Mostrar el registro sencillo del ítem

dc.contributor.authorCoronado Vaca, Maríaes-ES
dc.contributor.authorVaquero Lafuente, Estheres-ES
dc.date.accessioned2025-07-16T12:19:41Z
dc.date.available2025-07-16T12:19:41Z
dc.date.issued2025-12-12es_ES
dc.identifier.issn2331-1975es_ES
dc.identifier.urihttps:doi.org10.108023311975.2025.2487219es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101241
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis study explores the application of transformer models directly for classification in predicting mergers and acquisitions (M&A) targets within the U.S. energy sector. The primary objective is to evaluate the capability and performance of various transformer-based models in directly predicting M&A target companies, while the secondary objective investigates the relationship between target companies and renewable energy terminology in their annual reports. We present a novel approach to predicting M&A targets by utilizing cutting-edge Natural Language Processing (NLP) techniques, such as fine-tuned transformer LLMs (Large Language Models) for direct classification. We analyze textual data from 200 publicly-listed US energy companies’ SEC-filings and employ FinBERT, ALBERT, and GPT-3-babage-002 as predictive models of M&A targets. We provide empirical evidence on LLMs’ capability in the direct classification of M&A target companies, with FinBERT utilizing oversampling, being the top-performing model due to its high precision and minimized false positives, critical for precise financial decision-making. Additionally, while the study revealed key differences in target and non-target report characteristics, it finds no significant evidence that M&A target companies use more renewable energy-related terminology. It is the first paper applying fine-tuned transformer-LLMs to predict M&A targets, effectively showcasing their capability for this task of direct classification as predictive models.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Cogent Business & Management, Periodo: 1, Volumen: online, Número: 1, Página inicial: 2487219-1, Página final: 2487219-29es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleFine-tuning transformer models for M&A target prediction in the U.S. ENERGY sectores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsMergers and acquisitions (M&A); renewable energy; takeover target prediction; green M&A; natural language processing (NLP); transformer models; large language models (LLM)en-GB


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem