• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flaw classification in bonded joints using multivariate statistical analysis and artificial intelligence

Thumbnail
Ver/
IIT-25-119R_preview (3.856Kb)
Fecha
2025-06-01
Autor
Tais, Carlos E.
Fontana, Juan M.
Molisani Yolitti, Leonardo
O’Brien, Ronald
Ballesteros Iglesias, María Yolanda
Caro Carretero, Raquel
del Real Romero, Juan Carlos
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Adhesives play an important role in multiple industries, offering versatile bonding solutions for diverse applications. However, their incorporation in structures where safety is critical has been met with hesitation due to potential degradation risks. Addressing this concern, this study introduces the preliminary assessment of a pattern recognition method aimed at automatically identifying damage in adhesive joints through acoustic signal analysis. This method was tested on experimental samples consisting of aluminum substrates bonded with an acrylic adhesive. Artificially generated defects on the samples was related to the percentage of bonded surface. Damaged samples contained either 25 , 50 , or 75  of bonded surface, whereas healthy samples contained 100  of bonded surface. Experiments involved applying an impulsive load at one end of the sample and recording the acoustic signal emitted in response to the load using a microphone located at the opposite end. Two classification algorithms were evaluated for discriminating the amount of damage of the samples. First, a multivariate statistical analysis extracted the fundamental frequencies from the acoustic signals to create a model that achieved 95  of classification accuracy. Second, an Artificial Neural Network (ANN) model was trained and validated with features extracted from the sound pressure level (SPL) signal obtaining an average accuracy of 97.1  for a 9-fold cross-validation. The results indicate that there is potential for further exploration of the proposed approach, leading to the development of a robust system capable of automatically detecting damage in bonded joints. Future work will explore the performance of the classification techniques for detecting other types of defects related to the lack of adhesion and inadequate curing times.
 
URI
https:doi.org10.1016j.ijadhadh.2025.104032
http://hdl.handle.net/11531/101284
Flaw classification in bonded joints using multivariate statistical analysis and artificial intelligence
Tipo de Actividad
Artículos en revistas
ISSN
0143-7496
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Artificial intelligent; Bonded joints; Flaw detection; Neural networks; Acoustic signals
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias