Mostrar el registro sencillo del ítem

dc.contributor.authorChamorro, Harold R.es-ES
dc.contributor.authorGuel Cortez, Adrián Josuées-ES
dc.contributor.authorKim, Eun-jines-ES
dc.contributor.authorGonzalez-Longatt, Francisco M.es-ES
dc.contributor.authorOrtega Manjavacas, Álvaroes-ES
dc.contributor.authorMartínez, Wilmares-ES
dc.date.accessioned2022-02-10T04:05:54Z
dc.date.available2022-02-10T04:05:54Z
dc.date.issued2022-11-01es_ES
dc.identifier.issn0885-8950es_ES
dc.identifier.urihttps:doi.org10.1109TPWRS.2022.3146314es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractOne of the short-coming challenges of power systems operation and planning is the difficulty to quantify the variability of power systems Kinetic Energy (KE) to unveil online additional information for the system operators’ decisions support. KE monitoring requires innovative methods to analyse the continuous fluctuations in the KE power’s systems. In this paper, we propose the use of information theory, specifically the concept of Information Length (IL), as a way to provide useful insights into the power system KE variability and to demonstrate its utility as a starting point in decision making for power systems management. The proposed IL metric is applied to monthly collected data from the Nordic Power System during three consecutive years in order to investigate the KE evolution. Our results reveal that the proposed method provides an effective description of the seasonal statistical variability enabling the identification of the particular month and day that have the least and the most KE variability. Additionally, by applying a Long Short-Term Memory (LSTM) neural network model to estimate the value of the IL on-line, we also show the possibility of using the metric as data-driven support.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: IEEE Transactions on Power Systems, Periodo: 1, Volumen: online, Número: 6, Página inicial: 4473, Página final: 4484es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleInformation length quantification and forecasting of power systems kinetic energyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsKinetic Energy Variability, Information Length, Time-series Forecasting, Support Decision Tools, Data Fluctuation Analysis.en-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem