes is to display that their successors are 

connected to electrically equivalent points (bus nodes with at least one successor), or to show 

that different sub sections of the network are connected to each other (bus nodes with more than 

one predecessor). Therefore, single-degree bus nodes are removed from the graph, as well as 

any non-key connection nodes that may have linked the removed bus nodes. 

 

Figure 4-12: Scenario that would lead to a single-degree bus node, after processing 

connection nodes. 
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4.4.3 Graph layout generation 

Inputs: Normalized graph G’, max_iterations parameter. 

Output: Normalized graph G’ with layers assigned, node layout.  

 

Figure 4-13: Graph layout phase. 

Laying out the graph nodes is an essential step in producing a visually pleasing topological 

representation of the network. Generating an orthogonal single-line diagram implies 

considering several constraints in the placement of elements, like ensuring all connections are 

orthogonal. Taking as an input the normalized graph generated in the previous step, this phase 

involves calculating the position of each node in the graph to satisfy the following constraints: 

• There are no crossings between different elements of the graph. 

• The vertical spacing between different buses is constant. 

• The horizontal spacing between every element in the network is constant 

These requirements can be satisfied if the layout follows a grid structure, in which elements are 

placed in discrete x and y positions. The node’s positions are therefore assigned in discrete y-

layers, where the corresponding layer for each node is based on its distance to the distribution 

transformer root node(s), while the discrete grid x positions of each node are calculated to 

ensure the no-crossings rule is met. 

Creating a layout that minimizes crossings between edges is NP hard, as discussed in the 

theoretical section, so exact solutions cannot be found, and heuristic methods are applied to try 

to find zero-crossing layouts for planar graphs. Even though all the graphs considered in this 

project are planar, in some cases it is not possible to generate a 0-crossing layout, because due 

to the fixed layer assignment process, some graphs are non-level-planar 
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The layout algorithm used consists in a custom implementation of the Sugiyama framework, 

incorporating a layer assignment algorithm, a crossing minimization optimization, and a 

coordinate assignment process, although with several adjustments. 

Radial graphs do not require all these steps, and a simpler algorithm like Reingold-Tilford can 

be applied to produce a layered layout that meets the requirements. However, as it will be 

explained in the Case Studies chapter, almost every network that this project has considered has 

one or several meshed connections, requiring the custom Sugiyama Method implementation 

detailed in this chapter. 

The layout algorithm is run on a subgraph Z that contains only the bus nodes in G’, which 

improves the crossing minimization performance and reduces computational load. Then, taking 

the relative positions of the bus nodes in each layer and the number of successors each bus has 

in the complete graph G’, a discrete x and y position is assigned to them. From the positions of 

the bus nodes, the position of every other node in the graph is then calculated (this process is 

further explained in the following sections). 

As explained in the solution overview, the diagram generation does not render edges, as the 

connections are drawn implicitly through symbol placement and adjusting the sizes of buses 

and vertical connectors. For every bus node, the plotted bus line spans from its own position to 

its farthest successor, all the successors to the bus node will be placed from the bus node x 

position to the right. Using the coordinate for each node as the top-most reference point for 

drawing each diagram symbol, as explained before, allows to represent the connectivity just by 

the position of each symbol and the length of the bus, as shown in Figure XXX. While the 

symbol assignment process is detailed in the plotting section, the coordinate assignment ensures 

a compatible layout, by placing every bus node’s successor on the same y-coordinate as itself, 

and on relative x positions beside the bus node, allowing the implicit symbol placement 

connections to be drawn. 

  

Figure 4-14: Node position assignment for elements inside the same bus. 
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Layer assignment 

The layer assignment process is done through a maximum distance algorithm, which, starting 

from the root nodes, (generally corresponding to distribution transformers) traverses the graph 

through BFS, assigning each node its corresponding layer. 

The layer assigned when doing BFS is only incremented for bus nodes, as it is desired that the 

successors for each bus are placed on its same y coordinate. In this way, n layers are created, 

where n is the longest sequence of bus nodes connected to the distribution transformer. If the 

algorithm finds a node whose layer is already defined when traversing the graph through a 

different path, the node’s layer is reassigned, so that every node is placed in a layer that eflects 

its longest distance to every root nodes. The layer assignment logic can be observed in 

Algorithm 4.3. 
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Creating simplified bus graph 

Layout algorithms that rely on heuristics to generate a layout that minimizes crossings become 

less effective as the number of nodes in the graph increases and are less likely to find an optimal 

or near-optimal solution. Therefore, to increase the likelihood that a zero-crossings layout 

solution is found, it is best to provide the algorithm with a graph that contains the least possible 

number of nodes. 

Given that the input graph to this phase is the DAG with normalized bus-connection-bus node 

structure discussed earlier, knowing the relative positions of the bus nodes that ensure no 

crossings would be enough to create a layout for the complete graph. Once the bus relative 

order is determined, the positions of every connection node and single degree node can be 

assigned deterministically based on their predecessor and successor bus nodes positions without 

introducing any additional intersections. 

Therefore, the layout problem can be simplified from finding a position for every node, V’, in 

graph G’, to finding a position for n (bus) nodes, with 𝑛 ⊂ 𝑁 that minimizes crossings. This 

both improves the likelihood that the resulting graph will have either zero or minimal crossings, 

and reduces the computation time required, essential because the time complexity of the layout 

algorithm is O (𝑛2) .  

The simplified graph is therefore generated from the bus nodes in the original graph, and the 

edges that connect the buses with each other. However, in the original graph, the bus nodes are 

not neighbors directly but rather connected through connection nodes placed in between them.  
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Figure 4-15: Example complete normalized graph G'. 

Therefore, to generate the simplified graph, the whole graph is traversed in search for bus nodes. 

When a bus node is found, it is added to the simplified graph, and its successors are iterated 

over. The successors of each successor in the iteration are checked, and if any of them is a bus 

node, the corresponding node and edge is added to the simplified graph. In this way, from a 

complete graph like shown in Figure 4.15, the simplified graph in Figure 4.16 is created. 

 

Figure 4-16: Resulting bus simplified graph corresponding to G' in Figure 4.14. 

The simplified graph obtained contains the same topology as the original graph, but thanks to 

its reduced node count, the crossing-minimization algorithm performance is significantly 

improved, which corresponds to the next step. 

Crossing minimization 
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As explained before, one of the requirements for the nodes positioning is that no crossings can 

be present in the final layout. To achieve this, the relative positions of the bus nodes in each 

layer in the simplified graph ensure no crossings have to be calculated. 

The implementation of the crossing minimization algorithm is done through an external library, 

Graphistry, which has a SugiyamaLayout function that performs a heuristic barycenter 

algorithm to find a layout with minimal crossings, doing 2 passes over the graph. 

A key requirement of this algorithm is that the layered graph only has edges spanning from one 

layer to the successive layer, because the algorithm does not properly minimize crossings for 

edges spanning more than one layer. To ensure this, dummy nodes are added to edges spanning 

more than one layer in the simplified graph. This dummy node feature is already implemented 

in some Python wrappers of the Sugiyama method, like Graphviz, however with the custom 

implementation around Graphistry’s heuristic minimization it is necessary to add the dummy 

nodes beforehand. 

After the dummy nodes are added, the crossing minimization layout algorithm is run. A single 

run of the algorithm does not produce optimal results, because the heuristic approach followed 

by the algorithm, consisting of assigning each node the average position of its neighbors over 

two passes, is very prone to getting stuck in local minima, which are not suitable as it is 

necessary to find a zero-crossings solution for the final diagram to be valid. 

To improve the likelihood of the algorithm to arrive at an optimal (zero crossings) solution, the 

algorithm is run iteratively (maximum set to 100 runs), and after each run, the number of 

crossings of the generated layout is calculated through a helper function. For every run, the 

order of the nodes input into the algorithm is randomized, to force the heuristic algorithm 

explore paths that might lead to an optimal solution and not get stuck in local minima. If a 

solution with 0 crossings is achieved, the algorithm stops and that layout is taken as the optimal 

solution. If it is not found, the solution with the least number of crossings is returned after 100 

runs. 
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Figure 4-17: Zero crossings layout of the graph in Figure 4.16. 

As the only change between iterations is randomly changing the order of the input nodes, this 

is a Naïve algorithm. Due to the nature of the problem, it has not been possible to find a 

deterministic solution, as randomness is the only input that can lead the algorithm to explore 

the whole solution space and find an optimal solution (if one exists), while near-optimal 

solutions provide no value. In practice the algorithm is able to deliver optimal layouts for 

medium size graphs (the ones analyzed are around 20-200 nodes), in less than 10 iterations, 

however this is further explored in the case studies and results chapters. 

The algorithm however has a significant limitation, which is non-level-planar graphs. As the 

layer assignment is fixed and based on distance from the root node, some graphs might have a 

layer assignment incompatible with a zero-crossings layout, making it impossible to find an 

optimal solution for the crossing minimization algorithm. 

The output of this algorithm is the relative position of the nodes in each layer in this layout is 

used to calculate the grid positions for the bus nodes in the graph, which is then used as the 

input for calculating the positions of the nodes in the whole graph. 

Generating the bus graph layout 

The result from the Sugiyama layout provides the relative position of each bus in the graph to 

minimize crossings. However, the absolute positioning of each node does not meet the objective 

of adjusting the nodes into discrete x positions for plotting it into an orthogonal diagram.  

The discrete y layers are already calculated, and the nodes on each layer are known. Therefore, 

it is necessary to calculate the x positions of the bus nodes that ensure nodes vertically placed 
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in discrete columns, to allow every node in the final layout to be orthogonally connected to its 

neighbors. For this purpose, this function assigns grid positions to each of the buses in the 

simplified graph, taking the same relative ordering of nodes per layer as given by the Sugiyama 

layout algorithm.  

As mentioned in the introduction to this phase, successor nodes of the same bus node are placed 

on the y position of the bus node, and on discrete x positions beside it, to its right. Therefore, 

the positions of the buses to be laid out must be such so that later, when laying out the rest of 

the nodes in the graph, there is enough space to place each bus node’s successors to the right of 

them, and no intersections are caused by this node placement. To achieve this, a property called 

size is added to the bus nodes of the simplified graph Z, which is equal to the number of 

successors in the total graph. The final assigned x positions of the nodes ensure that every bus 

node has at least size available x discrete positions to its right.  

The x assignment algorithm uses a queue of nodes, to which new nodes are dynamically added 

and allows to adjust the x position of each node in order. First, the leftmost node with no 

predecessor is taken, which is assigned an x of 1, and the result of its size+xposition is assigned 

to the corresponding layer’s x restriction function. Then its sucessors are added to the queue, 

starting with the leftmost successor (according to their laid out position), which is assigned the 

same x value, and gets its size+x position restriction recorded into the dictionary using the addx 

position function, its successor(s) are then also recorded into the queue, ensuring that the node 

to be processed next is the leftmost of its successors. This process is repeated iteratively with 

the x=1, until a node with no successors is found. This means a new column has to be created, 

and its x size is obtained from the dictionary of min x positions, taking the value corresponding 

to that layer. 

To achieve this, the function requires a helper function, which stores the minimum x position 

restriction to add the following columns in, for each layer. It ensures that new columns of nodes 

do not intersect with lower layers, by when adding a new restriction on a given layer y, 

overwriting lower restrictions on upper layers until a higher restriction is arrived at. 

When new sizes are assigned to the dictionary of x restrictions, the add x restriction function 

propagates the value upwards if it is higher than the restrictions above, ensuring that when 

placing a new column, the downstream nodes do not cross already placed nodes. 
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An special case occurs when a node with two predecessors is reached (three predecessors or 

more case is not contemplated, as it is ensured it cannot happen in previous functions). If that 

node does not have an x position assigned (i.e., it is the first time it is visited), its x position is 

assigned normally, as part of the current column). If it does have an x position assigned, its 

position is not changed, and two cases can occur: 

1. The x difference of the predecessors nodes positions is lower than the node’s “size” 

property, therefore when the successor nodes are added to the graph, they would not fit 

beside the bus node. To solve this, the x position of the whole column is displaced by 

the difference in size of the bus and the gap between the positions of the two 

predecessors. 

2. The x difference of the predecessors is enough to fit the size of the bus, in which case 

the column would not need to be displaced. However, if the rightmost predecessor has 

other successors, a gap is left below the predecessor before laying out the rest of its 

successors, to ensure the corresponding connection node to the two-predecessors node 

can be fit (this also could apply to the first case). 

To solve the first case scenario, a helper function is required that returns the topmost element 

in the current column, so that it can be added back to the queue of elements to be assigned with 

the new restriction in place. This function is a recursive call that checks for predecessors if they 

are in the same column, calling itself if it finds a predecessor in the same x position. The 

recursive call stops when a node with a predecessor with a different x position is found, and 

that node is returned. The node’s id is then assigned to the first position of the queue, and an x 

restriction is added to its layer equal to the x position of the two-predecessor-node + its size. 

This way, the x positions of the nodes in the column are re-calculated and when the algorithms 

reaches the 2-predecessor node again, the first case scenario is not triggered anymore. 
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Figure 4-18: Grid layout of the simplified bus graph in Figure 4.15. 

Once all nodes have been processed, which is detected by the queue being empty, the algorithm 

returns the resulting position dictionary for the bus nodes in the simplified graph. 

Generating the complete graph layout 

Taking as an input the positions of each bus node in the simplified graph, and the complete 

graph, the function reconstructs the whole graph by calculating the positions of every node from 

the positions of the buses. 

The first step is the assignment of connection nodes positions. In general, connection nodes are 

placed vertically on the same column as their successor bus node, and in the same row as the 

predecessor bus. However, there is an exception to this case, for nodes that have two 

predecessors, the preceding connection node that is on the higher x position cannot be placed 

directly on top of its corresponding feeder node because the two nodes would overlap with each 

other and, potentially creating new intersections that invalidate the final diagram. This special 

case is already considered when placing the bus nodes, as a vertical column gap is put in place 

to allow placing the connection nodes connecting to buses on a lower x position directly on the 

same column as their predecessor nodes.  
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Figure 4-19: Column gap to allow the placement of bus nodes with two predecessors, in the 

layout in Figure 4.18. 

Therefore, to calculate the x position for every connection node in the graph, the x position of 

their preceding bus node and their successor bus node are compared. If the x position of the 

predecessor node is less than or equal to the x position of the predecessor node, the x position 

of the connection node is set equal to the successor’s x position. However, if the x position of 

the successor node is lower (which can only occur for nodes with two successors), the 

connection node is placed on the same vertical column as its predecessor.  

 

Figure 4-20: Connection node positions. 

There is an additional scenario to consider for nodes with two successors, the existence of 

dummy nodes in the simplified graph that constraint the x position of the connection node. As 

these nodes are not present in the complete graph, when checking the predecessor and successor 

of a given connection node, the algorithm will fail to consider the x position of any dummy 

nodes in between if the x position of the real bus preceding the dummy node(s) is different to 

them. In this situation, the predecessor’s x position may be incorrectly used to calculate the x 

position of the connection node. 
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To solve this situation, it is necessary to check whether each connection node is preceding a bus 

node with more than one predecessor and with either of the predecessors being a dummy node 

(only situation in which a bus node will have dummy nodes preceding it is if the bus has more 

than one predecessor, with each predecessor having different hierarchies). The algorithm then 

calculates the first non-dummy bus predecessor of the dummy node chain through a helper 

function that recursively searches through the predecessors of each dummy node (dummy nodes 

can exist standalone or as a chain of n nodes for a difference n in hierarchy between connected 

buses). When the non-dummy predecessor is found, the algorithm compares the non-dummy 

predecessor to the predecessor of the connection node being checked. If it is the same node, it 

means that the dummy chain corresponds to that connection node, and therefore, the connection 

node’s position might be constrained by the dummy chain; therefore, the x predecessor position 

used for the connection node x calculation logic should be the first dummy node’s x position. 

If it is not the same node, the dummy chain does not correspond to that connection node, so the 

predecessor’s x is calculated as normally.  

After all the connection nodes are laid out, the remaining nodes have to be placed on their 

corresponding grid positions. Remaining nodes include degree 1 nodes like demand and key 

nodes (including open disconnected LV links, for example), and root nodes (distribution 

transformers or primary substations). 

Degree 1 nodes are assigned to their positions based on their preceding feeder nodes positions. 

First, feeder nodes are searched for, and the successors of each are iterated over. If the successor 

is a connection node it is skipped, as its position is already assigned. If it is not an connection 

node, an iterative search of an empty x position in its corresponding layer in the grid to the right 

relative to the preceding bus node’s x position is conducted. An empty x position is found if 

there are no connection nodes or other degree 1 nodes in that position, the bus node’s x position 

is considered empty too if there are no connection or degree 1 nodes already placed in that 

position, as explained previously. 

As the minimum size of each bus node is considered when calculating the positions of the bus 

nodes in the grid, it is guaranteed that for every node in the grid an empty x position is available 

that does not cause intersections with other buses. If this is not the case it would mean that the 

size of the buses has been incorrectly calculated. 
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The last step is calculating the position of the root nodes. As these nodes have no predecessors 

their position has is not calculated in the previous steps of the algorithm. The positions of these 

root nodes are less restricted than other nodes in the graph, as long as they are placed over any 

point spanning the x length of their successor bus they will cause no crossings with other 

sections of the network. They could be placed directly on top of the bus node for simplicity, but 

to obtain a more aesthetically pleasing final diagram they were placed on the x column 

corresponding to the middle point of the successor bus, which is calculated as the middle point 

between the bus itself x position and the bus’s farthest successor node’s x. The root nodes y 

position is calculated based on its hierarchy level too, which in this case corresponds to the first 

layer in the diagram. 

 

Figure 4-21: Final complete graph layout, for the sample graph in Figure 4.15. 
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4.4.4 Schematic plotting 

Generating the diagram plot takes as the main input each node’s properties and coordinates 

calculated previously. The coordinates for each node represent the topmost (and leftmost for 

buses) reference point to draw each of the diagram symbols. The graph’s edge information is 

not required by the routine, as in the layout process the nodes are assigned positions which 

ensure that by plotting a symbol to each node and adjusting the bus and connection nodes 

length, the diagram generated reflects the connectivity rules of the underlying graph and, 

therefore, the real network.  

Calculating length 

An additional property that must be calculated however is the length for the buses and vertical 

connectors. As the edge data is not used to generate the diagram, this is a necessary variable 

because the connections are drawn implicitly, and the position assignment is calculated so that 

buses and connections graphically span over different distances, generating the graphical 

connections. 

Buses, which are represented by horizontal lines, graphically have a length that spans from the 

x position of its first to last successor, or the x position of its predecessors (in case it has more 

than one), whichever is higher. Nodes with a single predecessor and successor are therefore 

assigned a length value of zero. Connection nodes, which are represented as vertical lines, are 

assigned a length equal to their own y position (which is the same as their predecessor bus 

node’s y position) minus the y position of their successor. Therefore, the minimum length 

assigned to any connection node is 1 (nodes connecting adjacent layers). Figure 4.22 (same as 

4.13) shows an example bus node, which has four adjacent successors. The bus node is therefore 

assigned length = 3, which therefore implicitly generates the connectivity information 

graphically. 

  

Figure 4-22: diagram plot of a length=3 bus node (same Figure as 4.14). 

Generating data structure output file 
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Once node sizes, positions, and other node properties that might be relevant to include in the 

diagram are determined, they are exported into a CSV file.  This CSV file serves as an universal 

input for any plotting routine to generate a visual representation of the graph in any desirable 

format.  

For this project, a plot to SVG script has been created, which reads the csv and assigns a custom 

diagram symbol to each node, generating a self-contained output vector file that contains the 

diagram visualization in SVG format. Some of the diagram symbols created for the most 

common nodes found in the data can be observed in Figure 4.23, along with some additional 

properties displayed. 

 

  

 

 

 

 

Node type 
Distribution 

Transformer 
Fuse Bus 

Closed LV 

Link 

Opened 

LV Link 

Consumer 

group 

Properties 

displayed 
· Node ID 

· Node 

ID 
· None 

· Node ID 

· Status 

(color) 

· Node ID 

· Status 

(color) 

· Number of 

consumers 

· Total 

demand 

       

Figure 4-23: Schematic symbols used in the final diagram. 

The SVG (Scalable Vector Graphics) format was chosen to generate the plot due to its 

versatility, scalability, and broad compatibility across platforms and devices. Representing the 

diagram in a vector format is optimal due to the geometric structure of the underlying data. This 

approach allows more efficient storage and manipulation compared to raster image formats like 

PNG or JPEG, which not only would require significantly more space, but also would not 

preserve resolution when scaled. 

The resulting diagram plot from the example graph used in the layout section can be observed 

in Figure 4.24. 
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Figure 4-24: Final diagram, for the sample graph in Figure 4.15. 

5 Case Studies 

To validate the results of the automatic diagram generation algorithm, a case study approach is 

used, in which several individual samples of LV networks of a wide variety in size, and 

structure, are represented as diagrams using the approach described in the methodology section, 

measuring several metrics to gauge the performance of the algorithm and determine if the 

produced diagram is valid. 

5.1 Experimental Setup 

5.1.1 Overview of network characteristics 

Eight case studies are conducted on networks spanning a range of sizes and topological 

complexities: small (<500 nodes), medium (500-2000 nodes) and large (>2000 nodes) sized 

networks. The latter case studies feature the most demanding networks. Key characteristics of 

the 8 networks can be observed in Table 5.1. Topological complexity is quantified by the 

number of meshed connections (M), which is equal to the number of cycles in the graph, or 

equivalently, the number of bus nodes with two predecessors in the final graph. A higher value 

of meshed connections increases the difficulty of producing a crossing free layout and allows 

to test the performance of the layout algorithm on increasingly complex networks. 

Table 5-1: Case study networks characteristics 

Case Study NNODES M NCONSUMERS 

#1 Small Radial 

Network 
69 0 14 

#2 Small Quasi-

Radial Network 
145 1 17 

#3 Small Meshed 

Network 
239 2 71 
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#4 Medium Sized 

Network 1 
611 2 208 

#5 Medium Sized 

Network 2 
1126 5 482 

#6 Medium Sized 

Network 3 
1233 4 472 

#7 Large Network 2282 11 844 

#8 MV Network 1810 7 0 

 

 

5.1.2 Result validation 

Each case study will measure several metrics in addition to validating the final diagram, to 

compare the performance of the algorithm under different scenarios. The metrics that will be 

measured include: 

• k: number of crossings in the final layout 

• N_iter: number of iterations of the layout algorithm required to achieve that number of 

crossings 

• NL : number of nodes laid out in the final graph 

• R: runtime in seconds (s). 

The resulting diagrams will only be considered valid if the value of k is equal to 0, as a layout 

with crossings will cause elements in the final diagram to graphically overlap with each other, 

generating diagrams that represent incorrect connectivity information. 

5.1.3 Input parameters 

To generate comparable results among different case studies a set of standard input parameters 

is used, which can be observed below: 

Max_consumers_per_group = 100 
Max_consumers_per_bus = 100 
Max_layout_iterations = 100 
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These parameters ensure that only the key topological information is reflected in the final 

diagram, which is desirable to compare the results among different case studies. The effect of 

increasing or decreasing the max consumers variables is validated in case study 1.  

The value of max layout iterations serves as a baseline for testing whether the algorithm is able 

to find an optimal solution in a reasonable number of iterations. The effect of further increasing 

this metric for some graphs will be analyzed in the results section of this chapter. 

5.1.4 Objectives 

Each case study has a slightly different focus; the first three case studies examine how the 

classification and simplification algorithms process the underlying network data to generate an 

accurate representation of the topological characteristics of the network. On the other hand, the 

next five case studies focus on analyzing the performance of the layout algorithm and testing 

its ability to generate crossing free results, and therefore valid diagrams. The last case study 

additionally tests the versatility of the algorithm by generating a MV network diagram, 

verifying its capacity to use data with different characteristics. 

5.1.5 Hardware:  

The case studies were performed on a standard laptop with 13th Gen Intel Core i7-13620H and 

16 GB DDR4 RAM. All timings reflect single-threaded execution. 
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5.2 Evaluation of Case Study Outcomes 

5.2.1 Case Study 1: Small Radial Network 

Network description 

For the first case study, the algorithm will be demonstrated on a small radial network with a 

reduced number of consumers and total node count. The objective of the case study is to explain 

the low-level mechanism of the diagram generation, and how the different input variables can 

be tuned to obtain different levels of detail in the representations.  

The network section chosen is located in the North Side Neighborhood in Glasgow. It serves 

14 different consumers, has a single distribution transformer and 3 isolated LV links. The 

network’s GIS representation can be observed in Figure 5.1. 

(a) (b) 

  
Figure 5-1: (a) Case study 1 network GIS representation (b) Zoomed in version showing there 

are three independent feeders branching down from the transformer. 

Algorithm’s output 

 

Figure 5-2: Case study 1 output schematic. 

Graph laid out with 0 crossings, achieved after 1 iterations 
Total Node Count: 69 
Consumer Node Count: 14 
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Total Nodes Laid Out: 13 
Meshed Node Count: 0 
Runtime: 0.102683048248291 seconds 

Conclusions of the case study 

The algorithm produced a diagram with the expected result given the standard input parameters, 

as it grouped all consumers along each one of the feeders, along with the corresponding opened 

LV links in each feeder. The fuses connected to each of the transformer’s feeders were also 

represented, each with their corresponding id. 

The values for max_consumers_per_group and max_consumers_per_bus were set to the 

standard values explained before, 100. However, to validate the impact of these parameters on 

the final diagram, three additional diagrams have been generated, each with a different set of 

parameters. The results can be observed in Figure 5.3: 

 

 

Max_consumers_per_bus: 100 

Max_consumers per_group: 5 

 

Max_consumers_per_bus: 10 

Max_consumers per_group: 100 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

CASE STUDIES 

 

101 

 

Max_consumers_per_bus: 1 

Max_consumers_per_group: 1 

Figure 5-3: Case study 1 parameter adjustment results. 

The results prove that decreasing the value of max_consumers_per_group, while holding 

max_consumers_per_bus constant, decreases the sizes of consumer groups on each bus, and 

therefore a larger number of groups is required to represent all consumers, adjusting the level 

of horizontal detail in each bus. Conversely, decreasing the value of max_consumers_per_bus 

increases the level of detail into the network’s vertical structure, as it shows more intermediate 

buses and therefore displays the electrical distance between different elements in the network 

more exactly 

In the third diagram, it is demonstrated that setting max_consumers_per_bus to 1 does not 

guarantee that the final number of consumers per bus is going to be exactly 1. As explained in 

the methodology section, if several consumers are connected to the same node in the graph, 

they are at the same electrical distance and therefore all appear on the same bus in the final 

diagram. Additionally, some simplification steps can lead to this situation happening even if 

they were not exactly on the same node, but at equivalent distances. 

Overall, the results to this case study have proven the algorithm produces the expected results 

in small radial networks, and that the parameters can be used to tune the final diagram, but some 

properties are not controllable 
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5.2.2 Case Study 2: Small Quasi-Radial Network 

The second case study takes as an input a small network, with almost radial characteristics. In 

this case, however, the network has two transformers, which due to the two root nodes causes 

a node to have two predecessors and therefore, the graph has a meshed connection. The 

objective of this case study is to test the algorithm on an additional simple network, to which 

the resulting schematic can be intuitively compared, and to test if it can successfully handle the 

meshed connection to ensure the final layout has no crossings.  

This network section is located in south Glasgow, in the Kingston neighborhood. It features 17 

consumers, 2 transformers and a single opened LV Link. One of the transformers is only 

connected through a single feeder to the rest of the network, while the other has 5 feeders that 

branch out radially to the 17 consumers. Its GIS representation can be observed in Figure 5.4: 

 

Figure 5-4: Case Study 2 network GIS representation. 
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Output 

 

Figure 5-5: Case study 2 output diagram. 

Graph laid out with 0 crossings, achieved after 1 iterations 
Total iterations: 1 
Total Node Count: 145 
Consumer Node Count: 17 
Total Nodes Laid Out: 15 
Meshed Node Count: 1 
Runtime: 0.12869524955749512 seconds 
 

Conclusions: 

The resulting diagram aligns with the expected result. The consumer nodes along each of the 

transformer’s feeders, and the opened LV link were grouped and displayed downstream from 

their respective fuse. The two transformers are connected through a bus in the second layer, 

right after the fuses.  

The position for the bus connecting the two transformers was also correctly laid out, as if it had 

been assigned a position between two feeders of the 5-feeder transformer, a collision would 

have been caused. This solution was found in the first iteration, meaning that a single pass of 

the heuristic algorithm was enough to find the optimal solution. Time to compute was slightly 

longer than for the first case study, which is expected given the larger size of the graph. 
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This case study also demonstrates that the plotting routine can correctly calculate the length of 

buses that have two predecessors and plot the corresponding bus accordingly. 
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5.2.3 Case Study 3: Small Meshed Network 

The network chosen for this case study is the larger network from which the subgraph used in 

the first case study was taken. Although the network’s total node count is reduced, it features 

several meshed connections and LV links that allows to test how the algorithm handles these 

cases. 

The network contains a single distribution transformer, several opened and closed link boxes, 

and 71 consumers. Figure 5.5 shows its GIS view 

 

Figure 5-6: Case study 3 network GIS representation. 

One particular feature of the network is that it contains both ends of an open link box (can be 

observed at the top of Figure 5.6), which are topologically connected to different sections of 

the equivalent network graph, but that the algorithm should identify by their adjacent IDs. 
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Output: 

 

Figure 5-7: Case study 3 output diagram. 

Graph laid out with 0 crossings, achieved after 1 iterations 
Total iterations: 1 
Total Node Count: 145 
Consumer Node Count: 17 
Total Nodes Laid Out: 15 
Meshed Node Count: 1 
Runtime: 0.12869524955749512 seconds 
 

Conclusions: 

The resulting diagram reflects the anticipated meshed topology; in this case, there are two buses 

with two predecessors, while the rest of the network remains radial. The crossing minimization 

problem is more complex for the present case compared to case study 2, as the relative position 

of buses over several different layers was constrained to ensure the rightmost buses connection 

causes no crossings. Still, the heuristic arrived at the optimal solution over a single iteration, 

demonstrating its efficiency and effectiveness for graphs with a low number of nodes and 

meshed connections. 

Additionally, the algorithm correctly identified the adjacent but disconnected LV links, 

representing them with the standard LV link symbol (5243019), and its corresponding open 

state (green), while visually indicating its relationship with the two adjacent buses.  
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To validate the diagram’s topology in more detail, each section is individually analyzed and 

compared to the original GIS representation in Figure 5.8. 
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Second two-

predecessor bus, 

connecting the second 

feeder’s other branch, 

to the open LV Link, 

5243019 

Figure 5-8: Comparison of original network sections and their diagram representation. 
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5.2.4 Case Study 4: Medium Sized Network #1 

The network selected for this case study is a 611-node section of the East Glasgow LV grid, 

which contains 208 consumers, 2 transformers and several LV links. Its GIS representation can 

be observed in Figure 5.9. 

This case study aims to test the performance of the algorithm when the scale of the networks 

represented is increased, but their topological complexity is kept constant, as the number of 

meshed nodes in this network is the same as in the previous case study (2). 

 

Figure 5-9: Case study 4 network GIS representation. 

Output: 

 

Figure 5-10: Case study 4 output diagram. 

Graph laid out with 0 crossings, achieved after 1 iterations 
Total iterations: 1 
Total Node Count: 145 
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Consumer Node Count: 17 
Total Nodes Laid Out: 15 
Meshed Node Count: 1 
Runtime: 0.12869524955749512 seconds 

Conclusions: 

The algorithm successfully generated the diagram without crossings, only requiring one 

heuristic pass of the layout algorithm., and the runtime increased linearly with the number of 

nodes.  

This linear relation exhibits that when the number of meshed connections is constant, the 

algorithm exhibits the expected O(n) time complexity, as theorized on the methodology section. 

If the layout had required more iterations, its time complexity would have likely increased, 

which is further tested in the next case studies. 

These results confirm that the node count does not significantly affect the effectiveness of the 

layout algorithm, for a fixed number of meshed connections. 
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5.2.5 Case Study 5: Medium Sized Network #2 

A larger, and more meshed network is used for this case study, which contains 1126 nodes, 482 

consumers and 5 transformers. It corresponds to a grid section located in Greasby, in the Wirral 

Peninsula, and its geographical representation can be observed in Figure 5.11. 

 

Figure 5-11: Case study 5 network GIS representation. 

The additional meshed connections created by the increased number of transformers and 

redundant supply points, typical of suburban distribution gids, significantly increase the 

network’s topological complexity. The case study therefore serves as a benchmark for testing 

the effect of this increased complexity and comparing its results with similarly sized networks 

with less meshed connections. 

Output 

 

Figure 5-12: Case study 5 output diagram. 

Graph laid out with 0 crossings, achieved after 4 iterations 
Number of iterations 4 
Total Node Count: 1126 
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Consumer Node Count: 482 
Total Nodes Laid Out: 64 
Meshed Node Count: 5 
Runtime: 5.069687604904175 seconds 

Conclusions 

The algorithm was successful in finding a zero-crossing layout, which was achieved after 4 

iterations. This aligns with the expectations due to the increased topological complexity. 

The requirement for 4 iterations suggests that the first three attempts encountered local 

minimums in the solution space. The success on the fourth iteration demonstrates the value 

provided by the naïve randomization algorithm in succeeding to find the optimal solution, 

escaping previous suboptimal configurations. 

The algorithm’s runtime was 3.25 times higher compared to Case Study 2, even though its total 

node count was only 2 times larger, and the number of nodes laid out was smaller. This confirms 

that for layouts that require several passes of the heuristic layout algorithm, time complexity is 

not linear to the number of nodes and is most likely also driven by additional factors like the 

number of meshed nodes and nodes laid out. 
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5.2.6 Case Study 6: Medium Sized Network #3 

Located in Moreton, Wirral Peninsula, the network for this case study is comprised of 1233 

nodes and serves 472 consumers through 4 distribution transformers. The characteristics of the 

network are similar to the one used in case study 5, with several meshed connections. 

 

Figure 5-13: Case study 6 network GIS representation. 

Output 

 

Figure 5-14: Case study 6 output diagram. 

Graph laid out with 2 crossings, achieved after 20 iterations 
Number of iterations 100 
Total Node Count: 1233 
Consumer Node Count: 472 
Total Nodes Laid Out: 90 
Meshed Node Count: 4 
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Runtime: 6.428042888641357 seconds 
 

Conclusions 

After 100 iterations, the best solution the algorithm could find is a layout with two crossings, 

which was identified in iteration 20, after which it kept searching for a zero-crossings solution 

although unsuccessfully, producing a flawed diagram which contains overlapping elements, as 

shown in Figure 5.15. The diagram contains a bus with 4 predecessors, but in reality, it 

represents 2 overlapping buses with 2 predecessors each, which is the maximum number each 

bus can have. This incorrectly reflects connectivity information, making the diagram unsuitable 

for operational use. 

 

Figure 5-15: Overlapping buses in the final diagram. 

The reason why the algorithm was unable to find a solution with zero crossings lies on the 

underlying network configuration. Figure 5.16 contains a representation of the underlying 

simplified graph with the layout generated by the algorithm: the two crossings are created by 

the relative positions of the bus nodes at the right end of the graph.  

 

Figure 5-16: underlying non-level-planar graph of network 6. 

This layout is actually the optimal solution, given that for the fixed set of given layers and the 

node structure, there is no other relative ordering of nodes that produces a solution with less 
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crossings. As explained in the methodology section, the layer for each node is fixed, which 

leads to layouts that contain structures like this impossible to solve for a zero crossings case, 

and they are therefore referred to as non-level-planar.   

This highlights a major limitation of the algorithm: when a network contains non-level-planar 

sub-structures, like the one found in the present case, the layout will contain unavoidable 

crossings for a fixed set of layers. In such situations (in which the underlying graphs contain 

crossings), the system warns the user that the representation is invalid and can be configured to 

either generate or omit the diagrams. 
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5.2.7 Case Study 7: Large Network 

The largest case study examines a 2282 node network, located in Huyton, east of Liverpool, 

which serves 844 customers through 5 transformers. This network contains a large number of 

meshed connections and, therefore, serves as the most demanding benchmark for the algorithm, 

allowing to test its capabilities and limitations. 

 

Figure 5-17: Case study 7 network GIS representation. 

Output: 

 

Figure 5-18: Case study 7 output diagram. 

Graph laid out with 8 crossings, achieved after 77 iterations 
Number of iterations 100 
Total Node Count: 2282 
Consumer Node Count: 844 
Total Nodes Laid Out: 126 
Meshed Node Count: 11 
Runtime: 21.181025505065918 seconds 
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Results 

The algorithm was unsuccessful in finding a crossing-free layout, with 8 crossings being the 

best solution it could find after 77 iterations, causing significant overlapping between different 

elements in the diagram. 

The underlying bus layout can be observed in Figure 5.19. As in case study 6, the layout 

contains several non-level-planar sub-structures, so there exists no zero-crossing solution for 

the given set of layers. These structures therefore make the algorithm unable to produce a valid 

diagram. 

 

Figure 5-19: Underlying non-level-planar graph of network 7. 

The 21.18 second runtime illustrates how computational cost escalates exponentially when the 

number of nodes and meshed connections in the network increases. This is also impacted by 

the algorithm being run the maximum 100 iterations, among other factors. 

Overall, the results for this case study also demonstrate the practical limitations of the 

algorithm, which is not able to find solutions that might require dynamically adjusting the layer 

of each node to create a level-planar layout and subsequently find a zero-crossings solution. 
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5.2.8 Case Study 8: MV Network 

Although the diagram representation of MV networks falls outside the formal scope of this 

project, a brief exploratory case study has been conducted to test the algorithm’s versatility. The 

network being tested is a 11kV rural network located in East Lothian, Scotland, 

It includes 128 MV/LV transformers, 2 HV/MV transformers, and several switches and 

protection devices which, for simplicity, are treated and represented as LV link nodes by the 

algorithm. 

 

Figure 5-20: Case study 8 network GIS representation. 

Results 

 
Figure 5-21: Case Study 8 output diagram. 

Graph laid out with 0 crossings, achieved in 27 iterations 
Number of iterations 27 
Total Node Count: 1810 
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Consumer Node Count: 0 
Total Nodes Laid Out: 643 
Meshed Node Count: 7 
Runtime: 17.867753505706787 seconds 

 

Figure 5-22: Case study 8 output diagram, zoomed-in view. 

Conclusions 

The algorithm was able to successfully generate the crossing-free network diagram, despite its 

large size and meshed topology, having found the optimal solution after 27 iterations, and a 

total runtime of 17.87 seconds. 

Because the original network does not include any consumer nodes, and due to the large number 

of switches and distribution transformers it contains, the simplification and post-processing 

algorithms only reduced the node count from 1810 to 643 nodes, hence the large size of the 

resulting diagram. 

This case study shows that the algorithm is versatile, and capable of producing crossing-free 

layouts for large and topologically complex networks even outside of its main scope around LV 

networks. With input parameter tuning and minor adjustments, the algorithm can be redirected 

to successfully generate diagrams for other sources of network data. These results also prove 

that as long as the graphs along with the fixed set of layers are level-planar, the algorithm is 

able to find solutions for complex configurations. 
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6 Results and Discussion 

6.1 Summary of Results and Key Findings 

Table 6.1 contains a summary of each case studies’ results, along with the characteristics of the 

input networks. 

Table 6-1: Summary of case studies results. 

 Input Results 

 NNODES M k N_iter NL 
Runtime 

(s) 

Case Study 1 69 0 0 1 13 0.1 

Case Study 2 145 1 0 1 15 0.13 

Case Study 3 239 2 0 1 36 0.58 

Case Study 4 611 2 0 1 67 1.57 

Case Study 5 1126 5 0 4 64 5.07 

Case Study 6 1233 4 2 20 90 6.43 

Case Study 7 2282 11 8 77 127 21.18 

Case Study 8 1810 7 0 27 643 17.87 

 

The algorithm generated valid diagrams for 6 of the 8 networks studied, as it was able to find 

zero crossing layouts for their underlying graphs. For case studies 6 and 7 the algorithm was 

not able to find a zero crossings solution for their underlying graphs and therefore generated 

invalid diagrams. Runtime increased significantly for larger and more meshed graphs. 

The obtained results validate the following key findings: 

Valid diagrams for most cases, failures align with expectations. The first 4 case studies 

produced a successful layout with zero crossings on the first iteration, reflecting the algorithm’s 

effectiveness in small-sized, low-meshed networks.  For case study 5, a significantly more 

meshed network, the algorithm also produced a valid diagram, although it required several 

layout iterations. The algorithm was unable to generate a zero-crossings solution for case 

studies 6 and 7, and therefore, a valid final diagram. However, this aligns with the expected 

result, as both networks have an underlying non-level planar graph which is generated by the 

fixed layer assignment process. 

Runtime scales with size and meshedness. Runtime increased significantly in relation to the 

number of nodes in the graph, remaining almost linear for less complex networks (only ~0.1 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MÁSTER’S IN INDUSTRIAL ENGINEERING 

 

RESULTS AND DISCUSSION 

 

121 

seconds for the simplest cases), but becoming exponential as the network complexity, both in 

size and meshedness, increased, up to 21.18 s for the most complex network. This is caused by 

the longer graph traversals required for several algorithms, as well as the larger number of 

iterations of the layout algorithms. A smaller number of traversals (by for example integrating 

several algorithms together) could potentially lower the runtime for larger networks. 

Input parameter effects are predictable and controllable. Consumer grouping parameters 

tune horizontal and vertical detail as intended in the final diagram. Decreasing 

max_consumers_per_bus increases vertical resolution, showing more detail into the network’s 

topology by displaying more buses, while decreasing max_consumers_per_group allows to 

show more horizontal grouping granularity, showing higher numbers of consumer groups 

connected at the same network level. 

MV network case study validates generality. The algorithm was also successful in producing 

a valid diagram for a MV network, out of the formal project’s scope, demonstrating the 

proposed pipeline is generalizable to successfully generate valid diagrams for networks with 

significantly different topological characteristics than the LV networks on which it is mainly 

implemented. 

Randomized naïve iterations of the layout algorithm improve results. Re-running the 

crossing minimization section of the layout algorithm with randomized inputs allowed the 

algorithm to escape local minima and find optimal solutions for case studies 5 and 8, whose 

solution was not found on the first algorithm iteration. For case studies 6 and 7, even though it 

could not find a solution with no crossings due to the non-level-planarity of the graphs, later 

iterations also successfully reduced the number of crossings. This performance is further 

analyzed in the following section. 
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6.2 Layout Algorithm Performance Analysis 

To visualize and benchmark the performance of the layout  algorithm, a simulation for each of 

the three most demanding case studies performed has been conducted, in which the layout 

algorithm exclusively was run 30 times with different values for the number of random naïve 

iterations,  to test how increasing the maximum number of iterations can lead the algorithm to 

find more optimal solutions, and how the execution time increases in relation to the number of 

iterations. 

Each test was conducted using one of the following values of maximum iterations, for the 

networks in case studies 6, 7 and 8: 

N_max_iterations = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 

30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 

200, 250, 300] 

The results can be observed in Figure 6.1: 

 

Figure 6-1: Layout algorithm performance, case studies 6, 7 and 8. 
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As the figures illustrate, the tests for each network produced significantly different results. 

Starting with the network used in case study 6, the smallest out of the ones tested, the algorithm 

found the best solution (2 crossings) in only two iterations. However, due to the random nature 

of the algorithm, in the following tests it did not converge to that optimal solution until the 7th 

test, when 7 max iterations were used. As expected, for higher iteration tests, the algorithm 

always managed to find the best solution, which is the corresponding to two crossings, as 

explained in the case study. Execution time increased linearly, with the number of iterations, as 

expected, but was always shorter than 1 second, indicating that the layout optimization phase 

represents only a small fraction of total time to run the algorithm, which in case of case study 

6 was 6.42 seconds for 100 max iterations. 

In contrast, the results for the tests done on the larger and more complex case study 7 network, 

showed that the algorithm required a significantly larger number of max iterations to find the 

best solution it found among all tests (8 crossings), around 80. It also shows a greater variance 

in the results for higher max iteration values, which highlights that the randomness of the 

algorithm is correlated with the complexity of the network, suggesting that a higher number of 

maximum iterations should be used to maximize the odds of obtaining the optimal solution. 

Runtime also scaled linearly, with similar values to the case study 6 network, but a higher slope 

which is likely caused by the increased complexity and size of the network. 

Finally, the results for the HV network used in case study 8 show significant differences, as in 

this case the algorithm did find a zero crossings solution. This crossing-free solution was first 

found in the 15 max iterations test, and the algorithm managed to consistently find it when the 

number of max iterations was higher than 30. This proves that when the underlying network 

contains no non-level-planar substructures, the algorithm can effectively find the optimal 

solution within a small number of iterations. The execution time figure shows a significant 

variability after 10 max iterations because the algorithm stops after finding the 0 crossings 

solution, leading to random total execution times for runs that are able to find that solution, and 

therefore uncorrelated with the number of max iterations. For tests that did not converge to the 

optimal solution (max iterations<=10 and ==25), the algorithm did have a runtime proportional 

to max iterations, and its slope can be observed to be significantly higher than in the two 

previous simulations, further proving that the slope is correlated with the size of the network 

laid out.  
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6.3 Method Limitations and Design Trade-offs 

The results of the case studies also highlight several limitations and trade-offs  

Fixed layer assignment vs level planarity. The algorithm assigns node layers based solely on 

distance from the roots, before crossing minimization. This fixed layer assignment provides 

simplicity and creates intuitive layers, that allow to easily represent topological distance from 

the transformer. This however causes a significant limitation, that the creation of non-level-

planar structures is not avoided. An algorithm that dynamically checks level planarity and 

adjusts the layers to ensure it would be necessary to solve this, but at the cost of increased 

complexity and without certain success, as it is another NP-hard problem. 

Naïve heuristic approach vs deterministic solution. The success of the crossing minimization 

algorithm relies on the naïve heuristic algorithm being able to escape local optima to find the 

optimal solution, which is increasingly unlikely as network size increases and requires more 

iterations. The approach is effective for simple networks, but more complex cases might benefit 

from a more deterministic approach, through MILP, for example, although this would likely 

increase runtime significantly. 

Limited parametric tuning. The input parameters allow to adjust the maximum number of 

consumers in each bus and group, up to a certain degree. The number of consumers on each bus 

in some cases can be larger than the specified threshold due to several consumers being 

connected at the same topological point, or due to the graph simplification and normalization 

process, limiting the capability of tuning the final diagram through changing the input 

parameters. Additionally, when several groups of consumers are created in the same bus node, 

the groups generally do not reflect clusters consumers close to each other, which could be 

implemented through a more complex algorithm that takes this into consideration when creating 

clusters. 

Exponential time complexity for complex networks. Although for the majority of cases 

studied, the algorithm was able to generate the single line diagrams in reasonably short times 

(less than 5 seconds), it has been shown that for more complex networks runtime increases 

exponentially. This might make the algorithm unsuitable for increasingly meshed and complex 

graphs. 
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7 Conclusions and Future Work 

This thesis demonstrates and delivers a reproducible pipeline that can be used to translate LV 

network GIS data into standard, readable, single-line diagrams that faithfully represent the 

underlying topology of the network. The separation of graph simplification, layout and symbol 

plotting enables a modular approach that can be tuned via several inputs to fit the data 

characteristics and to adjust characteristics of the final diagram, which contains a simplified 

view of the underlying network topology and key characteristics. The method produced six 

valid diagrams for eight diverse real networks studied, with the two unsuccessful cases 

explained by level-planarity violations caused by the fixed layer assignment algorithm. The 

runtime for these cases increases linearly with the number of nodes for the least complex 

networks but rises exponentially for larger and more meshed networks, although remaining on 

a timescale suitable for interactive or near interactive use on personal computing hardware. 

Some suggested areas for further development and potential result improvement include: 

• Substitute the fixed layer assignment and heuristic crossing minimization for a MILP 

approach that aims to solve a two-objective problem, jointly optimizing the layer 

assignment and relative position of nodes inside each layer to reliably produce valid 

zero-crossings layouts, not constrained by fixed layer assignments which might be non-

level-planar. However, this approach, if feasible, might have an excessive time 

complexity that could make it impractical. 

• Heuristic approaches to adjust the layer assignment. Detection of level planarity is 

complex, however, iteratively detecting smaller non-level planar structures inside a 

larger graph might be feasible, and changing the layer of some nodes in the structure 

while checking level planarity iteratively might be a valid heuristic approach for 

creating level planar graphs that can be laid out using the current crossing minimization 

and layout algorithms. 

• Pre-computing layouts for different values of max_consumers_per_bus. As 

changing the value of max consumers can change the resolution into network details, 

effectively changing the number of bus nodes in some network sections, this can 

potentially cause non-level planar structures to disappear as the layers change. Although 

this is not an optimal solution as it removes the capability of tuning the input parameters, 
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it might allow to generate single line diagrams of some networks that could not be 

generated using a different max_consumers_per_bus parameter. Pre-computing the 

layouts with several parameter values could allow storing what values produce suitable 

diagrams. 

• Interactive final diagram. From the final layout, an interactive implementation of the 

diagram could be created, through a web-based application for example, that allows 

features like selecting elements to view more detailed information, selecting two points 

to create traces between elements in the network, or visualizing with more detail certain 

consumer clusters that the operator selects, for example. 

• Partitioning the layout. For larger networks for which it might not be feasible to 

generate a single line diagram without components overlapping (due to complexity and 

non-level-planarity, a possible solution could be to compute several smaller layouts 

independently and later generating the complete layout by unifying the smaller sections. 

This would however require considering several constraints, like keeping boundary 

connection sections on the edges of the smaller sub-layouts, so that when creating the 

unified layout later, no connections overlap with other network elements. 

• Geographical element anchoring. The pipeline could be re-focused to generate a 

hybrid representation of the network that retains relative geographical positions for 

some elements like transformers, while implementing diagram representations of other 

sections like clusters of consumers. This would require a significantly modified layout 

and plotting algorithm that also takes as an input the geographical positions of different 

elements, and whether it is desired to keep the corresponding element anchored to each 

position. 

• Generalized API. Provide a more generalized API to tune model parameters and labels, 

improving compatibility and easing adaptation to additional data sources. 
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9 Appendix I: Alignment with the UN Sustainable Development Goals 

The project contributes to sustainable development by helping utilities and system operators 

better understand their electric distribution networks. Automatically generating single-line 

diagrams from raw GIS data, enables, more efficient grid decisions, and enables better 

observability at the distribution level. The result is a practical tool that system operators can 

adopt within existing tools to improve reliability, integrate clean generation, and plan upgrades 

with fewer resources. The project aligns more specifically with the following SDGs: 

SDG 7: Affordable and Clean Energy. The method supports wider access to reliable and 

modern energy services by giving planners and operators an immediate picture of the 

topological characteristics of distribution networks. These diagrams speed up studies for 

connecting rooftop solar, community batteries, electric vehicle chargers and heat pumps, 

located at the distribution level. Additionally, the greater observability provided by schematics 

is essential for the operation of active distribution networks due to the instability caused by the 

growing integration of DERs. In short, better visibility enables more affordable operations and 

smoother integration of clean energy. 

SDG 9: Industry, Innovation and Infrastructure. The effective development of modern 

infrastructure depends on access to high-quality information. Automating the production of 

single-line diagrams replaces a slow, manual process with a repeatable and scalable one. The 

pipeline can be implemented to guide the decisions of planning engineers and improve the 

efficiency and resilience of distribution networks. Improved grid infrastructure is essential for 

all countries, but especially for developing ones, which can obtain improved returns through 

more efficient investments. 

SDG 13: Climate Action. Climate goals require faster electrification and smarter grids. By 

minimizing the effort to map and understand distribution networks, the project allows 

improvements to DER management and network planning, through greater observability, which 

are both key in the transition to 100% clean energy power systems. 

 


