• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alpha entropy search for new information-based Bayesian optimization

Thumbnail
View/Open
IIT-25-147R (6.189Mb)
IIT-25-147R_preview (3.656Kb)
Date
2025-07-08
Author
Garrido Merchán, Eduardo César
Hernández Lobato, Daniel
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Bayesian optimization (BO) methods based on information theory have obtained state-of-the-art results in several tasks. These techniques rely on the Kullback–Leibler (KL) divergence to compute the acquisition function. We introduce a novel information-based class of acquisition functions for BO called Alpha Entropy Search (AES). AES is based on the alpha-divergence, which generalizes the KL-divergence. Iteratively, AES selects the next evaluation point as the one whose associated target value has the highest level of dependency with respect to the location and associated value of the global maximum of the optimization problem. Dependency is measured in terms of the alpha-divergence, as an alternative to the KL-divergence. Intuitively, this favors evaluating the objective function at the most informative points about the global maximum. The alpha-divergence has a free parameter α, which determines the behavior of the divergence, balancing local and global differences. Therefore, different values of α result in different acquisition functions. AES acquisition lacks a closed-form expression. However, we propose an efficient and accurate approximation using a truncated Gaussian distribution. In practice, the value of α can be chosen by the practitioner, but here we suggest using a combination of acquisition functions obtained by simultaneously considering a range of α values. We provide an implementation of AES in BOTorch and we evaluate its performance in synthetic, benchmark, and real-world experiments involving the tuning of the hyper-parameters of a deep neural network. These experiments show that AES performance is competitive with other information-based acquisition functions such as JES, MES, or PES.
 
URI
https:doi.org10.1016j.knosys.2025.113612
http://hdl.handle.net/11531/101261
Alpha entropy search for new information-based Bayesian optimization
Tipo de Actividad
Artículos en revistas
ISSN
0950-7051
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Bayesian optimization; Information theory; Entropy search; Alpha-divergence
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback