• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Risk-averse electrolyser sizing in industrial parks: an efficient stochastic-robust approach

Thumbnail
Ver/
IIT-24-155R_preview (3.743Kb)
Fecha
2024-08-01
Autor
Tostado Véliz, Marcos
Jordehi, Ahmad Rezaee
Mansouri, Seyedamir
Escámez Álvarez, Antonio
Alharthi, Yahya Z.
Jurado Melguizo, Francisco
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Hydrogen is called to be one of the most important energy vectors in future energy systems. Nowadays, its use in the industry sector is prominent, finding multiple applications in fertilizer production or oil refining. In this sense, some industry sectors demand a considerable amount of hydrogen for their processes. In many cases, hydrogen must be purchased externally, which supposes a challenge due to hydrogen transportation is costly and few efficient. In this context, local hydrogen production through mature electrolysis technology may suppose an attractive alternative in industrial parks. This paper focuses on this topic, in particular, a risk-averse electrolyser sizing methodology is developed. The new approach accounts for uncertainties in electricity prices as well as local renewable generation and demand through an original hybrid stochastic-robust model. The developed uncertainty modelling is integrated into a novel four-level optimization framework, whose main result is the optimal electrolyser rated power. To efficiently attain the solution, an original hybridization of the Benders' decomposition and the Column and Constraint Generation Algorithm is proposed. The developed methodology results efficient in an illustrative three-industry park, showing that installing local hydrogen generation may reduce the amount of hydrogen purchased externally (by 38) and project costs by 2.5. Furthermore, increasing the robustness level leads to increase the project cost by 8, while assuming unfavourable realization of uncertainties. Moreover, the developed tool is further validated in larger parks, involving an increasing number of industries, showing that the proposed methodology scales well with the size of the park.
 
URI
https:doi.org10.1016j.apenergy.2024.123389
http://hdl.handle.net/11531/100669
Risk-averse electrolyser sizing in industrial parks: an efficient stochastic-robust approach
Tipo de Actividad
Artículos en revistas
ISSN
0306-2619
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Electrolyser; Hydrogen; Industrial park; Risk-averse optimization; Robust optimization
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias