Mostrar el registro sencillo del ítem
Periodicity thresholds and optimal control in a negative chemotaxis system with cell death
| dc.contributor.author | Herrero Hervás, Federico | es-ES |
| dc.contributor.author | Negreanu, Mihaela | es-ES |
| dc.contributor.author | Vargas, Antonio M. | es-ES |
| dc.date.accessioned | 2026-02-19T12:26:24Z | |
| dc.date.available | 2026-02-19T12:26:24Z | |
| dc.date.issued | 2026-02-12 | es_ES |
| dc.identifier.issn | 0955-7997 | es_ES |
| dc.identifier.uri | https://doi.org/10.1016/j.enganabound.2026.106688 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/11531/108702 | |
| dc.description | Artículos en revistas | es_ES |
| dc.description.abstract | We numerically investigate a nonlinear system of parabolic partial differential equations modeling the negative chemotaxis interactions between a biological species and a lethal chemical substance that is externally supplied. The work extends the knowledge regarding the solutions to an ODE system to which the solutions of the original PDE model converge, as well as the regime of this convergence beyond the existing analytical results. In particular, for a periodic supply of the substance, a threshold value for the periodicity of the solutions to the ODE system is determined through systematic numerical experiments. Under the obtained conditions – weaker than the current analytical characterization – the convergence and eventual periodicity of the solutions to the PDE model is verified by meshless numerical simulations using the Generalized Finite Difference method. Lastly, an optimal control problem is considered, and an approximate solution is constructed. | es-ES |
| dc.description.abstract | We numerically investigate a nonlinear system of parabolic partial differential equations modeling the negative chemotaxis interactions between a biological species and a lethal chemical substance that is externally supplied. The work extends the knowledge regarding the solutions to an ODE system to which the solutions of the original PDE model converge, as well as the regime of this convergence beyond the existing analytical results. In particular, for a periodic supply of the substance, a threshold value for the periodicity of the solutions to the ODE system is determined through systematic numerical experiments. Under the obtained conditions – weaker than the current analytical characterization – the convergence and eventual periodicity of the solutions to the PDE model is verified by meshless numerical simulations using the Generalized Finite Difference method. Lastly, an optimal control problem is considered, and an approximate solution is constructed. | en-GB |
| dc.format.mimetype | application/pdf | es_ES |
| dc.language.iso | en-GB | es_ES |
| dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
| dc.source | Revista: Engineering Analysis With Boundary Elements, Periodo: 1, Volumen: 186, Número: ., Página inicial: ., Página final: . | es_ES |
| dc.title | Periodicity thresholds and optimal control in a negative chemotaxis system with cell death | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | es_ES | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
| dc.keywords | Quimiotaxis Negativa, Umbrales De Periodicidad, Método De Diferencias Finitas Generalizadas, Control Óptimo, Ecuaciones En Derivadas Parciales, Modelización Matemática | es-ES |
| dc.keywords | Negative Chemotaxis, Periodicity Thresholds, Generalized Finite Difference Method, Optimal Control, Partial Differential Equations, Mathematical Modeling | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos
Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

