Mostrar el registro sencillo del ítem

dc.contributor.authorMagdy, Gaberes-ES
dc.contributor.authorMohammed Nour, Morsy Abdelkader Morsyes-ES
dc.contributor.authorShabib, Gaberes-ES
dc.contributor.authorElbaset, Adel A.es-ES
dc.contributor.authorMitani, Yasunories-ES
dc.date.accessioned2021-06-07T11:57:15Z
dc.date.available2021-06-07T11:57:15Z
dc.date.issued2019-12-01es_ES
dc.identifier.issn1112-5209es_ES
dc.identifier.urihttp://hdl.handle.net/11531/56119
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractIn modern power systems, the penetration level of Renewable Energy Sources (RESs) is strikingly increasing. Where, many synchronous generators are being replaced by the RESs-based the power electronic devices, this will reduce the overall system inertia. Moreover, the intermittent nature of the RESs causes several control problems such as frequencyvoltage instability problem. Hence, these disturbances threaten preservation the power system stability and can lead to system collapse. In addition, the secondary frequency control action (i.e., Load Frequency Control (LFC)) will not be sufficient to maintain the system frequency close to its scheduled value. Therefore, this paper proposes an application of Superconducting Magnetic Energy Storage (SMES) system based on an optimal PID controller, which is optimally designed by the Particle Swarm Optimization (PSO) to enhance the frequency stability of modern power systems due to high RESs penetration. From the perspective of the LFC, the proposed controlled SMES can be used as a feedback controller with the aim of supporting the frequency control loops for frequency stability enhancement of the power systems. Moreover, the effectiveness of the proposed control strategy is tested and verified through a real hybrid power system in Egypt (i.e., Egyptian Power System (EPS)) that includes thermal, gas, hydraulic power plants, wind, and solar energy. The obtained simulation results by MatlabSimulink software reveal that the proposed control strategy achieved superior dynamic responses satisfying the LFC requirements in all test scenarios. Consequently, the frequency stability is improved regarding peak undershoot, peak overshoot, and settling time.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Journal of Electrical Systems, Periodo: 1, Volumen: online, Número: 4, Página inicial: 526, Página final: 538es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleSupplementary frequency control in a high-penetration real power system by renewables using SMES applicationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsRenewable energy sources, Superconducting magnetic energy storage, Egyptian power system, Frequency control, Particle swarm optimization.en-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem