• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytical Solutions to Multi-period Credit Portfolio Management A Macroeconomic Approach

Thumbnail
Ver/
Analytical Solutions to Multi-period Credit Portfolio Management A Macroeconomic Approach v04.pdf (450.7Kb)
Fecha
03/08/2015
Autor
Suárez-Lledó Grande, José
Licari, Juan
Ordóñez, Gustavo
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
In this paper we develop a quantitative framework that allows us to calculate portfolio credit risk metrics analytically under multi-period and multi-credit-state environments. Of particular interest is the calculation of (intra-period and cumulative) expected and unexpected portfolio losses. These closed-form, exact formulas enable us to perform risk-based pricing, portfolio optimisation, risk-concentration analysis, stress and reverse stress-testing in a very precise and efficient way (without having to wait for days, if not weeks, for Monte Carlo methods to handle a multi-period, multi-credit-state set-up). Our innovative approach hinges on dynamic scenario generation using structural macroeconomic models. These forward-looking simulations are then linked to credit and market risk parameters, providing an opportunity to leverage the current wave of investment and developments around stress-testing methods. Moreover, the use of general equilibrium, stochastic macro models to build the scenarios gives us the ability to integrate default and mark-to-market risks under a single, unified multi-period framework. https://www.moodysanalytics.com/-/media/article/2015/2015-21-07-moodys-analytics-risk-perspective-risk-data-management.pdf
 
In this paper we develop a quantitative framework that allows us to calculate portfolio credit risk metrics analytically under multi-period and multi-credit-state environments. Of particular interest is the calculation of (intra-period and cumulative) expected and unexpected portfolio losses. These closed-form, exact formulas enable us to perform risk-based pricing, portfolio optimisation, risk-concentration analysis, stress and reverse stress-testing in a very precise and efficient way (without having to wait for days, if not weeks, for Monte Carlo methods to handle a multi-period, multi-credit-state set-up). Our innovative approach hinges on dynamic scenario generation using structural macroeconomic models. These forward-looking simulations are then linked to credit and market risk parameters, providing an opportunity to leverage the current wave of investment and developments around stress-testing methods. Moreover, the use of general equilibrium, stochastic macro models to build the scenarios gives us the ability to integrate default and mark-to-market risks under a single, unified multi-period framework. https://www.moodysanalytics.com/-/media/article/2015/2015-21-07-moodys-analytics-risk-perspective-risk-data-management.pdf
 
URI
http://hdl.handle.net/11531/25935
Analytical Solutions to Multi-period Credit Portfolio Management A Macroeconomic Approach
Tipo de Actividad
Revista electrónica
Palabras Clave
Risk Management, Credit Portfolio, Bayesian, Simulation
Risk Management, Credit Portfolio, Bayesian, Simulation
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias