Mostrar el registro sencillo del ítem

dc.contributor.authorHerrero Hervás, Federicoes-ES
dc.contributor.authorNegreanu, Mihaelaes-ES
dc.contributor.authorVargas, Antonio M.es-ES
dc.date.accessioned2026-02-19T12:26:24Z
dc.date.available2026-02-19T12:26:24Z
dc.date.issued2026-02-12es_ES
dc.identifier.issn0955-7997es_ES
dc.identifier.urihttps://doi.org/10.1016/j.enganabound.2026.106688es_ES
dc.identifier.urihttp://hdl.handle.net/11531/108702
dc.descriptionArtículos en revistases_ES
dc.description.abstractWe numerically investigate a nonlinear system of parabolic partial differential equations modeling the negative chemotaxis interactions between a biological species and a lethal chemical substance that is externally supplied. The work extends the knowledge regarding the solutions to an ODE system to which the solutions of the original PDE model converge, as well as the regime of this convergence beyond the existing analytical results. In particular, for a periodic supply of the substance, a threshold value for the periodicity of the solutions to the ODE system is determined through systematic numerical experiments. Under the obtained conditions – weaker than the current analytical characterization – the convergence and eventual periodicity of the solutions to the PDE model is verified by meshless numerical simulations using the Generalized Finite Difference method. Lastly, an optimal control problem is considered, and an approximate solution is constructed.es-ES
dc.description.abstractWe numerically investigate a nonlinear system of parabolic partial differential equations modeling the negative chemotaxis interactions between a biological species and a lethal chemical substance that is externally supplied. The work extends the knowledge regarding the solutions to an ODE system to which the solutions of the original PDE model converge, as well as the regime of this convergence beyond the existing analytical results. In particular, for a periodic supply of the substance, a threshold value for the periodicity of the solutions to the ODE system is determined through systematic numerical experiments. Under the obtained conditions – weaker than the current analytical characterization – the convergence and eventual periodicity of the solutions to the PDE model is verified by meshless numerical simulations using the Generalized Finite Difference method. Lastly, an optimal control problem is considered, and an approximate solution is constructed.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Engineering Analysis With Boundary Elements, Periodo: 1, Volumen: 186, Número: ., Página inicial: ., Página final: .es_ES
dc.titlePeriodicity thresholds and optimal control in a negative chemotaxis system with cell deathes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsQuimiotaxis Negativa, Umbrales De Periodicidad, Método De Diferencias Finitas Generalizadas, Control Óptimo, Ecuaciones En Derivadas Parciales, Modelización Matemáticaes-ES
dc.keywordsNegative Chemotaxis, Periodicity Thresholds, Generalized Finite Difference Method, Optimal Control, Partial Differential Equations, Mathematical Modelingen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España