Show simple item record

dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorBellido López, Francisco Javieres-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.contributor.authorGonzález Calvo, Danieles-ES
dc.contributor.authorÁlvarez Tejedor, Tomáses-ES
dc.date.accessioned2025-12-16T09:03:27Z
dc.date.available2025-12-16T09:03:27Z
dc.date.issued2025-12-01es_ES
dc.identifier.issn2073-431Xes_ES
dc.identifier.urihttps:doi.org10.3390computers14120540es_ES
dc.identifier.urihttp://hdl.handle.net/11531/107720
dc.descriptionArtículos en revistases_ES
dc.description.abstractIn this paper, we describe the procedure of implementing a reinforcement learning algorithm, TD3, to learn the performance of a cooling water pump and how this type of learning can be used to detect degradations and evaluate its health condition. These types of machine learning algorithms have not been used extensively in the scientific literature to monitor the degradation of industrial components, so this study attempts to fill this gap, presenting the main characteristics of these algorithms’ application in a real case. The method presented consists of several models for predicting the expected evolution of significant behavior variables when no anomalies exist, showing the performance of different aspects of the pump. Examples of these variables are bearing temperatures or vibrations in different pump locations. All of the data used in this paper come from the SCADA system of the power plant where the cooling water pump is located.es-ES
dc.description.abstractIn this paper, we describe the procedure of implementing a reinforcement learning algorithm, TD3, to learn the performance of a cooling water pump and how this type of learning can be used to detect degradations and evaluate its health condition. These types of machine learning algorithms have not been used extensively in the scientific literature to monitor the degradation of industrial components, so this study attempts to fill this gap, presenting the main characteristics of these algorithms’ application in a real case. The method presented consists of several models for predicting the expected evolution of significant behavior variables when no anomalies exist, showing the performance of different aspects of the pump. Examples of these variables are bearing temperatures or vibrations in different pump locations. All of the data used in this paper come from the SCADA system of the power plant where the cooling water pump is located.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Computers, Periodo: 1, Volumen: online, Número: 12, Página inicial: 540-1, Página final: 540-15es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleTD3 Reinforcement Learning Algorithm Used for Health Condition Monitoring of a Cooling Water Pumpes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsTD3; reinforcement learning; cooling water pump; performance monitoring; health condition; failure mode riskes-ES
dc.keywordsTD3; reinforcement learning; cooling water pump; performance monitoring; health condition; failure mode risken-GB


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Show simple item record