Mostrar el registro sencillo del ítem
Mental health risk classification through NLP
dc.contributor.advisor | Laguna Pradas, Ana | es-ES |
dc.contributor.author | Girard, Charles Max-André | es-ES |
dc.contributor.other | Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI) | es_ES |
dc.date.accessioned | 2023-05-30T18:13:12Z | |
dc.date.available | 2023-05-30T18:13:12Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/78535 | |
dc.description | Máster en Big Data. Tecnología y Analítica Avanzada/Master in Big Data Technologies and Advanced Analytics | es_ES |
dc.description.abstract | Este proyecto tiene como objetivo crear una pipeline de procesamiento de texto para detectar riesgos tempranos de depresión en los mensajes de Telegram de los pacientes. Mediante el uso de datos de texto etiquetados del concurso de datos IberLEF, el objetivo principal es crear un algoritmo de clasificación supervisado que pueda proporcionar una probabilidad de que un individuo esté en riesgo de depresión. Este proyecto utilizará mensajes de texto enviados por 185 personas de habla hispana, 100 de las cuales fueron diagnosticadas como "depresivas" por 10 profesionales médicos y 85 de las cuales fueron consideradas "saludables". Se probaron exhaustivamente diferentes técnicas de procesamiento de lenguaje natural (NLP) junto con diferentes modelos de clasificación de aprendizaje automático (ML) para encontrar una pipeline que brindara la mejor precisión. El mejor modelo logró una precisión del 88%. | es-ES |
dc.description.abstract | This project aims to create a text processing pipeline in order to detect early risks of depression in Telegram messages from patients. By using labeled text data from the IberLEF data competition, the main goal is to create a supervised classification algorithm that can provide a probability of an individual being at risk of depression. This project will be using text messages sent from 185 spanish-speaking individuals, 100 of which were diagnosed as ‘depressive’ by 10 medical professionals and 85 of which were considered ‘healthy’. Different Natural Language Processing (NLP) techniques along with different Machine learning (ML) classifying models were exhaustively tested in order to find a pipeline that would yield the best accuracy. The best model achieved an accuracy of 88%. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | es_ES |
dc.subject | 12 Matemáticas | es_ES |
dc.subject | 1203 Ciencias de los ordenadores | es_ES |
dc.subject | 120318 Sistemas de información, diseño y componentes | es_ES |
dc.subject.other | M8A | es_ES |
dc.title | Mental health risk classification through NLP | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | Aprendizaje automático, Aprendizaje profundo, Procesamiento del lenguaje natural, Salud mental, Depresión | es-ES |
dc.keywords | Machine Learning, Deep Learning, Natural Language Processing, Mental health, Depression | en-GB |