Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Pérez, Pabloes-ES
dc.contributor.authorBellogín, Alejandroes-ES
dc.date.accessioned2025-07-16T12:22:14Z
dc.date.available2025-07-16T12:22:14Z
dc.date.issued2025-06-10es_ES
dc.identifier.issn2157-6904es_ES
dc.identifier.urihttps:doi.org10.11453744347es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101268
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractData sparsity is a persistent challenge in recommender systems, specially in specific domains like Point-of-Interest (POI) recommendation, where it significantly impacts model performance. While classical recommender systems have used various imputation and data augmentation mechanisms to address data sparsity, these methods have not been extensively explored in the POI recommendation domain. In this work, we propose a generic imputation framework to study the use of data augmentation techniques to generate synthetic check-ins and analyze their effects on the POI recommendation scenario. Our main goal is to enhance the performance of various traditional recommenders by increasing the training set interactions, considering specific characteristics of the domain, such as geographical information. We apply these techniques in six different cities from a global Foursquare check-in dataset, as well as in two additional cities from the Gowalla dataset, and a separate dataset from Yelp, ensuring a comprehensive evaluation across multiple data sources. Our imputation approach evidences improvements for most models. In several cases, these improvements exceeded 100 for ranking accuracy, measured in terms of nDCG, without considerably compromising novelty or diversity. Data and code is released at https:github.compablosanchezpImputationForPOIRecsys.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: ACM Transactions on Intelligent Systems and Technology, Periodo: 1, Volumen: En imprenta, Número: , Página inicial: 0, Página final: 0es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleSmart imputation, better recommendations: improving traditional Point-of-Interest recommendation through data augmentationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsInformation systems → Recommender systems; Information extraction; Point-Of-Interest, Imputation, Temporal evaluationen-GB


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem