• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wildfire Mitigation in Small-to-Medium-Scale Industrial Hubs Using Cost-Effective Optimized Wireless Sensor Networks

Thumbnail
Ver/
IIT-26-032R (6.286Mb)
IIT-26-032R_preview (4.065Kb)
Fecha
2026-01-01
Autor
Gómez González, Juan Luis
Marcoulaki, Effie
Cantizano González, Alexis
Konstantinidou, Myrto
Caro Carretero, Raquel
Castro Ponce, Mario
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, and long-term economic losses due to business interruption and environmental remediation. While large industrial complexes, such as oil, gas, and chemical facilities have sufficient resources for the implementation of effective prevention and mitigation plans, small-to-medium-sized industrial hubs are particularly vulnerable due to their scattered distribution and limited resources for investing in comprehensive fire prevention systems. This study targets the vulnerability of these communities by proposing the deployment of Wireless Sensor Networks (WSNs) as cost-effective Early Wildfire Detection Systems (EWDSs) to safeguard wildland and industrial domains. The proposed approach leverages wildland–industrial interface (WII) geospatial data, simulated wildfire dynamics data, and mathematical optimization to maximize detection efficiency at minimal cost. The WII delimits the boundary where the presence of wildland fires impacts industrial activity, thus representing a proxy for potential Natech disasters. The methodology is tested in Cocentaina, Spain, a municipality characterized by a highly flammable Mediterranean landscape and medium-scale industrial parks. Results reveal the complex trade-offs between detection characteristics and the degree of protection in the combined wildland and WII areas, enabling stakeholders to make informed decisions. This methodology is easily replicable for any municipality and industrial installation, or for generic wildland–human interface (WHI) scenarios, provided there is access to wildfire dynamics data and geospatial boundaries delimiting the areas to protect.
 
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, and long-term economic losses due to business interruption and environmental remediation. While large industrial complexes, such as oil, gas, and chemical facilities have sufficient resources for the implementation of effective prevention and mitigation plans, small-to-medium-sized industrial hubs are particularly vulnerable due to their scattered distribution and limited resources for investing in comprehensive fire prevention systems. This study targets the vulnerability of these communities by proposing the deployment of Wireless Sensor Networks (WSNs) as cost-effective Early Wildfire Detection Systems (EWDSs) to safeguard wildland and industrial domains. The proposed approach leverages wildland–industrial interface (WII) geospatial data, simulated wildfire dynamics data, and mathematical optimization to maximize detection efficiency at minimal cost. The WII delimits the boundary where the presence of wildland fires impacts industrial activity, thus representing a proxy for potential Natech disasters. The methodology is tested in Cocentaina, Spain, a municipality characterized by a highly flammable Mediterranean landscape and medium-scale industrial parks. Results reveal the complex trade-offs between detection characteristics and the degree of protection in the combined wildland and WII areas, enabling stakeholders to make informed decisions. This methodology is easily replicable for any municipality and industrial installation, or for generic wildland–human interface (WHI) scenarios, provided there is access to wildfire dynamics data and geospatial boundaries delimiting the areas to protect.
 
URI
https://doi.org/10.3390/fire9010043
http://hdl.handle.net/11531/108279
Wildfire Mitigation in Small-to-Medium-Scale Industrial Hubs Using Cost-Effective Optimized Wireless Sensor Networks
Tipo de Actividad
Artículos en revistas
ISSN
2571-6255
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave
wildland–industrial interface (WII); Natech; wildfires; vulnerable communities; geospatial information; GIS; simulations; optimization; Wireless Sensor Network (WSN)
wildland–industrial interface (WII); Natech; wildfires; vulnerable communities; geospatial information; GIS; simulations; optimization; Wireless Sensor Network (WSN)
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias