Mostrar el registro sencillo del ítem

dc.contributor.authorCastro Ponce, Marioes-ES
dc.contributor.authorAres, Saúles-ES
dc.contributor.authorCuesta, José A.es-ES
dc.contributor.authorManrubia, Susannaes-ES
dc.date.accessioned2021-06-07T11:53:02Z
dc.date.available2021-06-07T11:53:02Z
dc.date.issued2020-10-20es_ES
dc.identifier.issn0027-8424es_ES
dc.identifier.urihttps:doi.org10.1073pnas.2007868117es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractEpidemic spread is characterized by exponentially growing dynamics, which are intrinsically unpredictable. The time at which the growth in the number of infected individuals halts and starts decreasing cannot be calculated with certainty before the turning point is actually attained; neither can the end of the epidemic after the turning point. A susceptible-infected-removed (SIR) model with confinement (SCIR) illustrates how lockdown measures inhibit infection spread only above a threshold that we calculate. The existence of that threshold has major effects in predictability: A Bayesian fit to the COVID-19 pandemic in Spain shows that a slowdown in the number of newly infected individuals during the expansion phase allows one to infer neither the precise position of the maximum nor whether the measures taken will bring the propagation to the inhibition regime. There is a short horizon for reliable prediction, followed by a dispersion of the possible trajectories that grows extremely fast. The impossibility to predict in the midterm is not due to wrong or incomplete data, since it persists in error-free, synthetically produced datasets and does not necessarily improve by using larger datasets. Our study warns against precise forecasts of the evolution of epidemics based on mean-field, effective, or phenomenological models and supports that only probabilities of different outcomes can be confidently given.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Proceedings of the National Academy of Sciences of the United States of America, Periodo: 1, Volumen: online, Número: 42, Página inicial: 26190, Página final: 26196es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleThe turning point and end of an expanding epidemic cannot be precisely forecastes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordspredictability; epidemics; forecast; Bayesianen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem