• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists

Thumbnail
Ver/
IIT-21-001A.pdf (2.290Mb)
Fecha
2021-11-01
Autor
Ospina Mateus, Holman
Quintana Jiménez, Leonardo Augusto
López Valdés, Francisco José
Berrio Garcia, Shyrle
Barrero Solano, Lope Hugo
Sankar Sana, Shib
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
The objective of this study is to analysis of accident of motorcyclists on Bogotá roads in Colombia. For detection of conditions related to crashes and their severity, the proposed model develops the strategies to enhance road safety. In this context, data mining and machine learning techniques are used to investigate 34,232 accidents by motorcyclists during January 2013 to February 2018. Both the Genetic algorithm and simulated annealing are applied in conjunction with mining rules (support, confidence, lift, and comprehensibility) as per objectives of the problem. The application of a hybrid algorithm allows for the creation and definition of optimal hierarchical decision rules for the prediction of the severity of motorcycle traffic accidents. The proposed method yields good results in the metrics of recall (90.07), precision (89.87), and accuracy (90.06) on the data set. The results increase the prediction by 20–21 in comparisons with the following methods: Decision Trees (CART, ID3, and C4.5), Support Vector Machines (SVMs), K-Nearest Neighbor (KNN), Naive Bayes, Neural Networks, Random Forest, and Random Tree. The proposed method defines 11 rules for the prediction of accidents with material damage, 24 rules with injuries, and 12 rules with fatalities. The variables with the most recurrence in the definition of rules are time, weather and road conditions, and the number of victims involved in the accidents. Finally, the interactions of the conditions and characteristics presented in motorcycle accidents are analyzed which contribute to the definition of countermeasures for road safety.
 
URI
https:doi.org10.1007s12652-020-02759-5
Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists
Tipo de Actividad
Artículos en revistas
ISSN
1868-5137
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Accident · Prediction, Genetic algorithm, Simulated annealing, Data mining, Severity
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias