• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fine-tuning transformer models for M&A target prediction in the U.S. ENERGY sector

Thumbnail
Ver/
IIT-25-118R (4.320Mb)
IIT-25-118R_preview (3.407Kb)
Fecha
2025-12-12
Autor
Coronado Vaca, María
Vaquero Lafuente, Esther
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This study explores the application of transformer models directly for classification in predicting mergers and acquisitions (M&A) targets within the U.S. energy sector. The primary objective is to evaluate the capability and performance of various transformer-based models in directly predicting M&A target companies, while the secondary objective investigates the relationship between target companies and renewable energy terminology in their annual reports. We present a novel approach to predicting M&A targets by utilizing cutting-edge Natural Language Processing (NLP) techniques, such as fine-tuned transformer LLMs (Large Language Models) for direct classification. We analyze textual data from 200 publicly-listed US energy companies’ SEC-filings and employ FinBERT, ALBERT, and GPT-3-babage-002 as predictive models of M&A targets. We provide empirical evidence on LLMs’ capability in the direct classification of M&A target companies, with FinBERT utilizing oversampling, being the top-performing model due to its high precision and minimized false positives, critical for precise financial decision-making. Additionally, while the study revealed key differences in target and non-target report characteristics, it finds no significant evidence that M&A target companies use more renewable energy-related terminology. It is the first paper applying fine-tuned transformer-LLMs to predict M&A targets, effectively showcasing their capability for this task of direct classification as predictive models.
 
URI
https:doi.org10.108023311975.2025.2487219
http://hdl.handle.net/11531/100516
Fine-tuning transformer models for M&A target prediction in the U.S. ENERGY sector
Tipo de Actividad
Artículos en revistas
ISSN
2331-1975
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Mergers and acquisitions (M&A); renewable energy; takeover target prediction; green M&A; natural language processing (NLP); transformer models; large language models (LLM)
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias