• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced representative days and system states modeling for energy storage investment analysis

Thumbnail
Ver/
IIT-17-151A.pdf (698.1Kb)
Fecha
2018-11-01
Autor
Tejada Arango, Diego Alejandro
Domeshek, Maya
Wogrin, Sonja
Centeno Hernáez, Efraim
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This paper analyzes different models for evaluating investments in Energy Storage Systems (ESS) in power systems with high penetration of Renewable Energy Sources (RES). First of all, two methodologies proposed in the literature are extended to consider ESS investment: a unit commitment model that uses the ‘System States’ (SS) method of representing time; and another one that uses a ‘representative periods’ (RP) method. Besides, this paper proposes two new models that improve the previous ones without a significant increase of computation time. The enhanced models are the ‘System States Reduced Frequency Matrix' (SSRFM) model which addresses short-term energy storage more approximately than the SS method to reduce the number of constraints in the problem, and the ‘Representative Periods with Transition Matrix and Cluster Indices’ (RP-TM&CI) model which guarantees some continuity between representative periods, e.g. days, and introduces long-term storage into a model originally designed only for the short term. All these models are compared using an hourly unit commitment model as benchmark. While both system state models provide an excellent representation of long-term storage, their representation of short-term storage is frequently unrealistic. The RP-TM&CI model, on the other hand, succeeds in approximating both short- and long-term storage, which leads to almost 10 times lower error in storage investment results in comparison to the other models analyzed.
 
URI
https:doi.org10.1109TPWRS.2018.2819578
Enhanced representative days and system states modeling for energy storage investment analysis
Tipo de Actividad
Artículos en revistas
ISSN
0885-8950
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

energy storage systems, power system planning, power system modeling, system states, representative days.
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias