Mostrar el registro sencillo del ítem

dc.contributor.authorRajora, GopaL Lales-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorMateo Domingo, Carloses-ES
dc.date.accessioned2023-03-14T10:21:19Z
dc.date.available2023-03-14T10:21:19Z
dc.date.issued31/05/2022es_ES
dc.identifier.issn2610-9182es_ES
dc.identifier.uri10.28991/ESJ-2022-06-04-017es_ES
dc.identifier.urihttp://hdl.handle.net/11531/77454
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis study aims to study the different kinds of Machine Learning (ML) models and their working principles for asset management in power networks. Also, it investigates the challenges behind asset management and its maintenance activities. In this review article, Machine Learning (ML) models are analyzed to improve the lifespan of the electrical components based on the maintenance management and assessment planning policies. The articles are categorized according to their purpose: 1) classification, 2) machine learning, and 3) artificial intelligence mechanisms. Moreover, the importance of using ML models for proper decision making based on the asset management plan is illustrated in a detailed manner. In addition to this, a comparative analysis between the ML models is performed, identifying the advantages and disadvantages of these techniques. Then, the challenges and managing operations of the asset management strategies are discussed based on the technical and economic factors. The proper functioning, maintenance and controlling operations of the electric components are key challenging and demanding tasks in the power distribution systems. Typically, asset management plays an essential role in determining the quality and profitability of the elements in the power network. Based on this investigation, the most suitable and optimal machine learning technique can be identified and used for future work.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Emerging Science Journal, Periodo: 1, Volumen: online, Número: 4, Página inicial: 905, Página final: 920es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleApplication of machine learning methods for asset management on power distribution networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsAsset Management; Power Distribution Network; Machine Learning (ML) Techniques; Power Systems; Time-Based; Activity-Based; Artificial Intelligence (AI) Models.en-GB


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem