• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifidelity Bayesian optimization for hyperparameter tuning of deep reinforcement learning algorithms

Thumbnail
Ver/
IIT-25-153R (409.2Kb)
IIT-25-153R_preview (3.319Kb)
Fecha
2025-12-31
Autor
Garrido Merchán, Eduardo César
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This research focuses on comparing standard Bayesian optimization and multifidelity Bayesian optimization in the hyperparameter search to improve the performance of reinforcement learning algorithms in environments such as OpenAI LunarLander and CartPole. The primary goal is to determine whether multifidelity Bayesian optimization provides significant improvements in solution quality compared to standard Bayesian optimization. To address this question, several Python implementations were developed, evaluating the solution quality using the mean of the total rewards obtained as the objective function. Various experiments were conducted for each environment and version using different seeds, ensuring that the results were not merely due to the inherent randomness of reinforcement learning algorithms. The results demonstrate that multifidelity Bayesian optimization outperforms standard Bayesian optimization in several key aspects. In the LunarLander environment, multifidelity optimization achieved better convergence and more stable performance, yielding a higher average reward compared to the standard version. In the CartPole environment, although both methods quickly reached the maximum reward, multifidelity did so with greater consistency and in less time. These findings highlight the ability of multifidelity optimization to optimize hyperparameters more efficiently, using fewer resources and less time while achieving superior performance.
 
URI
https:doi.org10.59400cai2923
Multifidelity Bayesian optimization for hyperparameter tuning of deep reinforcement learning algorithms
Tipo de Actividad
Artículos en revistas
ISSN
3029-2786
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

deep reinforcement learning; bayesian optimization; meta learning
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias