Mostrar el registro sencillo del ítem

dc.contributor.advisorOchoa Díaz, Martínes-ES
dc.contributor.authorHuppmann, Danieles-ES
dc.contributor.authorGidden, Matthew Jes-ES
dc.contributor.authorNicholls, Zebedeees-ES
dc.contributor.authorHörsch, Jonasbes-ES
dc.contributor.authorLamboll, Robines-ES
dc.contributor.authorKishimoto, Paul N.es-ES
dc.contributor.authorBurandt, Thorstenes-ES
dc.contributor.authorFricko, Oliveres-ES
dc.contributor.authorByers, Edwardes-ES
dc.contributor.authorKikstra, Jarmoes-ES
dc.contributor.authorBrinkerink, Maartenes-ES
dc.contributor.authorBudzinski, Maikes-ES
dc.contributor.authorMaczek, Florianes-ES
dc.contributor.authorZwickl-Bernhard, Sebastianes-ES
dc.contributor.authorWelder, Laraes-ES
dc.contributor.authorÁlvarez Quispe, Erik Franciscoes-ES
dc.contributor.authorSmith, Christopher J.es-ES
dc.contributor.otherUniversidad Pontificia Comillas, Facultad de Derechoes_ES
dc.date.accessioned2021-07-16T09:07:04Z
dc.date.available2021-07-16T09:07:04Z
dc.date.issued2021-09-01es_ES
dc.identifier.issn2732-5121es_ES
dc.identifier.urihttps:doi.org10.12688openreseurope.13633.2es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractThe open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are 'hard-wired' to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and 'representative timeslices'. The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.es-ES
dc.description.abstractThe open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are 'hard-wired' to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and 'representative timeslices'. The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/es_ES
dc.sourceRevista: Open Research Europe, Periodo: 1, Volumen: online, Número: , Página inicial: 74-1, Página final: 74-30es_ES
dc.subject56 Ciencias Jurídicas y Derechoes_ES
dc.subject5605 Legislación y leyes nacionaleses_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titlepyam: Analysis and visualisation of integrated assessment and macro-energy scenarioses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsintegrated assessment, energy systems, macro-energy, modelling, scenario analysis, data visualisation, Python packagees-ES
dc.keywordsintegrated assessment, energy systems, macro-energy, modelling, scenario analysis, data visualisation, Python packageen-GB


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 United States
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 United States