• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-Informed Hybrid Modeling of Pneumatic Artificial Muscles

Thumbnail
Ver/
IIT-25-366C.pdf (5.138Mb)
Fecha
2025-09-02
Autor
Cifuentes Quintero, Jenny Alexandra
Pham, Minh Tu
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
Pneumatic Artificial Muscles (PAMs) are complex nonlinear systems characterized by hysteresis, making them challenging to model with classical system identification methods. While deep learning has emerged as a powerful tool for modeling nonlinear systems from data, purely neural network-based models often lack interpretability and are prone to overfitting. To address these challenges, this study explores several hybrid approaches that combine analytical models with neural networks to model PAM behavior more effectively. The results demonstrate that hybrid models significantly outperform both purely analytical and black-box neural network models, particularly in terms of generalization and dynamic accuracy. Among the approaches, the Physics-Informed Neural Network (PINN) unsupervised model shows the most robust performance, capturing complex PAM dynamics while maintaining computational efficiency. These findings suggest that hybrid modeling is a promising and scalable solution for accurately representing the intricate behavior of PAMs.
 
Pneumatic Artificial Muscles (PAMs) are complex nonlinear systems characterized by hysteresis, making them challenging to model with classical system identification methods. While deep learning has emerged as a powerful tool for modeling nonlinear systems from data, purely neural network-based models often lack interpretability and are prone to overfitting. To address these challenges, this study explores several hybrid approaches that combine analytical models with neural networks to model PAM behavior more effectively. The results demonstrate that hybrid models significantly outperform both purely analytical and black-box neural network models, particularly in terms of generalization and dynamic accuracy. Among the approaches, the Physics-Informed Neural Network (PINN) unsupervised model shows the most robust performance, capturing complex PAM dynamics while maintaining computational efficiency. These findings suggest that hybrid modeling is a promising and scalable solution for accurately representing the intricate behavior of PAMs.
 
URI
http://hdl.handle.net/11531/107579
Physics-Informed Hybrid Modeling of Pneumatic Artificial Muscles
Tipo de Actividad
Capítulos en libros
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave
Artificial muscles , Training , Analytical models , Computational modeling , Closed box , Artificial neural networks , Data models , System identification , Nonlinear systems , Overfitting
Artificial muscles , Training , Analytical models , Computational modeling , Closed box , Artificial neural networks , Data models , System identification , Nonlinear systems , Overfitting
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias