Mostrar el registro sencillo del ítem

dc.contributor.authorDomínguez Gago, Maríaes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.contributor.authorGonsalves, Tades-ES
dc.contributor.authorFernández Rodríguez, Adriánes-ES
dc.date.accessioned2016-01-15T11:15:39Z
dc.date.available2016-01-15T11:15:39Z
dc.date.issued2014-03-01es_ES
dc.identifier.issn0952-1976es_ES
dc.identifier.urihttps:doi.org10.1016j.engappai.2013.12.015es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractOne of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed profile that requires the minimum energy consumption without degrading commercial running times or passenger comfort. When the trains are equipped with Automatic Train Operation systems (ATO) additional difficulties are involved. Their particular features make it necessary to develop accurate models that optimize the combination of the ATO commands of each speed profile to be used by the traffic regulation system. These commands are transmitted to the train via encoded balises on the track with little channel capacity (bandwidth). Thus, only a few and discrete values of the commands can be sent and the solution space of every interstation is made up of a relatively small set of speed profiles. However, the new state-of-the-art of signalling technologies permit a better bandwidth resulting in an exponential solution space. This calls for new methods for the optimal design of the ATO speed profiles without an exhaustive simulation of all the combinations. A MOPSO algorithm (Multi Objective Particle Swarm Optimization) to obtain the consumptiontime Pareto front based on the simulation of a train with a real ATO system is proposed. The algorithm is able even to take into account only the comfortable speed profiles of the solution space. The fitness of the Pareto front is verified by comparing it with a NSGA-II algorithm (non-dominated sorting genetic algorithm II) and with the real Pareto front. Further, it has been used to obtain the optimal speed profiles in a real line of the Madrid Underground.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Engineering Applications of Artificial Intelligence, Periodo: 1, Volumen: online, Número: , Página inicial: 43, Página final: 53es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMulti objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lineses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsEnergy efficiency, train simulation, ATO, metro, eco-driving, MOPSO algorithm, evolutionary algorithmen-GB


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem