• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clinical characteristics and prognostic factors for icu admission of patientswith covid-19: a retrospective study using machine learning and natural language processing

Thumbnail
Ver/
IIT-20-022A.pdf (745.3Kb)
Fecha
28/10/2020
Autor
Izquierdo Alonso, José L
Ancochea Bermúdez, Julio
Hernández Medrano, Ignacio
Tello Guijarro, Jorge
Porras Chavarino, Alberto
Serrano Olmedo, Marisa
Lumbreras Sancho, Sara
del Río Bermúdez, Carlos
Marchesseau, Stephanie
Salcedo Ramos, Ignacio
Martínez, Andrea
Maté Ruiz, Claudia
Collazo Carrera, Sergio Sergio
Barea Mendoza, Jesús
Villamayor Delgado, María
Urda Martínez Aedo, Antonio
de la Pinta, Carolina
Zubizarreta, Imanol
González Fernández, Yolanda
Menke, Sebastian
Soriano Ortiz, Joan B.
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Background Many factors involved in the onset and clinical course of the ongoing COVID-19 pandemic are still unknown. Although big data analytics and artificial intelligence are widely used in the realms of health and medicine, researchers are only beginning to use these tools to explore the clinical characteristics and predictive factors of patients with COVID-19. Objective Our primary objectives are to describe the clinical characteristics and determine the factors that predict intensive care unit (ICU) admission of patients with COVID-19. Determining these factors using a well-defined population can increase our understanding of the real-world epidemiology of the disease. Methods We used a combination of classic epidemiological methods, natural language processing (NLP), and machine learning (for predictive modeling) to analyze the electronic health records (EHRs) of patients with COVID-19. We explored the unstructured free text in the EHRs within the Servicio de Salud de Castilla-La Mancha (SESCAM) Health Care Network (Castilla-La Mancha, Spain) from the entire population with available EHRs (1,364,924 patients) from January 1 to March 29, 2020. We extracted related clinical information regarding diagnosis, progression, and outcome for all COVID-19 cases. Results A total of 10,504 patients with a clinical or polymerase chain reaction–confirmed diagnosis of COVID-19 were identified; 5519 (52.5%) were male, with a mean age of 58.2 years (SD 19.7). Upon admission, the most common symptoms were cough, fever, and dyspnea; however, all three symptoms occurred in fewer than half of the cases. Overall, 6.1% (83/1353) of hospitalized patients required ICU admission. Using a machine-learning, data-driven algorithm, we identified that a combination of age, fever, and tachypnea was the most parsimonious predictor of ICU admission; patients younger than 56 years, without tachypnea, and temperature 39 ºC without respiratory crackles) were not admitted to the ICU. In contrast, patients with COVID-19 aged 40 to 79 years were likely to be admitted to the ICU if they had tachypnea and delayed their visit to the emergency department after being seen in primary care. Conclusions Our results show that a combination of easily obtainable clinical variables (age, fever, and tachypnea with or without respiratory crackles) predicts whether patients with COVID-19 will require ICU admission.
 
URI
10.2196/21801
Clinical characteristics and prognostic factors for icu admission of patientswith covid-19: a retrospective study using machine learning and natural language processing
Tipo de Actividad
Artículos en revistas
ISSN
1438-8871
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

artificial intelligence; big data; COVID-19; electronic health records; tachypnea; SARS-CoV-2; predictive model
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias