• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deformable bodies in a 3-dimensional viscous flow: Vorticity-stream vector formulation

Thumbnail
Ver/
IIT-26-037R_preview.pdf (3.685Kb)
Fecha
2026-01-01
Autor
Gallen, Andreu
Muñoz Biosca, Joan
Castro Ponce, Mario
Hernández Machado, Aurora
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
When simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media.
 
When simulating three-dimensional flows interacting with deformable and elastic obstacles, current methods often encounter complexities in the governing equations and challenges in numerical implementation. In this work, we introduce a novel numerical formulation for simulating incompressible viscous flows at low Reynolds numbers in the presence of deformable interfaces. Our method employs a vorticity-stream vector formulation that significantly simplifies the fluid solver, transforming it into a set of coupled Poisson problems. The body–fluid interface is modeled using a phase field, allowing for the incorporation of various free-energy models to account for membrane bending and surface tension. In contrast to existing three-dimensional approaches, such as lattice Boltzmann methods or boundary-integral techniques, our formulation is lightweight and grounded in classical fluid mechanics principles, making it implementable with standard finite-difference techniques. We demonstrate the capabilities of our method by simulating the evolution of a single vesicle or droplet in Newtonian Poiseuille and Couette flows under different free-energy models, successfully recovering canonical axisymmetric shapes and stress profiles. Although this work primarily focuses on single-body dynamics in Newtonian suspending fluids, the framework can be extended to include body forces, inertial effects, and viscoelastic media.
 
URI
https://doi.org/10.1063/5.0304652
http://hdl.handle.net/11531/108419
Deformable bodies in a 3-dimensional viscous flow: Vorticity-stream vector formulation
Tipo de Actividad
Artículos en revistas
ISSN
1070-6631
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave
Microfluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field)
Microfluídica (Microfluidics); Dinámica de Fluidos Computacional (CFD); Flujo viscoso (Viscous flow); Biomecánica celular (Cell biomechanics): Bajo número de Reynolds (Low Reynolds number); Vorticidad (Vorticity); Campo de fase (Phase-field)
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias