• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy

Thumbnail
View/Open
IIT-12-112A.pdf (2.541Mb)
IIT-12-112A_preview (3.496Kb)
IIT-12-112A_preview (3.496Kb)
Date
2012-07-01
Author
Peña Alcaráz, Maite
Fernández Cardador, Antonio
Cucala García, María Asunción
Ramos Galán, Andrés
Rodríguez Pecharromán, Ramón
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
This paper deals with the design of underground rail system timetables that synchronize the movement of trains to allow the energy consumption from substations to be reduced by maximizing the use of regenerative-braking energy. Nowadays, most trains are equipped with regenerative-braking systems and any of this recovered energy not used by on-board auxiliary services can be consumed by other trains in the same rail section. A mathematical programming optimization model has been designed to synchronize the braking of trains arriving at station with the acceleration of trains exiting from the same or another station. In addition, a power flow model of the electrical network has been developed to calculate the power-saving factor for each synchronization event in order to encourage better synchronizations, particularly those which have fewer energy losses. These models were applied in the design of a schedule for line 3 of the Madrid underground system. This schedule was then trialled for a week. Energy savings were measured and a significant correlation with the synchronization of train movements was observed. It was concluded that a modification in the published timetables would result in energy savings, with no effect on the quality of service for passengers and low associated investment costs.
 
This paper deals with the design of underground rail system timetables that synchronize the movement of trains to allow the energy consumption from substations to be reduced by maximizing the use of regenerative-braking energy. Nowadays, most trains are equipped with regenerative-braking systems and any of this recovered energy not used by on-board auxiliary services can be consumed by other trains in the same rail section. A mathematical programming optimization model has been designed to synchronize the braking of trains arriving at station with the acceleration of trains exiting from the same or another station. In addition, a power flow model of the electrical network has been developed to calculate the power-saving factor for each synchronization event in order to encourage better synchronizations, particularly those which have fewer energy losses. These models were applied in the design of a schedule for line 3 of the Madrid underground system. This schedule was then trialled for a week. Energy savings were measured and a significant correlation with the synchronization of train movements was observed. It was concluded that a modification in the published timetables would result in energy savings, with no effect on the quality of service for passengers and low associated investment costs.
 
URI
https://doi.org/10.1177/0954409711429411
Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy
Tipo de Actividad
Artículos en revistas
ISSN
0954-4097
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave
Energy efficiency, regenerative-braking system, train timetabling problem, underground scheduling
Energy efficiency, regenerative-braking system, train timetabling problem, underground scheduling
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback