Mostrar el registro sencillo del ítem

dc.contributor.authorPortela González, Josées-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.contributor.authorAlonso Pérez, Estrellaes-ES
dc.date.accessioned2017-04-26T03:07:37Z
dc.date.available2017-04-26T03:07:37Z
dc.date.issued2018-01-01es_ES
dc.identifier.issn0885-8950es_ES
dc.identifier.urihttps:doi.org10.1109TPWRS.2017.2700287es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractA Functional time series is the realization of a stochastic process where each observation is a continuous function defined on a finite interval. These processes are commonly found in electricity markets and are gaining more importance as more market data becomes available and markets head towards continuous-time marginal pricing approaches. Forecasting these time series requires models that operate with continuous functions. This paper proposes a new functional forecasting method that attempts to generalize the standard seasonal ARMAX time series model to the L2 Hilbert space. The structure of the proposed model is a linear regression where functional parameters operate on functional variables. The variables can be lagged values of the series (autoregressive terms), past observed innovations (moving average terms) or exogenous variables. In this approach, the functional parameters used are integral operators in the L2 space where the kernels of the operators are modeled as linear combinations of sigmoid functions. The parameters of each sigmoid are optimized using a Quasi-Newton algorithm which minimizes the sum of squared errors. This novel approach allows us to estimate the moving average terms in functional time series models. The new model is tested by forecasting the daily price profile of the Spanish and German electricity markets and it is compared to other functional reference models.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: IEEE Transactions on Power Systems, Periodo: 1, Volumen: online, Número: 1, Página inicial: 545, Página final: 556es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleForecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecastinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsFunctional Data Analysis, Functional time series, Functional ARMAX model, Electricity price forecasting.en-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem