Mostrar el registro sencillo del ítem

dc.contributor.authorLinares Hurtado, José Ignacioes-ES
dc.contributor.authorMontes Pita, María Josées-ES
dc.contributor.authorCantizano González, Alexises-ES
dc.contributor.authorSánchez Naranjo, María Consueloes-ES
dc.date.accessioned2020-02-20T04:14:01Z
dc.date.available2020-02-20T04:14:01Z
dc.date.issued2020-04-01es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.otherhttps://doi.org/10.1016/j.apenergy.2020.114644
dc.identifier.urihttps:doi.org10.1016j.apenergy.2020.114644es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractPower tower concentrating solar plants with thermal energy storage will play a key role in the transition to a low carbon scenario, thanks to be a dispatchable renewable energy system. The ternary MgCl2KClNaCl salt appears as one of the most promising due to its lower melting point, higher heat capacity, lower cost and stability up to 800 °C. A cavity-type receiver has been selected because minimizes radiation heat loss at high working temperatures, compared to an external-type receiver, since all commercial selective coatings degrade in air. Supercritical Brayton power cycle is chosen for the power block because it can surpass 50 efficiency, even when working in dry cooling conditions, and printed circuit heat exchangers are usually recommended due to its ability to support the high pressures. However, pluggingclogging issues arise in their small channels when using molten salts. This paper proposes a novel supercritical CO2 Bayton power cycle whose heat power is supplied through the low pressure side (over 85 bar) allowing the use of shell and tube heat exchangers, achieving a higher compactness and a lower investment. Thus, different options based on the recompression layout with intercooling and reheating have been investigated in both dry and wet cooling scenarios. Reheating is recommended for wet cooling, reaching 54.6 efficiency and an investment of 8662 $kWe; intercooling with reheating is the best option for dry cooling, reaching 52.6 efficiency and an investment of 8742 $kWe.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 114644-1, Página final: 114644-21es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plantses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsSupercritical CO2; Recompression Brayton power cycle; Concentrated solar plant; Shell and tube heat exchanger; Ternary chloride molten salt; Cavity receiveren-GB
dc.identifier.doi10.1016/j.apenergy.2020.114644


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem