• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of water chemical properties in the cycle of a coal power plant using artificial neural networks

Thumbnail
View/Open
IIT-98-003A.pdf (480.3Kb)
Date
1998-05-09
Author
Sáez, Doris
Sanz Bobi, Miguel Ángel
Cipriano, Aldo
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Describes a systematic methodology based on artificial neural networks for model identification and its application to the prediction of water chemical properties under normal operation conditions in a power plant. The model obtained allows detection of incipient anomalies by comparison between the real and predicted values.
 
URI
http://hdl.handle.net/11531/105475
Prediction of water chemical properties in the cycle of a coal power plant using artificial neural networks
Tipo de Actividad
Capítulos en libros
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Water , Chemicals , Power generation , Input variables , Predictive models , Power system modeling , Neural networks , Artificial neural networks , Fault detection , Equations
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback