Mostrar el registro sencillo del ítem

dc.contributor.authorRico Cabrera, Javieres-ES
dc.date.accessioned2025-11-25T14:33:04Z
dc.date.available2025-11-25T14:33:04Z
dc.date.issued2026-02-15es_ES
dc.identifier.issn0024-3795es_ES
dc.identifier.urihttps:doi.org10.1016j.laa.2025.11.010es_ES
dc.identifier.urihttp://hdl.handle.net/11531/107352
dc.descriptionArtículos en revistases_ES
dc.description.abstractWe propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.es-ES
dc.description.abstractWe propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Linear Algebra and its Applications, Periodo: 1, Volumen: online, Número: , Página inicial: 139, Página final: 159es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleBi-infinite Riordan matrices: A matricial approach to multiplication and composition of formal Laurent serieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsFormal Laurent series; Bi-infinite matrices; Riordan groupes-ES
dc.keywordsFormal Laurent series; Bi-infinite matrices; Riordan groupen-GB


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem