Mostrar el registro sencillo del ítem
A complete fault location formulation for distribution systems using the k-nearest neighbors for regression and classification
dc.contributor.author | Morales España, German Andres | es-ES |
dc.contributor.author | Mora Flórez, Juan | es-ES |
dc.contributor.author | Carrillo Caicedo, Gilberto | es-ES |
dc.date.accessioned | 2016-01-15T11:27:10Z | |
dc.date.available | 2016-01-15T11:27:10Z | |
dc.date.issued | 2010-11-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/5585 | |
dc.description | Capítulos en libros | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | This paper presents an alternative to the traditional impedance based fault location methods, using a simple technique of the learning approaches called k-Nearest Neighbors (k-NN), where besides the fault location distance, the multiple estimation problem is also addressed. This approach only uses the single end measurements of voltage and current available at the power substation. As principal advantage, considering the classical approaches, this alternative has not dependency on the power system model and also considers the spacial characteristics of the distribution systems. Furthermore, the multiple estimation problem, typical of all fault location approaches, is addressed. According to the proposed tests, faults location in different nodes and values of fault resistances are successfully determined, having an average error rate lower than 1.5 and 13 in distance estimation and zone identification respectively. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.publisher | IEEE (São Paulo , Brasil) | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.source | Libro: Transmission and Distribution Conference and Exposition: Latin America - IEEE/PES 2010, Página inicial: 810 - 815, Página final: | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | A complete fault location formulation for distribution systems using the k-nearest neighbors for regression and classification | es_ES |
dc.type | info:eu-repo/semantics/bookPart | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Classification, fault location, k-Nearest Neighbors, learning approaches, multiple estimation, power distribution systems, regression | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos
Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.