Mostrar el registro sencillo del ítem

dc.contributor.authorMorales España, German Andreses-ES
dc.contributor.authorMora Flórez, Juanes-ES
dc.contributor.authorCarrillo Caicedo, Gilbertoes-ES
dc.date.accessioned2016-01-15T11:27:10Z
dc.date.available2016-01-15T11:27:10Z
dc.date.issued2010-11-08es_ES
dc.identifier.urihttp://hdl.handle.net/11531/5585
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents an alternative to the traditional impedance based fault location methods, using a simple technique of the learning approaches called k-Nearest Neighbors (k-NN), where besides the fault location distance, the multiple estimation problem is also addressed. This approach only uses the single end measurements of voltage and current available at the power substation. As principal advantage, considering the classical approaches, this alternative has not dependency on the power system model and also considers the spacial characteristics of the distribution systems. Furthermore, the multiple estimation problem, typical of all fault location approaches, is addressed. According to the proposed tests, faults location in different nodes and values of fault resistances are successfully determined, having an average error rate lower than 1.5 and 13 in distance estimation and zone identification respectively.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherIEEE (São Paulo , Brasil)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: Transmission and Distribution Conference and Exposition: Latin America - IEEE/PES 2010, Página inicial: 810 - 815, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA complete fault location formulation for distribution systems using the k-nearest neighbors for regression and classificationes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsClassification, fault location, k-Nearest Neighbors, learning approaches, multiple estimation, power distribution systems, regressionen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem