• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing social science research on cyberbullying through human machine collaboration

Thumbnail
View/Open
IIT-25-304R (2.619Mb)
IIT-25-304R_preview (3.832Kb)
Date
2025-12-31
Author
Baños Ramos, Andrea
Reneses Botija, María
Pérez Sánchez, Jaime
Awad, Edmond
López López, Gregorio
Castro Ponce, Mario
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Cyberbullying (CB) has emerged as a growing concern among adolescents, with nearly 10 of European children affected monthly and almost half experiencing it at least once. Unlike traditional bullying, CB thrives in digital environments where anonymity and impunity are prevalent. Despite its increasing prevalence, understanding the causal mechanisms behind CB remains challenging due to the limitations of conventional statistical methods, which often rely on correlations and are prone to spurious associations. In this paper, we introduce a novel human–machine consensus framework for causal discovery, aimed at supporting social scientists in unraveling the complex dynamics of CB. We leverage recent advances in data-driven causal inference, particularly the use of Directed Acyclic Graphs (DAGs), to identify and interpret causal relationships from observational data. Our approach integrates automatic causal discovery algorithms with expert knowledge, addressing the limitations of both purely algorithmic and purely expert-driven methods, and allows for the creation of a model ensemble estimation of the causal effects. To enhance interpretability and usability, we advocate for the use of Probabilistic Graphical Causal Models (PGCMs), or Bayesian Networks, which combine probabilistic reasoning with graphical representation. This hybrid methodology not only mitigates cognitive biases and inconsistencies in expert input but also fosters transparency and critical reflection in model construction. Cyberbullying serves as a compelling case study where ethical constraints preclude experimental designs, highlighting the value of interpretable, expert-informed causal models for guiding policy and intervention strategies.
 
URI
https:doi.org10.1038s41598-025-16149-4
http://hdl.handle.net/11531/105601
Enhancing social science research on cyberbullying through human machine collaboration
Tipo de Actividad
Artículos en revistas
ISSN
2045-2322
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Serious games, cyberbullying, causality, computational social science, DAG, do-calculus
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback