• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Stochastic Adaptive Robust Optimization Approach to Build Day-Ahead Bidding Curves for an EV Aggregator

Thumbnail
View/Open
IIT-25-221R_preview (3.647Kb)
Date
2025-07-08
Author
García Cerezo, Álvaro
Baringo Morales, Luis
García González, Javier
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
This paper proposes a stochastic adaptive robust optimization approach to build the bidding curves of an aggregator managing a fleet of electric vehicles (EVs) participating in the day-ahead and intraday electricity markets. These bidding decisions are made hourly, one day in advance, within an uncertain environment. In this context, uncertainties comprise market prices, as well as driving requirements of EV users. These uncertainties are accounted for by using a set of scenarios and confidence bounds, respectively. In this way, this paper combines classic stochastic optimization techniques with adaptive robust optimization, realistically modeling multiple sources of uncertainty. EVs are equipped with vehicle-to-grid technology so that they can both buy and sell energy to the market. The resulting stochastic adaptive robust optimization problem is solved by using the column-and-constraint generation algorithm, which ensures the attainment of the optimal solution in a finite number of steps. Simulations are run by applying CPLEX under GAMS. A case study demonstrates the effectiveness of the proposed approach. Results show that the bidding decisions of the EV aggregator are sensitive to the uncertainty in driving requirements of EVs, which can be controlled through the uncertainty budget. This highlights the usefulness of the proposed approach to prevent the attainment of suboptimal bidding decisions. Moreover, the good performance of the algorithm in terms of obtaining the optimal solution with computational times lower than 6 min suggests potential for model expansion and increased complexity in future works.
 
URI
https:doi.org10.1109TIA.2025.3587193
http://hdl.handle.net/11531/100531
A Stochastic Adaptive Robust Optimization Approach to Build Day-Ahead Bidding Curves for an EV Aggregator
Tipo de Actividad
Artículos en revistas
ISSN
0093-9994
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Adaptive robust optimization, aggregator, bidding strategy, electric vehicle, electricity market, stochastic programming, uncertainty
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback