• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new intelligent autoreclosing scheme using artificial neural network and Taguchi’s methodology

Thumbnail
Ver/
IIT-10-053A.pdf (693.8Kb)
Fecha
2010-05-09
Autor
Fitiwi Zahlay, Desta
Rama Rao, K.S.
Ibrahim, T.B.
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This paper presents a novel intelligent autoreclosure technique to discriminate temporary faults from permanent faults, and accurately determine fault extinction time. A variety of fault simulations are carried out on a specified transmission line on the standard IEEE 9-bus electric power system using MATLABSimPowerSytems. FFT and Prony analysis methods are employed to extract data features from each simulated fault. The fault identification prior to reclosing is accomplished by an artificial neural network trained by standard Error Backropagation, Levenberg Marquardt and Resilient Back-Propagation algorithms which are developed using MATLAB. Some important parameters which strongly affect the entire training process are fine-tuned with Taguchi’s method to their corresponding best values. The robustness of the developed ANN identifier is verified by testing it with the data patterns which consists of high impedance faults obtained from IEEE 14-bus benchmark system. Test results show the efficacy of the proposed AR scheme.
 
URI
http://hdl.handle.net/11531/5608
A new intelligent autoreclosing scheme using artificial neural network and Taguchi’s methodology
Tipo de Actividad
Capítulos en libros
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Adaptive autoreclosure, Artificial Neural Networks, Error back-propagation, Levenberg Marquardt, Resilient back-propagation, Taguchi’s method
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias