Resumen
This paper analyses the performance impact caused by the selection of a node to act as a switch in a PLC network using PRIME (PoweRline Intelligent Metering Evolution) standard. This performance is measured in terms of application data message roundtrip. Additionally, a decision algorithm is proposed in order to identify the most favorable switch, fulfilling a gap left open in the aforementioned standard. This decision is based on path cost information transmitted by the nodes. Moreover, a modification for the definition of these costs is proposed with the purpose of enhancing the algorithm’s accomplishments. In order to replicate the performance of a PRIME’s network, a co-simulation framework that combines Matlab and OMNeT++ has been used. This architecture allows for taking into account both physical phenomena and control and application message management. Simulated topologies emulate a general European low-voltage network. Results show that, by using the proposed algorithm and costs definitions, the overall network performance is enhanced.